Placenta microstructure and microcirculation imaging with diffusion MRI

Purpose To assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta. Methods The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 80; H. 2; S. 756 - 766
Hauptverfasser: Slator, Paddy J., Hutter, Jana, McCabe, Laura, Gomes, Ana Dos Santos, Price, Anthony N., Panagiotaki, Eleftheria, Rutherford, Mary A., Hajnal, Joseph V., Alexander, Daniel C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.08.2018
John Wiley and Sons Inc
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose To assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta. Methods The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion. Results Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue. Conclusion Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model‐derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early‐onset pre‐eclampsia. Magn Reson Med 80:756–766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
AbstractList To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta. The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion. Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue. Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model-derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early-onset pre-eclampsia. Magn Reson Med 80:756-766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta.PURPOSETo assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta.The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion.METHODSThe placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion.Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue.RESULTSAnisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue.Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model-derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early-onset pre-eclampsia. Magn Reson Med 80:756-766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.CONCLUSIONAnisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model-derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early-onset pre-eclampsia. Magn Reson Med 80:756-766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
PurposeTo assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta.MethodsThe placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion.ResultsAnisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue.ConclusionAnisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model‐derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early‐onset pre‐eclampsia. Magn Reson Med 80:756–766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Purpose To assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta. Methods The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion. Results Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue. Conclusion Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model‐derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early‐onset pre‐eclampsia. Magn Reson Med 80:756–766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Author Rutherford, Mary A.
Hutter, Jana
Slator, Paddy J.
McCabe, Laura
Alexander, Daniel C.
Panagiotaki, Eleftheria
Hajnal, Joseph V.
Gomes, Ana Dos Santos
Price, Anthony N.
AuthorAffiliation 1 Centre for Medical Image Computing and Department of Computer Science University College London London UK
2 Centre for the Developing Brain, King's College London London UK
3 Biomedical Engineering Department King's College London London UK
AuthorAffiliation_xml – name: 1 Centre for Medical Image Computing and Department of Computer Science University College London London UK
– name: 2 Centre for the Developing Brain, King's College London London UK
– name: 3 Biomedical Engineering Department King's College London London UK
Author_xml – sequence: 1
  givenname: Paddy J.
  orcidid: 0000-0001-6967-989X
  surname: Slator
  fullname: Slator, Paddy J.
  email: p.slator@ucl.ac.uk
  organization: University College London
– sequence: 2
  givenname: Jana
  surname: Hutter
  fullname: Hutter, Jana
  organization: King's College London
– sequence: 3
  givenname: Laura
  surname: McCabe
  fullname: McCabe, Laura
  organization: Centre for the Developing Brain, King's College London
– sequence: 4
  givenname: Ana Dos Santos
  surname: Gomes
  fullname: Gomes, Ana Dos Santos
  organization: Centre for the Developing Brain, King's College London
– sequence: 5
  givenname: Anthony N.
  surname: Price
  fullname: Price, Anthony N.
  organization: King's College London
– sequence: 6
  givenname: Eleftheria
  surname: Panagiotaki
  fullname: Panagiotaki, Eleftheria
  organization: University College London
– sequence: 7
  givenname: Mary A.
  surname: Rutherford
  fullname: Rutherford, Mary A.
  organization: Centre for the Developing Brain, King's College London
– sequence: 8
  givenname: Joseph V.
  orcidid: 0000-0002-2690-5495
  surname: Hajnal
  fullname: Hajnal, Joseph V.
  organization: King's College London
– sequence: 9
  givenname: Daniel C.
  orcidid: 0000-0003-2439-350X
  surname: Alexander
  fullname: Alexander, Daniel C.
  organization: University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29230859$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYMo9qEL_4AMuNHF1LzmkY0gorXQohRdhzSTaVNmMjWZUfz3ZtpatKDZBO797uHcc3vg0FRGAXCG4ABBiK9LWw5wAkl8ALoowjjEEaOHoAsTCkOCGO2AnnNLCCFjCT0GHcwwgWnEumD4XAipTC2CUktbudo2sm6sCoTJNiWprWwKUevKBLoUc23mwYeuF0Gm87xxbXkyHZ2Ao1wUTp1u_z54fbh_uXsMx0_D0d3tOJSUkjiMCaSzOMZIEZowhnKWxzLNBJIpVAhKgkhKKEIRpTOklGBQMpapKJvRKMsoIn1ws9FdNbNSZa11Kwq-st6a_eSV0Px3x-gFn1fv3CeSYNYKXG4FbPXWKFfzUjupikIYVTWOI5ZEPqU0wR692EOXVWONX49jiBOakvb1wflPRzsr3xl74GoDtPk6q_IdgiBv78f9_fj6fp693mOlrtfZ-2V08d_Ehy7U59_SfDKdbCa-ABSKq8c
CitedBy_id crossref_primary_10_1080_14767058_2025_2463401
crossref_primary_10_1002_jmri_27875
crossref_primary_10_1111_jog_15183
crossref_primary_10_1002_advs_202203738
crossref_primary_10_1002_mrm_27733
crossref_primary_10_1002_mrm_28426
crossref_primary_10_1016_j_placenta_2021_01_017
crossref_primary_10_1161_HYPERTENSIONAHA_122_20311
crossref_primary_10_1016_j_mri_2025_110453
crossref_primary_10_3389_fcvm_2024_1426593
crossref_primary_10_1016_j_placenta_2022_01_010
crossref_primary_10_1002_pd_5526
crossref_primary_10_12688_wellcomeopenres_15451_1
crossref_primary_10_1259_bjr_20211010
crossref_primary_10_1007_s00330_020_07200_1
crossref_primary_10_1093_pnasnexus_pgae583
crossref_primary_10_1016_j_placenta_2023_08_067
crossref_primary_10_1186_s12884_020_03375_z
crossref_primary_10_1186_s41747_023_00358_5
crossref_primary_10_1002_mrm_30379
crossref_primary_10_1371_journal_pcbi_1012470
crossref_primary_10_1017_S2040174420001154
crossref_primary_10_1016_j_placenta_2021_02_015
crossref_primary_10_1038_s41598_021_93503_2
crossref_primary_10_1038_s44294_024_00049_5
crossref_primary_10_1002_mrm_27406
crossref_primary_10_1080_14767058_2022_2050365
crossref_primary_10_1016_j_biocel_2022_106195
crossref_primary_10_1111_1471_0528_17901
crossref_primary_10_1002_mrm_29665
crossref_primary_10_1016_j_placenta_2020_01_009
crossref_primary_10_1016_j_placenta_2021_07_302
crossref_primary_10_1016_j_media_2022_102639
crossref_primary_10_1093_molehr_gaz018
crossref_primary_10_1007_s00247_025_06373_5
crossref_primary_10_1002_ijgo_70306
crossref_primary_10_1002_mrm_27950
crossref_primary_10_1002_mrm_28963
crossref_primary_10_1002_mrm_28809
crossref_primary_10_1016_j_stem_2021_02_010
crossref_primary_10_1093_biolre_ioae035
crossref_primary_10_1016_j_placenta_2020_03_004
crossref_primary_10_1371_journal_pone_0302623
crossref_primary_10_1002_uog_27512
crossref_primary_10_1016_j_placenta_2023_09_001
crossref_primary_10_1002_mrm_29483
crossref_primary_10_1002_jmri_28858
crossref_primary_10_1097_RMR_0000000000000211
crossref_primary_10_1016_j_placenta_2021_12_019
crossref_primary_10_1371_journal_pone_0258442
crossref_primary_10_1016_j_placenta_2023_11_017
crossref_primary_10_1152_japplphysiol_00303_2019
crossref_primary_10_1038_s41598_020_65956_4
crossref_primary_10_1097_RMR_0000000000000219
crossref_primary_10_1016_j_placenta_2022_03_012
crossref_primary_10_1016_j_media_2021_102045
Cites_doi 10.1016/j.neuroimage.2011.09.081
10.1016/j.ajog.2015.08.015
10.1080/01621459.1995.10476572
10.1002/jmri.24792
10.1007/978-3-319-66182-7_60
10.1016/j.placenta.2013.07.006
10.1148/radiology.168.2.3393671
10.1016/j.neuroimage.2017.03.004
10.1002/mrm.25264
10.1016/j.ajog.2015.06.045
10.1111/nure.12055
10.1002/jmri.22100
10.1073/pnas.1401695111
10.1016/j.tem.2007.09.003
10.1002/mrm.25980
10.1002/(SICI)1522-2594(200002)43:2<295::AID-MRM18>3.0.CO;2-2
10.1093/humrep/14.8.2131
10.7863/jum.2011.30.4.529
10.1385/ENDO:19:1:103
10.1016/j.placenta.2015.04.003
10.1016/j.preghy.2012.01.001
10.1002/mrm.25080
10.1016/j.placenta.2014.01.008
10.1016/j.placenta.2013.04.018
10.1016/S0006-3495(94)80775-1
10.1159/000359969
10.1016/S0002-9440(10)64127-2
10.1002/mrm.23097
10.1148/radiol.10092283
10.1002/mrm.26052
10.1136/adc.2005.082297
10.1016/j.placenta.2009.02.009
10.1158/0008-5472.CAN-13-2511
10.1053/plac.2000.0567
10.1002/nbm.3584
10.1111/jmwh.12260
10.1016/j.ejogrb.2010.11.017
10.1002/mrm.25245
10.1016/j.preghy.2010.10.013
10.1002/jmri.25585
10.1016/j.placenta.2014.06.375
10.1002/pd.2641
10.1002/uog.14786
10.1002/mrm.26810
10.1002/jmri.20969
10.1002/mrm.21646
ContentType Journal Article
Copyright 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2018 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2018 International Society for Magnetic Resonance in Medicine
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.27036
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Placenta Microstructure and Microcirculation Imaging
EISSN 1522-2594
EndPage 766
ExternalDocumentID PMC5947291
29230859
10_1002_mrm_27036
MRM27036
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust (Sir Henry Wellcome Fellowship)
  funderid: 201374/Z/16/Z
– fundername: NIH (Placenta imaging Project)
  funderid: 1U01HD087202‐01
– fundername: EPSRC
  funderid: N018702 ; M020533
– fundername: NICHD NIH HHS
  grantid: U01 HD087202
– fundername: Wellcome Trust
  grantid: 201374/Z/16/Z
– fundername: Medical Research Council
  grantid: MR/M009106/1
– fundername: EPSRC
  grantid: N018702 ; M020533
– fundername: Wellcome Trust (Sir Henry Wellcome Fellowship)
  grantid: 201374/Z/16/Z
– fundername: NIH (Placenta imaging Project)
  grantid: 1U01HD087202‐01
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4436-6304b6621e347991f9f6c8da1c80e10c31383411544b1eea90c99de5db45dd413
IEDL.DBID 24P
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430469300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:22:31 EDT 2025
Fri Jul 11 08:11:19 EDT 2025
Tue Oct 07 06:45:42 EDT 2025
Mon Jul 21 06:05:29 EDT 2025
Tue Nov 18 22:32:54 EST 2025
Sat Nov 29 02:37:44 EST 2025
Wed Jan 22 16:54:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords diffusion MRI
model selection
placenta
microstructure
Bayesian information criterion
intravoxel incoherent motion
Language English
License Attribution
2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-6304b6621e347991f9f6c8da1c80e10c31383411544b1eea90c99de5db45dd413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2690-5495
0000-0003-2439-350X
0000-0001-6967-989X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27036
PMID 29230859
PQID 2027483333
PQPubID 1016391
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5947291
proquest_miscellaneous_1975997872
proquest_journals_2027483333
pubmed_primary_29230859
crossref_primary_10_1002_mrm_27036
crossref_citationtrail_10_1002_mrm_27036
wiley_primary_10_1002_mrm_27036_MRM27036
PublicationCentury 2000
PublicationDate August 2018
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2007; 18
2015; 36
2010; 31
2002; 19
2011; 1
1995; 90
2012
2015; 73
2000; 21
2000; 43
2017; 46
2016; 76
2011; 30
1994; 66
1988; 168
2013; 71
2007; 92
2006
2017; 152
2012; 59
2014; 111
2013; 6
2011; 155
2013; 19
2015; 46
2012; 2
2009; 30
2015; 213
2013; 34
2010; 257
2015; 42
1999; 14
2014; 59
2014; 36
2014; 35
2017
2015
2014; 74
2016; 29
2014; 72
2012; 67
2008; 60
2010; 30
2001; 158
2007; 26
2018; 79
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Radulescu L (e_1_2_6_8_1) 2013; 6
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Sivrioglu AK (e_1_2_6_43_1) 2013; 19
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 21
  start-page: 726
  year: 2000
  end-page: 732
  article-title: In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo‐planar MRI
  publication-title: Placenta
– volume: 76
  start-page: 1252
  year: 2016
  end-page: 1262
  article-title: Orientation dependence of microcirculation‐induced diffusion signal in anisotropic tissues
  publication-title: Magn Reson Med
– volume: 74
  start-page: 1902
  year: 2014
  end-page: 1912
  article-title: Noninvasive quantification of solid tumor microstructure using VERDICT MRI
  publication-title: Cancer Res
– volume: 1
  start-page: 6
  year: 2011
  end-page: 16
  article-title: The role of obesity in preeclampsia
  publication-title: Pregnancy Hypertens
– volume: 18
  start-page: 365
  year: 2007
  end-page: 370
  article-title: Obesity: a risk factor for preeclampsia
  publication-title: Trends Endocrinol Metab
– volume: 257
  start-page: 810
  year: 2010
  end-page: 819
  article-title: Diffusion‐weighted MR imaging of the placenta in fetuses with placental insufficiency
  publication-title: Radiology
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys J
– volume: 73
  start-page: 1570
  year: 2015
  end-page: 1578
  article-title: Using dynamic contrast‐enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty
  publication-title: Magn Reson Med
– volume: 36
  start-page: 117
  year: 2014
  end-page: 128
  article-title: Placental pathology in early‐onset and late‐onset fetal growth restriction
  publication-title: Fetal Diagn Therapy
– volume: 26
  start-page: 375
  year: 2007
  end-page: 385
  article-title: Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters
  publication-title: J Magn Reson Imaging
– volume: 213
  start-page: S12
  year: 2015
  end-page: S13
  article-title: How the placenta affects your life, from womb to tomb
  publication-title: Am J Obstet Gynecol
– volume: 6
  start-page: 292
  year: 2013
  end-page: 298
  article-title: The implications and consequences of maternal obesity on fetal intrauterine growth restriction
  publication-title: J Med Life
– volume: 60
  start-page: 439
  year: 2008
  end-page: 448
  article-title: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features
  publication-title: Magn Reson Med
– volume: 46
  start-page: 700
  year: 2015
  end-page: 705
  article-title: Magnetic resonance imaging‐estimated placental perfusion in fetal growth assessment
  publication-title: Ultrasound Obstet Gynecol
– volume: 155
  start-page: 36
  year: 2011
  end-page: 40
  article-title: Placental pathology in fetal growth restriction
  publication-title: Eur J Obstet Gynecol Reprod Biol
– volume: 14
  start-page: 2131
  year: 1999
  end-page: 2138
  article-title: The role of trophoblast in the physiological change in decidual spiral arteries
  publication-title: Hum Reprod
– volume: 35
  start-page: 696
  year: 2014
  end-page: 701
  article-title: Placental pathology in early intrauterine growth restriction associated with maternal hypertension
  publication-title: Placenta
– volume: 34
  start-page: 676
  year: 2013
  end-page: 680
  article-title: In vivo assessment of putative functional placental tissue volume in placental intrauterine growth restriction (IUGR) in human fetuses using diffusion tensor magnetic resonance imaging
  publication-title: Placenta
– volume: 59
  start-page: 596
  year: 2014
  end-page: 605
  article-title: Major changes in diagnosis and management of preeclampsia
  publication-title: J Midwifery Women's Health
– volume: 73
  start-page: 1526
  year: 2015
  end-page: 1532
  article-title: Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy
  publication-title: Magn Reson Med
– volume: 92
  start-page: F62
  year: 2007
  end-page: F67
  article-title: Management of fetal growth restriction
  publication-title: Arch Dis Child Fetal Neonatal Ed
– volume: 46
  start-page: 403
  year: 2017
  end-page: 412
  article-title: Spatiotemporal alignment of in utero BOLD‐MRI series
  publication-title: J Magn Reson Imaging
– volume: 158
  start-page: 1713
  year: 2001
  end-page: 1721
  article-title: Human trophoblast invasion and spiral artery transformation
  publication-title: Am J Pathol
– year: 2015
– volume: 36
  start-page: 615
  year: 2015
  end-page: 622
  article-title: Functional MRI of the placenta? From rodents to humans
  publication-title: Placenta
– volume: 168
  start-page: 497
  year: 1988
  end-page: 505
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: 30
  start-page: 473
  year: 2009
  end-page: 482
  article-title: Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy
  publication-title: Placenta
– volume: 79
  start-page: 1447
  year: 2018
  end-page: 1459
  article-title: Quiet echo planar imaging for functional and diffusion MRI
  publication-title: Magn Reson Med
– volume: 152
  start-page: 340
  year: 2017
  end-page: 347
  article-title: The IVIM signal in the healthy cerebral gray matter: a play of spherical and non‐spherical components
  publication-title: NeuroImage
– volume: 42
  start-page: 315
  year: 2015
  end-page: 330
  article-title: Influence of image registration on apparent diffusion coefficient images computed from free‐breathing diffusion MR images of the abdomen
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 1403
  year: 2016
  end-page: 1413
  article-title: An intravoxel oriented flow model for diffusion‐weighted imaging of the kidney
  publication-title: NMR Biomed
– volume: 2
  start-page: 72
  year: 2012
  end-page: 83
  article-title: The placenta in preeclampsia
  publication-title: Pregnancy Hypertens
– volume: 43
  start-page: 295
  year: 2000
  end-page: 302
  article-title: In vivo intravoxel incoherent motion measurements in the human placenta using echo‐planar imaging at 0.5 T
  publication-title: Magn Reson Med
– volume: 35
  start-page: 202
  year: 2014
  end-page: 206
  article-title: Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study
  publication-title: Placenta
– year: 2012
– volume: 90
  start-page: 773
  year: 1995
  end-page: 795
  article-title: Bayes factors
  publication-title: J Am Stat Assoc
– volume: 19
  start-page: 103
  year: 2002
  end-page: 111
  article-title: Role of placenta in preeclampsia
  publication-title: Endocrine
– volume: 72
  start-page: 1785
  year: 2014
  end-page: 1792
  article-title: A ranking of diffusion MRI compartment models with in vivo human brain data
  publication-title: Magn Reson Med
– volume: 34
  start-page: 885
  year: 2013
  end-page: 891
  article-title: Association of placental perfusion, as assessed by magnetic resonance imaging and uterine artery Doppler ultrasound, and its relationship to pregnancy outcome
  publication-title: Placenta
– volume: 71
  start-page: S18
  year: 2013
  end-page: S25
  article-title: Epidemiology of preeclampsia: impact of obesity
  publication-title: Nutr Rev
– year: 2006
– volume: 19
  start-page: 495
  year: 2013
  end-page: 500
  article-title: Evaluation of placenta with relative apparent diffusion coefficient and relative T2 signal intensity analysis
  publication-title: Diagn Interv Radiol
– volume: 30
  start-page: 529
  year: 2011
  end-page: 545
  article-title: The importance of venous Doppler velocimetry for evaluation of intrauterine growth restriction
  publication-title: J Ultrasound Med
– volume: 111
  start-page: 10353
  year: 2014
  end-page: 10358
  article-title: Major mouse placental compartments revealed by diffusion‐weighted MRI, contrast‐enhanced MRI, and fluorescence imaging
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 942
  year: 2010
  end-page: 953
  article-title: Intravoxel partially coherent motion technique: characterization of the anisotropy of skeletal muscle microvasculature
  publication-title: J Magn Reson Imaging
– year: 2017
– volume: 59
  start-page: 2241
  year: 2012
  end-page: 2254
  article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison
  publication-title: NeuroImage
– volume: 30
  start-page: 1178
  year: 2010
  end-page: 1184
  article-title: MRI and DWI: feasibility of DWI and ADC maps in the evaluation of placental changes during gestation
  publication-title: Prenat Diagn
– volume: 76
  start-page: 1551
  year: 2016
  end-page: 1562
  article-title: Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level‐dependent contrast
  publication-title: Magn Reson Med
– volume: 213
  start-page: S103
  year: 2015
  end-page: S114
  article-title: Functional imaging of the human placenta with magnetic resonance
  publication-title: Am J Obstet Gynecol
– ident: e_1_2_6_24_1
  doi: 10.1016/j.neuroimage.2011.09.081
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ajog.2015.08.015
– ident: e_1_2_6_31_1
  doi: 10.1080/01621459.1995.10476572
– ident: e_1_2_6_52_1
  doi: 10.1002/jmri.24792
– ident: e_1_2_6_27_1
  doi: 10.1007/978-3-319-66182-7_60
– ident: e_1_2_6_46_1
  doi: 10.1016/j.placenta.2013.07.006
– ident: e_1_2_6_53_1
– ident: e_1_2_6_21_1
  doi: 10.1148/radiology.168.2.3393671
– ident: e_1_2_6_22_1
– ident: e_1_2_6_38_1
  doi: 10.1016/j.neuroimage.2017.03.004
– ident: e_1_2_6_17_1
  doi: 10.1002/mrm.25264
– ident: e_1_2_6_18_1
  doi: 10.1016/j.ajog.2015.06.045
– volume: 6
  start-page: 292
  year: 2013
  ident: e_1_2_6_8_1
  article-title: The implications and consequences of maternal obesity on fetal intrauterine growth restriction
  publication-title: J Med Life
– ident: e_1_2_6_11_1
  doi: 10.1111/nure.12055
– ident: e_1_2_6_37_1
  doi: 10.1002/jmri.22100
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.1401695111
– ident: e_1_2_6_9_1
  doi: 10.1016/j.tem.2007.09.003
– ident: e_1_2_6_36_1
  doi: 10.1002/mrm.25980
– ident: e_1_2_6_45_1
  doi: 10.1002/(SICI)1522-2594(200002)43:2<295::AID-MRM18>3.0.CO;2-2
– ident: e_1_2_6_50_1
– ident: e_1_2_6_39_1
  doi: 10.1093/humrep/14.8.2131
– ident: e_1_2_6_12_1
  doi: 10.7863/jum.2011.30.4.529
– ident: e_1_2_6_6_1
  doi: 10.1385/ENDO:19:1:103
– ident: e_1_2_6_19_1
  doi: 10.1016/j.placenta.2015.04.003
– ident: e_1_2_6_7_1
  doi: 10.1016/j.preghy.2012.01.001
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.25080
– ident: e_1_2_6_33_1
  doi: 10.1016/j.placenta.2014.01.008
– ident: e_1_2_6_48_1
  doi: 10.1016/j.placenta.2013.04.018
– ident: e_1_2_6_20_1
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_6_4_1
  doi: 10.1159/000359969
– ident: e_1_2_6_40_1
  doi: 10.1016/S0002-9440(10)64127-2
– ident: e_1_2_6_49_1
  doi: 10.1002/mrm.23097
– ident: e_1_2_6_42_1
  doi: 10.1148/radiol.10092283
– ident: e_1_2_6_15_1
  doi: 10.1002/mrm.26052
– ident: e_1_2_6_13_1
  doi: 10.1136/adc.2005.082297
– ident: e_1_2_6_41_1
  doi: 10.1016/j.placenta.2009.02.009
– ident: e_1_2_6_25_1
  doi: 10.1158/0008-5472.CAN-13-2511
– ident: e_1_2_6_44_1
  doi: 10.1053/plac.2000.0567
– ident: e_1_2_6_35_1
  doi: 10.1002/nbm.3584
– ident: e_1_2_6_14_1
  doi: 10.1111/jmwh.12260
– ident: e_1_2_6_30_1
– ident: e_1_2_6_3_1
  doi: 10.1016/j.ejogrb.2010.11.017
– ident: e_1_2_6_34_1
  doi: 10.1002/mrm.25245
– ident: e_1_2_6_10_1
  doi: 10.1016/j.preghy.2010.10.013
– ident: e_1_2_6_16_1
  doi: 10.1002/jmri.25585
– ident: e_1_2_6_5_1
  doi: 10.1016/j.placenta.2014.06.375
– ident: e_1_2_6_32_1
  doi: 10.1002/pd.2641
– ident: e_1_2_6_47_1
  doi: 10.1002/uog.14786
– volume: 19
  start-page: 495
  year: 2013
  ident: e_1_2_6_43_1
  article-title: Evaluation of placenta with relative apparent diffusion coefficient and relative T2 signal intensity analysis
  publication-title: Diagn Interv Radiol
– ident: e_1_2_6_26_1
  doi: 10.1002/mrm.26810
– ident: e_1_2_6_29_1
  doi: 10.1002/jmri.20969
– ident: e_1_2_6_51_1
  doi: 10.1002/mrm.21646
SSID ssj0009974
Score 2.513282
Snippet Purpose To assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta. Methods The placentas of nine healthy...
To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta. The placentas of nine healthy pregnant subjects...
PurposeTo assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta.MethodsThe placentas of nine healthy...
To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta.PURPOSETo assess which microstructural models best...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 756
SubjectTerms Anisotropy
Bayes Theorem
Bayesian analysis
Bayesian information criterion
Criteria
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
diffusion MRI
Female
Fetuses
Full Papers—Computer Processing and Modeling
Humans
Image Processing, Computer-Assisted - methods
Information theory
intravoxel incoherent motion
Magnetic resonance imaging
Mathematical models
Medicine
Microcirculation - physiology
Microstructure
Microvasculature
model selection
Orientation effects
Parameter sensitivity
Placenta
Placenta - blood supply
Placenta - diagnostic imaging
Pregnancy
Title Placenta microstructure and microcirculation imaging with diffusion MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27036
https://www.ncbi.nlm.nih.gov/pubmed/29230859
https://www.proquest.com/docview/2027483333
https://www.proquest.com/docview/1975997872
https://pubmed.ncbi.nlm.nih.gov/PMC5947291
Volume 80
WOSCitedRecordID wos000430469300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDRAvfIyvwJgC4oGXsDixHVt7moDCJFpVFRN9ixx_aJXWDDUrfz8-O82oBhISeYiS2FGc853vfD7_DuBtU3LMsE0yJlyZUed0JhrGMsONY4VouGJNSDZRTSZiPpfTHTje7IWJ-BCDww0lI4zXKOCq6Y6uQUOXq-X7AuGjbsEeIaXAvA0FnV4j7soIwVxRHGgk3cAK5cXR8Oq2MrphYd4MlPzdgA0aaPTgv9r-EO73hmd6EjnlEezYdh_ujvul9X24E2JBdfcYPk_Rtd5eqXSJ0XoRYXa9sqlqTXykFyvdp_1KF8uQ5yhFh26K6VbW6H9Lx7PTJ3A2-vTtw5esz7eQaUpLnvEypw3nBbG4vVQSJx3XwiiiRW5JrktPZa_0EL-nIdYqmWspjWWmocwYrw2fwm572drnkBoihDO5N77CSiwXlDg_k3S8pE7JUiXwbkP4Wvdg5JgT46KOMMpF7UlUBxIl8Gao-iMicPyp0sGm9-peCLsa_TpUlP5I4PVQ7MUH10RUay_XXU1kxTyniKpI4Fns7OErBbZeMJlAtcUGQwWE5t4uaRfnAaKbSepnLcT_ZmCDvze8Hs_G4eLFv1d9Cfe82SZiGOIB7Ho2sK_gtv55tehWh0EK_Lmai0PY-zgbnX31d99PJ78AhQANQA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VlkcvBcorpZSAOHAJjRPbsaVeEKJ01WZVVUX0ZiV-iJXYFO12-f147GzKqkVCIqconiiOPWOPx-PvA3jXlhwZtknGhCsz6pzORMtYZrhxrBAtb1gbyCaq8VhcXMjTNThYnoWJ-BBDwA0tI4zXaOAYkN6_Rg2dzqYfCsSPugMb_ns5Ejd8G42vIXdlxGCuKI40ki5xhfJif3h1dTa64WLezJT804MNU9Dhw_-r_CPY6l3P9GPUlcewZrttuF_3m-vbcC9kg-r5E_hyisH17qpJp5ivFzFmFzObNp2Jj_Rkpnvir3QyDUxHKYZ0UyRcWWAELq3PRk_h6-Hn809HWc-4kGlKS57xMqct5wWxeMBUEicd18I0RIvcklyXxC9oaUDwaYm1jcy1lMYy01JmjJ8Pn8F6d9nZF5AaIoQzuXe_wl4sF5Q4v5Z0vKSukWWTwPtlyyvdw5EjK8YPFYGUC-WbSIUmSuDtIPozYnDcJrS77D7Vm-FcYWSHitJfCbwZir0B4a5I09nLxVwRWTGvKqIqEngee3v4SoG1F0wmUK3owSCA4NyrJd3kewDpZpL6dQvxvxn04O8VV_VZHW52_l30NTw4Oq9P1MlofPwSNr0TJ2JS4i6se5Wwr-Cu_nU1mc_2gkn8BhqRDgE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDiZe-BhfYQMC4oGXsDixHVvay8QoTKxVVTFpb1biD1GJZlO78vfjs9OMakNCIk9RfFEc-84-n8-_H8D7puTIsE0yJlyZUed0JhrGMsONY4VoeM2aQDZRjcfi_FxOtuBwfRYm4kP0ATe0jDBeo4HbS-MOrlFD54v5xwLxo-7ANkUSmQFsH0-HZ6fXoLsyojBXFMcaSdfIQnlx0L-8OR_dcDJv5kr-6cOGSWj48P-q_wgedM5nehS15TFs2XYXdkbd9vou3Av5oHr5BL5MMLzeXtXpHDP2IsrsamHTujXxkZ4tdEf9lc7mgesoxaBuipQrK4zBpaPpyVM4G37-_ulr1nEuZJrSkme8zGnDeUEsHjGVxEnHtTA10SK3JNcl8UtaGjB8GmJtLXMtpbHMNJQZ42fEZzBoL1r7AlJDhHAm9w5Y2I3lghLnV5OOl9TVsqwT-LBueaU7QHLkxfipIpRyoXwTqdBECbzrRS8jCsdtQvvr7lOdIS4VxnaoKP2VwNu-2JsQ7ovUrb1YLRWRFfOqIqoigeext_uvFFh7wWQC1YYe9AIIz71Z0s5-BJhuJqlfuRD_m0EP_l5xNZqOws3Lfxd9AzuT46E6PRl_24P73osTMStxHwZeI-wruKt_Xc2Wi9edTfwG2BsOqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Placenta+microstructure+and+microcirculation+imaging+with+diffusion+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Slator%2C+Paddy+J&rft.au=Hutter%2C+Jana&rft.au=McCabe%2C+Laura&rft.au=Ana+Dos+Santos+Gomes&rft.date=2018-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=80&rft.issue=2&rft.spage=756&rft.epage=766&rft_id=info:doi/10.1002%2Fmrm.27036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon