Placenta microstructure and microcirculation imaging with diffusion MRI
Purpose To assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta. Methods The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 80; H. 2; S. 756 - 766 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Wiley Subscription Services, Inc
01.08.2018
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
To assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta.
Methods
The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion.
Results
Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue.
Conclusion
Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model‐derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early‐onset pre‐eclampsia. Magn Reson Med 80:756–766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
|---|---|
| AbstractList | To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta.
The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion.
Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue.
Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model-derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early-onset pre-eclampsia. Magn Reson Med 80:756-766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta.PURPOSETo assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta.The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion.METHODSThe placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion.Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue.RESULTSAnisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue.Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model-derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early-onset pre-eclampsia. Magn Reson Med 80:756-766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.CONCLUSIONAnisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model-derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early-onset pre-eclampsia. Magn Reson Med 80:756-766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PurposeTo assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta.MethodsThe placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion.ResultsAnisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue.ConclusionAnisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model‐derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early‐onset pre‐eclampsia. Magn Reson Med 80:756–766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Purpose To assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta. Methods The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion. Results Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue. Conclusion Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model‐derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early‐onset pre‐eclampsia. Magn Reson Med 80:756–766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| Author | Rutherford, Mary A. Hutter, Jana Slator, Paddy J. McCabe, Laura Alexander, Daniel C. Panagiotaki, Eleftheria Hajnal, Joseph V. Gomes, Ana Dos Santos Price, Anthony N. |
| AuthorAffiliation | 1 Centre for Medical Image Computing and Department of Computer Science University College London London UK 2 Centre for the Developing Brain, King's College London London UK 3 Biomedical Engineering Department King's College London London UK |
| AuthorAffiliation_xml | – name: 1 Centre for Medical Image Computing and Department of Computer Science University College London London UK – name: 2 Centre for the Developing Brain, King's College London London UK – name: 3 Biomedical Engineering Department King's College London London UK |
| Author_xml | – sequence: 1 givenname: Paddy J. orcidid: 0000-0001-6967-989X surname: Slator fullname: Slator, Paddy J. email: p.slator@ucl.ac.uk organization: University College London – sequence: 2 givenname: Jana surname: Hutter fullname: Hutter, Jana organization: King's College London – sequence: 3 givenname: Laura surname: McCabe fullname: McCabe, Laura organization: Centre for the Developing Brain, King's College London – sequence: 4 givenname: Ana Dos Santos surname: Gomes fullname: Gomes, Ana Dos Santos organization: Centre for the Developing Brain, King's College London – sequence: 5 givenname: Anthony N. surname: Price fullname: Price, Anthony N. organization: King's College London – sequence: 6 givenname: Eleftheria surname: Panagiotaki fullname: Panagiotaki, Eleftheria organization: University College London – sequence: 7 givenname: Mary A. surname: Rutherford fullname: Rutherford, Mary A. organization: Centre for the Developing Brain, King's College London – sequence: 8 givenname: Joseph V. orcidid: 0000-0002-2690-5495 surname: Hajnal fullname: Hajnal, Joseph V. organization: King's College London – sequence: 9 givenname: Daniel C. orcidid: 0000-0003-2439-350X surname: Alexander fullname: Alexander, Daniel C. organization: University College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29230859$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLAzEUhYMo9qEL_4AMuNHF1LzmkY0gorXQohRdhzSTaVNmMjWZUfz3ZtpatKDZBO797uHcc3vg0FRGAXCG4ABBiK9LWw5wAkl8ALoowjjEEaOHoAsTCkOCGO2AnnNLCCFjCT0GHcwwgWnEumD4XAipTC2CUktbudo2sm6sCoTJNiWprWwKUevKBLoUc23mwYeuF0Gm87xxbXkyHZ2Ao1wUTp1u_z54fbh_uXsMx0_D0d3tOJSUkjiMCaSzOMZIEZowhnKWxzLNBJIpVAhKgkhKKEIRpTOklGBQMpapKJvRKMsoIn1ws9FdNbNSZa11Kwq-st6a_eSV0Px3x-gFn1fv3CeSYNYKXG4FbPXWKFfzUjupikIYVTWOI5ZEPqU0wR692EOXVWONX49jiBOakvb1wflPRzsr3xl74GoDtPk6q_IdgiBv78f9_fj6fp693mOlrtfZ-2V08d_Ehy7U59_SfDKdbCa-ABSKq8c |
| CitedBy_id | crossref_primary_10_1080_14767058_2025_2463401 crossref_primary_10_1002_jmri_27875 crossref_primary_10_1111_jog_15183 crossref_primary_10_1002_advs_202203738 crossref_primary_10_1002_mrm_27733 crossref_primary_10_1002_mrm_28426 crossref_primary_10_1016_j_placenta_2021_01_017 crossref_primary_10_1161_HYPERTENSIONAHA_122_20311 crossref_primary_10_1016_j_mri_2025_110453 crossref_primary_10_3389_fcvm_2024_1426593 crossref_primary_10_1016_j_placenta_2022_01_010 crossref_primary_10_1002_pd_5526 crossref_primary_10_12688_wellcomeopenres_15451_1 crossref_primary_10_1259_bjr_20211010 crossref_primary_10_1007_s00330_020_07200_1 crossref_primary_10_1093_pnasnexus_pgae583 crossref_primary_10_1016_j_placenta_2023_08_067 crossref_primary_10_1186_s12884_020_03375_z crossref_primary_10_1186_s41747_023_00358_5 crossref_primary_10_1002_mrm_30379 crossref_primary_10_1371_journal_pcbi_1012470 crossref_primary_10_1017_S2040174420001154 crossref_primary_10_1016_j_placenta_2021_02_015 crossref_primary_10_1038_s41598_021_93503_2 crossref_primary_10_1038_s44294_024_00049_5 crossref_primary_10_1002_mrm_27406 crossref_primary_10_1080_14767058_2022_2050365 crossref_primary_10_1016_j_biocel_2022_106195 crossref_primary_10_1111_1471_0528_17901 crossref_primary_10_1002_mrm_29665 crossref_primary_10_1016_j_placenta_2020_01_009 crossref_primary_10_1016_j_placenta_2021_07_302 crossref_primary_10_1016_j_media_2022_102639 crossref_primary_10_1093_molehr_gaz018 crossref_primary_10_1007_s00247_025_06373_5 crossref_primary_10_1002_ijgo_70306 crossref_primary_10_1002_mrm_27950 crossref_primary_10_1002_mrm_28963 crossref_primary_10_1002_mrm_28809 crossref_primary_10_1016_j_stem_2021_02_010 crossref_primary_10_1093_biolre_ioae035 crossref_primary_10_1016_j_placenta_2020_03_004 crossref_primary_10_1371_journal_pone_0302623 crossref_primary_10_1002_uog_27512 crossref_primary_10_1016_j_placenta_2023_09_001 crossref_primary_10_1002_mrm_29483 crossref_primary_10_1002_jmri_28858 crossref_primary_10_1097_RMR_0000000000000211 crossref_primary_10_1016_j_placenta_2021_12_019 crossref_primary_10_1371_journal_pone_0258442 crossref_primary_10_1016_j_placenta_2023_11_017 crossref_primary_10_1152_japplphysiol_00303_2019 crossref_primary_10_1038_s41598_020_65956_4 crossref_primary_10_1097_RMR_0000000000000219 crossref_primary_10_1016_j_placenta_2022_03_012 crossref_primary_10_1016_j_media_2021_102045 |
| Cites_doi | 10.1016/j.neuroimage.2011.09.081 10.1016/j.ajog.2015.08.015 10.1080/01621459.1995.10476572 10.1002/jmri.24792 10.1007/978-3-319-66182-7_60 10.1016/j.placenta.2013.07.006 10.1148/radiology.168.2.3393671 10.1016/j.neuroimage.2017.03.004 10.1002/mrm.25264 10.1016/j.ajog.2015.06.045 10.1111/nure.12055 10.1002/jmri.22100 10.1073/pnas.1401695111 10.1016/j.tem.2007.09.003 10.1002/mrm.25980 10.1002/(SICI)1522-2594(200002)43:2<295::AID-MRM18>3.0.CO;2-2 10.1093/humrep/14.8.2131 10.7863/jum.2011.30.4.529 10.1385/ENDO:19:1:103 10.1016/j.placenta.2015.04.003 10.1016/j.preghy.2012.01.001 10.1002/mrm.25080 10.1016/j.placenta.2014.01.008 10.1016/j.placenta.2013.04.018 10.1016/S0006-3495(94)80775-1 10.1159/000359969 10.1016/S0002-9440(10)64127-2 10.1002/mrm.23097 10.1148/radiol.10092283 10.1002/mrm.26052 10.1136/adc.2005.082297 10.1016/j.placenta.2009.02.009 10.1158/0008-5472.CAN-13-2511 10.1053/plac.2000.0567 10.1002/nbm.3584 10.1111/jmwh.12260 10.1016/j.ejogrb.2010.11.017 10.1002/mrm.25245 10.1016/j.preghy.2010.10.013 10.1002/jmri.25585 10.1016/j.placenta.2014.06.375 10.1002/pd.2641 10.1002/uog.14786 10.1002/mrm.26810 10.1002/jmri.20969 10.1002/mrm.21646 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2018 International Society for Magnetic Resonance in Medicine |
| Copyright_xml | – notice: 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine – notice: 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2018 International Society for Magnetic Resonance in Medicine |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.27036 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | Placenta Microstructure and Microcirculation Imaging |
| EISSN | 1522-2594 |
| EndPage | 766 |
| ExternalDocumentID | PMC5947291 29230859 10_1002_mrm_27036 MRM27036 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Wellcome Trust (Sir Henry Wellcome Fellowship) funderid: 201374/Z/16/Z – fundername: NIH (Placenta imaging Project) funderid: 1U01HD087202‐01 – fundername: EPSRC funderid: N018702 ; M020533 – fundername: NICHD NIH HHS grantid: U01 HD087202 – fundername: Wellcome Trust grantid: 201374/Z/16/Z – fundername: Medical Research Council grantid: MR/M009106/1 – fundername: EPSRC grantid: N018702 ; M020533 – fundername: Wellcome Trust (Sir Henry Wellcome Fellowship) grantid: 201374/Z/16/Z – fundername: NIH (Placenta imaging Project) grantid: 1U01HD087202‐01 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4436-6304b6621e347991f9f6c8da1c80e10c31383411544b1eea90c99de5db45dd413 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430469300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Aug 21 18:22:31 EDT 2025 Fri Jul 11 08:11:19 EDT 2025 Tue Oct 07 06:45:42 EDT 2025 Mon Jul 21 06:05:29 EDT 2025 Tue Nov 18 22:32:54 EST 2025 Sat Nov 29 02:37:44 EST 2025 Wed Jan 22 16:54:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | diffusion MRI model selection placenta microstructure Bayesian information criterion intravoxel incoherent motion |
| Language | English |
| License | Attribution 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4436-6304b6621e347991f9f6c8da1c80e10c31383411544b1eea90c99de5db45dd413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2690-5495 0000-0003-2439-350X 0000-0001-6967-989X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27036 |
| PMID | 29230859 |
| PQID | 2027483333 |
| PQPubID | 1016391 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5947291 proquest_miscellaneous_1975997872 proquest_journals_2027483333 pubmed_primary_29230859 crossref_primary_10_1002_mrm_27036 crossref_citationtrail_10_1002_mrm_27036 wiley_primary_10_1002_mrm_27036_MRM27036 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2007; 18 2015; 36 2010; 31 2002; 19 2011; 1 1995; 90 2012 2015; 73 2000; 21 2000; 43 2017; 46 2016; 76 2011; 30 1994; 66 1988; 168 2013; 71 2007; 92 2006 2017; 152 2012; 59 2014; 111 2013; 6 2011; 155 2013; 19 2015; 46 2012; 2 2009; 30 2015; 213 2013; 34 2010; 257 2015; 42 1999; 14 2014; 59 2014; 36 2014; 35 2017 2015 2014; 74 2016; 29 2014; 72 2012; 67 2008; 60 2010; 30 2001; 158 2007; 26 2018; 79 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Radulescu L (e_1_2_6_8_1) 2013; 6 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Sivrioglu AK (e_1_2_6_43_1) 2013; 19 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 21 start-page: 726 year: 2000 end-page: 732 article-title: In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo‐planar MRI publication-title: Placenta – volume: 76 start-page: 1252 year: 2016 end-page: 1262 article-title: Orientation dependence of microcirculation‐induced diffusion signal in anisotropic tissues publication-title: Magn Reson Med – volume: 74 start-page: 1902 year: 2014 end-page: 1912 article-title: Noninvasive quantification of solid tumor microstructure using VERDICT MRI publication-title: Cancer Res – volume: 1 start-page: 6 year: 2011 end-page: 16 article-title: The role of obesity in preeclampsia publication-title: Pregnancy Hypertens – volume: 18 start-page: 365 year: 2007 end-page: 370 article-title: Obesity: a risk factor for preeclampsia publication-title: Trends Endocrinol Metab – volume: 257 start-page: 810 year: 2010 end-page: 819 article-title: Diffusion‐weighted MR imaging of the placenta in fetuses with placental insufficiency publication-title: Radiology – volume: 66 start-page: 259 year: 1994 end-page: 267 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys J – volume: 73 start-page: 1570 year: 2015 end-page: 1578 article-title: Using dynamic contrast‐enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta publication-title: Magn Reson Med – volume: 67 start-page: 1210 year: 2012 end-page: 1224 article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty publication-title: Magn Reson Med – volume: 36 start-page: 117 year: 2014 end-page: 128 article-title: Placental pathology in early‐onset and late‐onset fetal growth restriction publication-title: Fetal Diagn Therapy – volume: 26 start-page: 375 year: 2007 end-page: 385 article-title: Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters publication-title: J Magn Reson Imaging – volume: 213 start-page: S12 year: 2015 end-page: S13 article-title: How the placenta affects your life, from womb to tomb publication-title: Am J Obstet Gynecol – volume: 6 start-page: 292 year: 2013 end-page: 298 article-title: The implications and consequences of maternal obesity on fetal intrauterine growth restriction publication-title: J Med Life – volume: 60 start-page: 439 year: 2008 end-page: 448 article-title: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features publication-title: Magn Reson Med – volume: 46 start-page: 700 year: 2015 end-page: 705 article-title: Magnetic resonance imaging‐estimated placental perfusion in fetal growth assessment publication-title: Ultrasound Obstet Gynecol – volume: 155 start-page: 36 year: 2011 end-page: 40 article-title: Placental pathology in fetal growth restriction publication-title: Eur J Obstet Gynecol Reprod Biol – volume: 14 start-page: 2131 year: 1999 end-page: 2138 article-title: The role of trophoblast in the physiological change in decidual spiral arteries publication-title: Hum Reprod – volume: 35 start-page: 696 year: 2014 end-page: 701 article-title: Placental pathology in early intrauterine growth restriction associated with maternal hypertension publication-title: Placenta – volume: 34 start-page: 676 year: 2013 end-page: 680 article-title: In vivo assessment of putative functional placental tissue volume in placental intrauterine growth restriction (IUGR) in human fetuses using diffusion tensor magnetic resonance imaging publication-title: Placenta – volume: 59 start-page: 596 year: 2014 end-page: 605 article-title: Major changes in diagnosis and management of preeclampsia publication-title: J Midwifery Women's Health – volume: 73 start-page: 1526 year: 2015 end-page: 1532 article-title: Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy publication-title: Magn Reson Med – volume: 92 start-page: F62 year: 2007 end-page: F67 article-title: Management of fetal growth restriction publication-title: Arch Dis Child Fetal Neonatal Ed – volume: 46 start-page: 403 year: 2017 end-page: 412 article-title: Spatiotemporal alignment of in utero BOLD‐MRI series publication-title: J Magn Reson Imaging – volume: 158 start-page: 1713 year: 2001 end-page: 1721 article-title: Human trophoblast invasion and spiral artery transformation publication-title: Am J Pathol – year: 2015 – volume: 36 start-page: 615 year: 2015 end-page: 622 article-title: Functional MRI of the placenta? From rodents to humans publication-title: Placenta – volume: 168 start-page: 497 year: 1988 end-page: 505 article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging publication-title: Radiology – volume: 30 start-page: 473 year: 2009 end-page: 482 article-title: Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy publication-title: Placenta – volume: 79 start-page: 1447 year: 2018 end-page: 1459 article-title: Quiet echo planar imaging for functional and diffusion MRI publication-title: Magn Reson Med – volume: 152 start-page: 340 year: 2017 end-page: 347 article-title: The IVIM signal in the healthy cerebral gray matter: a play of spherical and non‐spherical components publication-title: NeuroImage – volume: 42 start-page: 315 year: 2015 end-page: 330 article-title: Influence of image registration on apparent diffusion coefficient images computed from free‐breathing diffusion MR images of the abdomen publication-title: J Magn Reson Imaging – volume: 29 start-page: 1403 year: 2016 end-page: 1413 article-title: An intravoxel oriented flow model for diffusion‐weighted imaging of the kidney publication-title: NMR Biomed – volume: 2 start-page: 72 year: 2012 end-page: 83 article-title: The placenta in preeclampsia publication-title: Pregnancy Hypertens – volume: 43 start-page: 295 year: 2000 end-page: 302 article-title: In vivo intravoxel incoherent motion measurements in the human placenta using echo‐planar imaging at 0.5 T publication-title: Magn Reson Med – volume: 35 start-page: 202 year: 2014 end-page: 206 article-title: Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study publication-title: Placenta – year: 2012 – volume: 90 start-page: 773 year: 1995 end-page: 795 article-title: Bayes factors publication-title: J Am Stat Assoc – volume: 19 start-page: 103 year: 2002 end-page: 111 article-title: Role of placenta in preeclampsia publication-title: Endocrine – volume: 72 start-page: 1785 year: 2014 end-page: 1792 article-title: A ranking of diffusion MRI compartment models with in vivo human brain data publication-title: Magn Reson Med – volume: 34 start-page: 885 year: 2013 end-page: 891 article-title: Association of placental perfusion, as assessed by magnetic resonance imaging and uterine artery Doppler ultrasound, and its relationship to pregnancy outcome publication-title: Placenta – volume: 71 start-page: S18 year: 2013 end-page: S25 article-title: Epidemiology of preeclampsia: impact of obesity publication-title: Nutr Rev – year: 2006 – volume: 19 start-page: 495 year: 2013 end-page: 500 article-title: Evaluation of placenta with relative apparent diffusion coefficient and relative T2 signal intensity analysis publication-title: Diagn Interv Radiol – volume: 30 start-page: 529 year: 2011 end-page: 545 article-title: The importance of venous Doppler velocimetry for evaluation of intrauterine growth restriction publication-title: J Ultrasound Med – volume: 111 start-page: 10353 year: 2014 end-page: 10358 article-title: Major mouse placental compartments revealed by diffusion‐weighted MRI, contrast‐enhanced MRI, and fluorescence imaging publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 942 year: 2010 end-page: 953 article-title: Intravoxel partially coherent motion technique: characterization of the anisotropy of skeletal muscle microvasculature publication-title: J Magn Reson Imaging – year: 2017 – volume: 59 start-page: 2241 year: 2012 end-page: 2254 article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison publication-title: NeuroImage – volume: 30 start-page: 1178 year: 2010 end-page: 1184 article-title: MRI and DWI: feasibility of DWI and ADC maps in the evaluation of placental changes during gestation publication-title: Prenat Diagn – volume: 76 start-page: 1551 year: 2016 end-page: 1562 article-title: Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level‐dependent contrast publication-title: Magn Reson Med – volume: 213 start-page: S103 year: 2015 end-page: S114 article-title: Functional imaging of the human placenta with magnetic resonance publication-title: Am J Obstet Gynecol – ident: e_1_2_6_24_1 doi: 10.1016/j.neuroimage.2011.09.081 – ident: e_1_2_6_2_1 doi: 10.1016/j.ajog.2015.08.015 – ident: e_1_2_6_31_1 doi: 10.1080/01621459.1995.10476572 – ident: e_1_2_6_52_1 doi: 10.1002/jmri.24792 – ident: e_1_2_6_27_1 doi: 10.1007/978-3-319-66182-7_60 – ident: e_1_2_6_46_1 doi: 10.1016/j.placenta.2013.07.006 – ident: e_1_2_6_53_1 – ident: e_1_2_6_21_1 doi: 10.1148/radiology.168.2.3393671 – ident: e_1_2_6_22_1 – ident: e_1_2_6_38_1 doi: 10.1016/j.neuroimage.2017.03.004 – ident: e_1_2_6_17_1 doi: 10.1002/mrm.25264 – ident: e_1_2_6_18_1 doi: 10.1016/j.ajog.2015.06.045 – volume: 6 start-page: 292 year: 2013 ident: e_1_2_6_8_1 article-title: The implications and consequences of maternal obesity on fetal intrauterine growth restriction publication-title: J Med Life – ident: e_1_2_6_11_1 doi: 10.1111/nure.12055 – ident: e_1_2_6_37_1 doi: 10.1002/jmri.22100 – ident: e_1_2_6_23_1 doi: 10.1073/pnas.1401695111 – ident: e_1_2_6_9_1 doi: 10.1016/j.tem.2007.09.003 – ident: e_1_2_6_36_1 doi: 10.1002/mrm.25980 – ident: e_1_2_6_45_1 doi: 10.1002/(SICI)1522-2594(200002)43:2<295::AID-MRM18>3.0.CO;2-2 – ident: e_1_2_6_50_1 – ident: e_1_2_6_39_1 doi: 10.1093/humrep/14.8.2131 – ident: e_1_2_6_12_1 doi: 10.7863/jum.2011.30.4.529 – ident: e_1_2_6_6_1 doi: 10.1385/ENDO:19:1:103 – ident: e_1_2_6_19_1 doi: 10.1016/j.placenta.2015.04.003 – ident: e_1_2_6_7_1 doi: 10.1016/j.preghy.2012.01.001 – ident: e_1_2_6_28_1 doi: 10.1002/mrm.25080 – ident: e_1_2_6_33_1 doi: 10.1016/j.placenta.2014.01.008 – ident: e_1_2_6_48_1 doi: 10.1016/j.placenta.2013.04.018 – ident: e_1_2_6_20_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_6_4_1 doi: 10.1159/000359969 – ident: e_1_2_6_40_1 doi: 10.1016/S0002-9440(10)64127-2 – ident: e_1_2_6_49_1 doi: 10.1002/mrm.23097 – ident: e_1_2_6_42_1 doi: 10.1148/radiol.10092283 – ident: e_1_2_6_15_1 doi: 10.1002/mrm.26052 – ident: e_1_2_6_13_1 doi: 10.1136/adc.2005.082297 – ident: e_1_2_6_41_1 doi: 10.1016/j.placenta.2009.02.009 – ident: e_1_2_6_25_1 doi: 10.1158/0008-5472.CAN-13-2511 – ident: e_1_2_6_44_1 doi: 10.1053/plac.2000.0567 – ident: e_1_2_6_35_1 doi: 10.1002/nbm.3584 – ident: e_1_2_6_14_1 doi: 10.1111/jmwh.12260 – ident: e_1_2_6_30_1 – ident: e_1_2_6_3_1 doi: 10.1016/j.ejogrb.2010.11.017 – ident: e_1_2_6_34_1 doi: 10.1002/mrm.25245 – ident: e_1_2_6_10_1 doi: 10.1016/j.preghy.2010.10.013 – ident: e_1_2_6_16_1 doi: 10.1002/jmri.25585 – ident: e_1_2_6_5_1 doi: 10.1016/j.placenta.2014.06.375 – ident: e_1_2_6_32_1 doi: 10.1002/pd.2641 – ident: e_1_2_6_47_1 doi: 10.1002/uog.14786 – volume: 19 start-page: 495 year: 2013 ident: e_1_2_6_43_1 article-title: Evaluation of placenta with relative apparent diffusion coefficient and relative T2 signal intensity analysis publication-title: Diagn Interv Radiol – ident: e_1_2_6_26_1 doi: 10.1002/mrm.26810 – ident: e_1_2_6_29_1 doi: 10.1002/jmri.20969 – ident: e_1_2_6_51_1 doi: 10.1002/mrm.21646 |
| SSID | ssj0009974 |
| Score | 2.513282 |
| Snippet | Purpose
To assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta.
Methods
The placentas of nine healthy... To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta. The placentas of nine healthy pregnant subjects... PurposeTo assess which microstructural models best explain the diffusion‐weighted MRI signal in the human placenta.MethodsThe placentas of nine healthy... To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta.PURPOSETo assess which microstructural models best... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 756 |
| SubjectTerms | Anisotropy Bayes Theorem Bayesian analysis Bayesian information criterion Criteria Diffusion Diffusion coefficient Diffusion Magnetic Resonance Imaging - methods diffusion MRI Female Fetuses Full Papers—Computer Processing and Modeling Humans Image Processing, Computer-Assisted - methods Information theory intravoxel incoherent motion Magnetic resonance imaging Mathematical models Medicine Microcirculation - physiology Microstructure Microvasculature model selection Orientation effects Parameter sensitivity Placenta Placenta - blood supply Placenta - diagnostic imaging Pregnancy |
| Title | Placenta microstructure and microcirculation imaging with diffusion MRI |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27036 https://www.ncbi.nlm.nih.gov/pubmed/29230859 https://www.proquest.com/docview/2027483333 https://www.proquest.com/docview/1975997872 https://pubmed.ncbi.nlm.nih.gov/PMC5947291 |
| Volume | 80 |
| WOSCitedRecordID | wos000430469300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDRAvfIyvwJgC4oGXsDixHVt7moDCJFpVFRN9ixx_aJXWDDUrfz8-O82oBhISeYiS2FGc853vfD7_DuBtU3LMsE0yJlyZUed0JhrGMsONY4VouGJNSDZRTSZiPpfTHTje7IWJ-BCDww0lI4zXKOCq6Y6uQUOXq-X7AuGjbsEeIaXAvA0FnV4j7soIwVxRHGgk3cAK5cXR8Oq2MrphYd4MlPzdgA0aaPTgv9r-EO73hmd6EjnlEezYdh_ujvul9X24E2JBdfcYPk_Rtd5eqXSJ0XoRYXa9sqlqTXykFyvdp_1KF8uQ5yhFh26K6VbW6H9Lx7PTJ3A2-vTtw5esz7eQaUpLnvEypw3nBbG4vVQSJx3XwiiiRW5JrktPZa_0EL-nIdYqmWspjWWmocwYrw2fwm572drnkBoihDO5N77CSiwXlDg_k3S8pE7JUiXwbkP4Wvdg5JgT46KOMMpF7UlUBxIl8Gao-iMicPyp0sGm9-peCLsa_TpUlP5I4PVQ7MUH10RUay_XXU1kxTyniKpI4Fns7OErBbZeMJlAtcUGQwWE5t4uaRfnAaKbSepnLcT_ZmCDvze8Hs_G4eLFv1d9Cfe82SZiGOIB7Ho2sK_gtv55tehWh0EK_Lmai0PY-zgbnX31d99PJ78AhQANQA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VlkcvBcorpZSAOHAJjRPbsaVeEKJ01WZVVUX0ZiV-iJXYFO12-f147GzKqkVCIqconiiOPWOPx-PvA3jXlhwZtknGhCsz6pzORMtYZrhxrBAtb1gbyCaq8VhcXMjTNThYnoWJ-BBDwA0tI4zXaOAYkN6_Rg2dzqYfCsSPugMb_ns5Ejd8G42vIXdlxGCuKI40ki5xhfJif3h1dTa64WLezJT804MNU9Dhw_-r_CPY6l3P9GPUlcewZrttuF_3m-vbcC9kg-r5E_hyisH17qpJp5ivFzFmFzObNp2Jj_Rkpnvir3QyDUxHKYZ0UyRcWWAELq3PRk_h6-Hn809HWc-4kGlKS57xMqct5wWxeMBUEicd18I0RIvcklyXxC9oaUDwaYm1jcy1lMYy01JmjJ8Pn8F6d9nZF5AaIoQzuXe_wl4sF5Q4v5Z0vKSukWWTwPtlyyvdw5EjK8YPFYGUC-WbSIUmSuDtIPozYnDcJrS77D7Vm-FcYWSHitJfCbwZir0B4a5I09nLxVwRWTGvKqIqEngee3v4SoG1F0wmUK3owSCA4NyrJd3kewDpZpL6dQvxvxn04O8VV_VZHW52_l30NTw4Oq9P1MlofPwSNr0TJ2JS4i6se5Wwr-Cu_nU1mc_2gkn8BhqRDgE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDiZe-BhfYQMC4oGXsDixHVvay8QoTKxVVTFpb1biD1GJZlO78vfjs9OMakNCIk9RfFEc-84-n8-_H8D7puTIsE0yJlyZUed0JhrGMsONY4VoeM2aQDZRjcfi_FxOtuBwfRYm4kP0ATe0jDBeo4HbS-MOrlFD54v5xwLxo-7ANkUSmQFsH0-HZ6fXoLsyojBXFMcaSdfIQnlx0L-8OR_dcDJv5kr-6cOGSWj48P-q_wgedM5nehS15TFs2XYXdkbd9vou3Av5oHr5BL5MMLzeXtXpHDP2IsrsamHTujXxkZ4tdEf9lc7mgesoxaBuipQrK4zBpaPpyVM4G37-_ulr1nEuZJrSkme8zGnDeUEsHjGVxEnHtTA10SK3JNcl8UtaGjB8GmJtLXMtpbHMNJQZ42fEZzBoL1r7AlJDhHAm9w5Y2I3lghLnV5OOl9TVsqwT-LBueaU7QHLkxfipIpRyoXwTqdBECbzrRS8jCsdtQvvr7lOdIS4VxnaoKP2VwNu-2JsQ7ovUrb1YLRWRFfOqIqoigeext_uvFFh7wWQC1YYe9AIIz71Z0s5-BJhuJqlfuRD_m0EP_l5xNZqOws3Lfxd9AzuT46E6PRl_24P73osTMStxHwZeI-wruKt_Xc2Wi9edTfwG2BsOqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Placenta+microstructure+and+microcirculation+imaging+with+diffusion+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Slator%2C+Paddy+J&rft.au=Hutter%2C+Jana&rft.au=McCabe%2C+Laura&rft.au=Ana+Dos+Santos+Gomes&rft.date=2018-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=80&rft.issue=2&rft.spage=756&rft.epage=766&rft_id=info:doi/10.1002%2Fmrm.27036&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |