Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell‐Derived Microglia
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain...
Saved in:
| Published in: | Stem cells (Dayton, Ohio) Vol. 37; no. 6; pp. 724 - 730 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2019
Oxford University Press |
| Subjects: | |
| ISSN: | 1066-5099, 1549-4918, 1549-4918 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. Stem Cells 2019;37:724–730
Modelling of neurological diseases can be done in mono‐cultures for many readouts, but for authentic modelling of neuron‐microglia interactions such as synapse pruning events it is crucial to use co‐cultures. |
|---|---|
| AbstractList | Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)-derived microglia have recently been developed and provide unlimited access to patient-derived material. In this present study, we give an overview of iPSC-derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia-induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient-specific therapies against neurodegeneration. Stem Cells 2019;37:724–730 Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)-derived microglia have recently been developed and provide unlimited access to patient-derived material. In this present study, we give an overview of iPSC-derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia-induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient-specific therapies against neurodegeneration. Stem Cells 2019;37:724-730.Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)-derived microglia have recently been developed and provide unlimited access to patient-derived material. In this present study, we give an overview of iPSC-derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia-induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient-specific therapies against neurodegeneration. Stem Cells 2019;37:724-730. Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. stem cells 2019;37:724–730 Modelling of neurological diseases can be done in mono‐cultures for many readouts, but for authentic modelling of neuron‐microglia interactions such as synapse pruning events it is crucial to use co‐cultures. Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. Stem Cells 2019;37:724–730 Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. Stem Cells 2019;37:724–730 Modelling of neurological diseases can be done in mono‐cultures for many readouts, but for authentic modelling of neuron‐microglia interactions such as synapse pruning events it is crucial to use co‐cultures. Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)-derived microglia have recently been developed and provide unlimited access to patient-derived material. In this present study, we give an overview of iPSC-derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia-induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient-specific therapies against neurodegeneration. Stem Cells 2019;37:724-730. |
| Author | Rajendran, Lawrence Haenseler, Walther |
| AuthorAffiliation | 2 UK‐Dementia Research Institute (UK‐DRI), Maurice Wohl Basic & Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience King's College London London United Kingdom 1 Systems and Cell Biology of Neurodegeneration IREM, University of Zurich Schlieren Switzerland |
| AuthorAffiliation_xml | – name: 1 Systems and Cell Biology of Neurodegeneration IREM, University of Zurich Schlieren Switzerland – name: 2 UK‐Dementia Research Institute (UK‐DRI), Maurice Wohl Basic & Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience King's College London London United Kingdom |
| Author_xml | – sequence: 1 givenname: Walther orcidid: 0000-0003-4868-3704 surname: Haenseler fullname: Haenseler, Walther email: walther.haenseler@irem.uzh.ch organization: IREM, University of Zurich – sequence: 2 givenname: Lawrence surname: Rajendran fullname: Rajendran, Lawrence email: lawrence.rajendran@kcl.ac.uk organization: King's College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30801863$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc9uEzEQxi1URP_AgRdAlrjAYVvba3ttDkgoLRSpAUTL2XKc2cTVrh3s3US98Qg8I0-CQ1MEFVzskeY3n76Z7xDthRgAoaeUHFNC2EkeoD9mWosH6IAKriuuqdorNZGyEkTrfXSY8zUhlAulHqH9mihClawP0HISg_MZ8GdYe9i8wtM4h86HBf4AYyr1AgIkO_g14NPC2QwZb_ywxOdjbwP-1I3Jr-IAYcCXxQaeQNf9-Pb9FFIZmeOpdykuOm8fo4et7TI82f1H6Mvbs6vJeXXx8d37yZuLynFei6olSreNUmApnYOWrpHKMqtqzZzScqaFJA74rCm9WesYpUJYxlgjZXlbXh-h17e6q3HWw9wVY8l2ZpV8b9ONidabvzvBL80iro1UXCuqisCLnUCKX0fIg-l9dmUrGyCO2TCqhGq4bnRBn99Dr-OYQlnPMFbThpY714V69qej31buQijAyS1QTpVzgtY4P5STx61B3xlKzDZms43ZbGMuEy_vTdyJ_ovdqW98Bzf_B83l1dn018RPOSC5kg |
| CitedBy_id | crossref_primary_10_1016_j_neuron_2021_07_004 crossref_primary_10_1016_j_nbd_2020_105015 crossref_primary_10_1007_s13365_021_01049_w crossref_primary_10_3390_ijms26020620 crossref_primary_10_1016_j_pneurobio_2020_101973 crossref_primary_10_1002_med_21974 crossref_primary_10_1093_stcltm_szac077 crossref_primary_10_3389_fcell_2021_649538 crossref_primary_10_1155_2021_5511630 crossref_primary_10_3389_fimmu_2020_614972 crossref_primary_10_1038_s41380_020_00936_8 crossref_primary_10_3390_cancers15041253 crossref_primary_10_3389_fpsyt_2020_00789 crossref_primary_10_3389_fcell_2021_766773 crossref_primary_10_1016_j_stem_2021_12_008 crossref_primary_10_1186_s40035_019_0161_0 crossref_primary_10_1097_MOG_0000000000000726 crossref_primary_10_3389_fnmol_2021_767041 crossref_primary_10_1084_jem_20202717 crossref_primary_10_3390_cells8080838 crossref_primary_10_1016_j_msard_2025_106666 crossref_primary_10_1146_annurev_immunol_101921_035222 crossref_primary_10_1186_s12974_024_03037_3 crossref_primary_10_1186_s41231_024_00182_y crossref_primary_10_3390_ijms23137140 crossref_primary_10_3390_biomedicines9101393 crossref_primary_10_1002_glia_23781 crossref_primary_10_1177_09636897231171001 crossref_primary_10_1038_s41596_020_00447_4 crossref_primary_10_1007_s00109_021_02046_6 crossref_primary_10_1089_scd_2020_0069 crossref_primary_10_1186_s13024_025_00837_w crossref_primary_10_1007_s13311_019_00810_8 crossref_primary_10_1002_stem_3137 crossref_primary_10_1177_11795735221123896 crossref_primary_10_3390_brainsci14111101 crossref_primary_10_3390_molecules25082000 |
| Cites_doi | 10.1002/stem.1732 10.1182/blood-2006-12-060814 10.1016/j.neuron.2017.05.037 10.1189/jlb.0906590 10.1038/s41593-018-0175-4 10.1038/nn.3599 10.1016/j.stemcr.2016.12.020 10.1016/j.celrep.2018.07.094 10.1038/s41591-018-0106-7 10.1186/s13024-018-0297-x 10.1016/j.tins.2017.04.001 10.1016/j.celrep.2012.09.007 10.1038/nprot.2010.90 10.1016/j.celrep.2015.03.068 10.1016/j.celrep.2017.02.023 10.1096/fj.04-2751com 10.7554/eLife.35012 10.1038/nm.4189 10.3233/JAD-170255 10.3390/ijms19123972 10.1002/glia.23023 10.1186/s13024-018-0280-6 10.1016/j.neuron.2014.05.013 10.1016/j.neuron.2018.06.011 10.1371/journal.ppat.1002194 10.1038/s41598-017-14566-8 10.1007/s00401-017-1795-6 10.1038/nn.4534 10.1016/j.jneumeth.2012.05.025 10.1038/srep35861 10.1038/s41598-018-19522-8 10.1242/dev.123851 10.1038/s41596-018-0066-x 10.1038/mt.2009.216 10.1016/j.stemcr.2018.03.003 10.1038/s41467-018-06684-2 10.1038/srep04957 10.1016/j.exphem.2015.06.002 10.1371/journal.pgen.0030033 10.7554/eLife.35069 10.1371/journal.pone.0071098 10.1371/journal.pone.0086071 10.1002/glia.20372 10.1016/j.neuron.2017.03.042 10.1016/j.bcp.2016.07.011 10.1073/pnas.1516645112 10.1093/brain/awy126 10.1038/nature23664 10.1002/stem.1053 10.1186/1742-4690-3-24 10.19185/matters.201805000005 10.1016/j.jns.2015.08.198 10.1371/journal.pone.0178220 10.1038/srep12524 10.3389/fimmu.2015.00486 10.15252/embj.201798694 10.1016/j.stemcr.2017.05.017 10.1073/pnas.1207889109 10.1038/s41598-017-09362-3 10.1016/j.stemcr.2017.06.005 10.1186/s12864-016-3445-0 10.1093/hmg/ddx331 10.1016/j.exphem.2008.04.009 10.1016/j.immuni.2017.06.017 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019 2019 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019. 2019 AlphaMed Press |
| Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019 – notice: 2019 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019. – notice: 2019 AlphaMed Press |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 5PM |
| DOI | 10.1002/stem.2995 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Modeling Neurodegenerative Diseases with HPSC |
| EISSN | 1549-4918 |
| EndPage | 730 |
| ExternalDocumentID | PMC6849818 30801863 10_1002_stem_2995 STEM2995 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Velux Stiftung – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: CRSII5_177195 – fundername: ; – fundername: ; grantid: CRSII5_177195 |
| GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AHMMS AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NU- O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- AAMMB AAYXX ABGNP ABJNI ABVGC ABXZS AEFGJ AGXDD AIDQK AIDYY AJNCP ALUQN ALXQX CITATION NTU WIN AFFQV CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c4435-f089f788ea11de96c768a2a8392c896b9560ce4b7e96bfc21155a222766222f43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474038500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1066-5099 1549-4918 |
| IngestDate | Tue Nov 04 01:57:53 EST 2025 Sun Sep 28 07:32:02 EDT 2025 Tue Oct 07 06:50:54 EDT 2025 Wed Feb 19 02:30:35 EST 2025 Tue Nov 18 21:44:00 EST 2025 Sat Nov 29 01:35:12 EST 2025 Wed Jan 22 16:52:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Myeloid cells Glia Yolk sac cell Induced pluripotent stem cells Experimental models Neuroimmune |
| Language | English |
| License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 2019 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4435-f089f788ea11de96c768a2a8392c896b9560ce4b7e96bfc21155a222766222f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4868-3704 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2995 |
| PMID | 30801863 |
| PQID | 2231713083 |
| PQPubID | 1046343 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6849818 proquest_miscellaneous_2185874979 proquest_journals_2231713083 pubmed_primary_30801863 crossref_citationtrail_10_1002_stem_2995 crossref_primary_10_1002_stem_2995 wiley_primary_10_1002_stem_2995_STEM2995 |
| PublicationCentury | 2000 |
| PublicationDate | June 2019 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Oxford |
| PublicationTitle | Stem cells (Dayton, Ohio) |
| PublicationTitleAlternate | Stem Cells |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc Oxford University Press |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Oxford University Press |
| References | 2017; 40 2017; 7 2017; 8 2017; 47 2010; 18 2015; 142 2008; 36 2013; 8 2017; 9 2012; 209 2018; 7 2018; 9 2018; 8 2014; 4 2018; 135 2015; 43 2016; 116 2014; 17 2007; 3 2014; 9 2010; 5 2018; 37 2018; 141 2017; 20 2015; 6 2015; 5 2017; 26 2006; 54 2015; 11 2006; 3 2014; 83 2018; 21 2011; 7 2012; 30 2012; 109 2018; 24 2017; 95 2017; 548 2018; 19 2017; 94 2016; 6 2012; 2 2005; 19 2017; 59 2015; 357 2007; 110 2015; 112 2017; 12 2016; 64 2018 2007; 81 2017; 18 2018; 10 2018; 98 2014; 32 2016; 22 2018; 13 Almeida (2022022514390645600_stem2995-bib-0046) 2012; 2 Melief (2022022514390645600_stem2995-bib-0009) 2016; 64 Haenseler (2022022514390645600_stem2995-bib-0052) 2018 Dewari (2022022514390645600_stem2995-bib-0060) 2018; 7 Xia (2022022514390645600_stem2995-bib-0057) 2017; 18 Booth (2022022514390645600_stem2995-bib-0002) 2017; 40 Paolicelli (2022022514390645600_stem2995-bib-0062) 2017; 95 Mutihac (2022022514390645600_stem2995-bib-0056) 2015; 357 Moore (2022022514390645600_stem2995-bib-0030) 2015; 11 Almeida (2022022514390645600_stem2995-bib-0019) 2012; 2 Ribecco-Lutkiewicz (2022022514390645600_stem2995-bib-0050) 2018; 8 Ohgidani (2022022514390645600_stem2995-bib-0008) 2014; 4 Xiang (2022022514390645600_stem2995-bib-0031) 2018; 13 McQuade (2022022514390645600_stem2995-bib-0026) 2018; 13 Hartlova (2022022514390645600_stem2995-bib-0044) 2018; 37 Kuhn (2022022514390645600_stem2995-bib-0049) 2017; 7 Hong (2022022514390645600_stem2995-bib-0061) 2007; 3 Karlsson (2022022514390645600_stem2995-bib-0014) 2008; 36 Haenseler (2022022514390645600_stem2995-bib-0017) 2017; 8 Brownjohn (2022022514390645600_stem2995-bib-0025) 2018; 10 Kirwan (2022022514390645600_stem2995-bib-0029) 2015; 142 Zhou (2022022514390645600_stem2995-bib-0032) 2011; 7 Zhang (2022022514390645600_stem2995-bib-0059) 2007; 110 Beevers (2022022514390645600_stem2995-bib-0005) 2017; 9 Beutner (2022022514390645600_stem2995-bib-0018) 2010; 5 Hoeffel (2022022514390645600_stem2995-bib-0010) 2015; 6 Haake (2022022514390645600_stem2995-bib-0066) 2018 Panicker (2022022514390645600_stem2995-bib-0042) 2014; 32 Jiang (2022022514390645600_stem2995-bib-0034) 2012; 30 Butovsky (2022022514390645600_stem2995-bib-0003) 2014; 17 Park (2022022514390645600_stem2995-bib-0048) 2018; 21 Panicker (2022022514390645600_stem2995-bib-0041) 2012; 109 Dodiya (2022022514390645600_stem2995-bib-0063) 2010; 18 Kikuchi (2022022514390645600_stem2995-bib-0065) 2017; 548 Wilgenburg (2022022514390645600_stem2995-bib-0015) 2013; 8 Uemura (2022022514390645600_stem2995-bib-0054) 2016; 6 Alasoo (2022022514390645600_stem2995-bib-0037) 2015; 5 Kunzel (2022022514390645600_stem2995-bib-0040) 2018; 7 Flynn (2022022514390645600_stem2995-bib-0035) 2015; 43 Wilgenburg (2022022514390645600_stem2995-bib-0033) 2014; 9 Massaro (2022022514390645600_stem2995-bib-0053) 2018; 24 Buchrieser (2022022514390645600_stem2995-bib-0016) 2017; 8 Leemput (2022022514390645600_stem2995-bib-0028) 2014; 83 Anderson (2022022514390645600_stem2995-bib-0012) 2006; 3 Ormel (2022022514390645600_stem2995-bib-0027) 2018; 9 Zhang (2022022514390645600_stem2995-bib-0036) 2005; 19 Odegaard (2022022514390645600_stem2995-bib-0013) 2007; 81 Kapellos (2022022514390645600_stem2995-bib-0039) 2016; 116 Battin (2022022514390645600_stem2995-bib-0058) 2017; 12 Kronenberg (2022022514390645600_stem2995-bib-0011) 2018; 135 Wills (2022022514390645600_stem2995-bib-0038) 2017; 18 Kodamullil (2022022514390645600_stem2995-bib-0001) 2017; 59 Haenseler (2022022514390645600_stem2995-bib-0043) 2017; 7 Bordoni (2022022514390645600_stem2995-bib-0004) 2018; 19 Heman-Ackah (2022022514390645600_stem2995-bib-0055) 2017; 26 Lin (2022022514390645600_stem2995-bib-0047) 2018; 98 Takata (2022022514390645600_stem2995-bib-0024) 2017; 47 Bergmann (2022022514390645600_stem2995-bib-0051) 2018; 13 Garcia-Reitboeck (2022022514390645600_stem2995-bib-0045) 2018; 24 Etemad (2022022514390645600_stem2995-bib-0007) 2012; 209 Muffat (2022022514390645600_stem2995-bib-0022) 2016; 22 Pandya (2022022514390645600_stem2995-bib-0023) 2017; 20 Tordo (2022022514390645600_stem2995-bib-0064) 2018; 141 Leone (2022022514390645600_stem2995-bib-0006) 2006; 54 Schwartz (2022022514390645600_stem2995-bib-0020) 2015; 112 Abud (2022022514390645600_stem2995-bib-0021) 2017; 94 |
| References_xml | – volume: 59 start-page: 1045 year: 2017 end-page: 1055 article-title: Of mice and men: Comparative analysis of neuro‐inflammatory mechanisms in human and mouse using cause‐and‐effect models publication-title: J Alzheimers Dis – volume: 3 start-page: 24 year: 2006 article-title: Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy publication-title: Retrovirology – volume: 10 start-page: 1294 year: 2018 end-page: 1307 article-title: Functional studies of missense TREM2 mutations in human stem cell‐derived microglia publication-title: Stem Cell Rep – volume: 13 start-page: 2827 year: 2018 end-page: 2843 article-title: Blood–brain‐barrier organoids for investigating the permeability of CNS therapeutics publication-title: Nat Protoc – volume: 81 start-page: 711 year: 2007 end-page: 719 article-title: Quantitative expansion of ES cell‐derived myeloid progenitors capable of differentiating into macrophages publication-title: J Leukoc Biol – volume: 8 start-page: 334 year: 2017 end-page: 345 article-title: Human induced pluripotent stem cell‐derived macrophages share ontogeny with MYB‐independent tissue‐resident macrophages publication-title: Stem Cell Rep – volume: 9 start-page: 587 year: 2017 end-page: 599 article-title: MAPT genetic variation and neuronal maturity alter isoform expression affecting axonal transport in iPSC‐derived dopamine neurons publication-title: Stem Cell Rep – volume: 142 start-page: 3178 year: 2015 end-page: 3187 article-title: Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro publication-title: Development – volume: 13 start-page: 67 year: 2018 article-title: Development and validation of a simplified method to generate human microglia from pluripotent stem cells publication-title: Mol Neurodegener – volume: 21 start-page: 941 year: 2018 end-page: 951 article-title: A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease publication-title: Nat Neurosci – volume: 112 start-page: 12516 year: 2015 end-page: 12521 article-title: Human pluripotent stem cell‐derived neural constructs for predicting neural toxicity publication-title: Proc Natl Acad Sci USA – volume: 95 start-page: 297 e6 year: 2017 end-page: 308 e6 article-title: TDP‐43 depletion in microglia promotes amyloid clearance but also induces synapse loss publication-title: Neuron – volume: 141 start-page: 2014 year: 2018 end-page: 2031 article-title: A novel adeno‐associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency publication-title: Brain – volume: 548 start-page: 592 year: 2017 end-page: 596 article-title: Human iPS cell‐derived dopaminergic neurons function in a primate Parkinson's disease model publication-title: Nature – volume: 9 start-page: 4167 year: 2018 article-title: Microglia innately develop within cerebral organoids publication-title: Nat Commun – volume: 8 start-page: e71098 year: 2013 article-title: Efficient, long term production of monocyte‐derived macrophages from human pluripotent stem cells under partly‐defined and fully‐defined conditions publication-title: PLoS One – volume: 20 start-page: 753 year: 2017 end-page: 759 article-title: Differentiation of human and murine induced pluripotent stem cells to microglia‐like cells publication-title: Nat Neurosci – volume: 2 start-page: 789 year: 2012 end-page: 798 article-title: Induced pluripotent stem cell models of progranulin‐deficient frontotemporal dementia uncover specific reversible neuronal defects publication-title: Cell Rep – year: 2018 article-title: Concise Review: Towards the clinical translation of induced pluripotent stem cell‐derived blood cells‐ready for take‐off publication-title: Stem Cells Translational Medicine – volume: 19 year: 2018 end-page: 3972 article-title: From neuronal differentiation of iPSCs to 3D neuro‐organoids: Modelling and therapy of neurodegenerative diseases publication-title: Int J Mol Sci – volume: 7 start-page: 9003 year: 2017 article-title: Excess alpha‐synuclein compromises phagocytosis in iPSC‐derived macrophages publication-title: Sci Rep – volume: 209 start-page: 79 year: 2012 end-page: 89 article-title: A novel in vitro human microglia model: Characterization of human monocyte‐derived microglia publication-title: J Neurosci Methods – volume: 43 start-page: 838 e3 year: 2015 end-page: 848 e3 article-title: CRISPR‐mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells publication-title: Exp Hematol – volume: 8 start-page: 1727 year: 2017 end-page: 1742 article-title: A highly efficient human pluripotent stem cell microglia model displays a neuronal‐co‐culture‐specific expression profile and inflammatory response publication-title: Stem Cell Rep – volume: 26 start-page: 4441 year: 2017 end-page: 4450 article-title: Alpha‐synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC‐derived neurons publication-title: Hum Mol Genet – volume: 7 year: 2018 article-title: FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex publication-title: eLife – volume: 7 start-page: e1002194 year: 2011 article-title: Transportin 3 promotes a nuclear maturation step required for efficient HIV‐1 integration publication-title: PLoS Pathog – volume: 36 start-page: 1167 year: 2008 end-page: 1175 article-title: Homogeneous monocytes and macrophages from human embryonic stem cells following coculture‐free differentiation in M‐CSF and IL‐3 publication-title: Exp Hematol – volume: 19 start-page: 533 year: 2005 end-page: 542 article-title: Aggregated alpha‐synuclein activates microglia: A process leading to disease progression in Parkinson's disease publication-title: FASEB J – volume: 17 start-page: 131 year: 2014 end-page: 143 article-title: Identification of a unique TGF‐beta‐dependent molecular and functional signature in microglia publication-title: Nat Neurosci – volume: 24 start-page: 1317 year: 2018 end-page: 1323 article-title: Fetal gene therapy for neurodegenerative disease of infants publication-title: Nat Med – volume: 13 start-page: 49 year: 2018 article-title: The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans publication-title: Mol Neurodegener – volume: 2 start-page: 789 year: 2012 end-page: 798 article-title: Induced pluripotent stem cell models of progranulin‐deficient frontotemporal dementia uncover specific reversible neuronal defects publication-title: Cell Rep. – volume: 22 start-page: 1358 year: 2016 end-page: 1367 article-title: Efficient derivation of microglia‐like cells from human pluripotent stem cells publication-title: Nat Med – volume: 18 start-page: 53 year: 2017 article-title: The nature and nurture of cell heterogeneity: Accounting for macrophage gene‐environment interactions with single‐cell RNA‐Seq publication-title: BMC Genomics – volume: 9 start-page: e86071 year: 2014 article-title: The productive entry pathway of HIV‐1 in macrophages is dependent on endocytosis through lipid rafts containing CD4 publication-title: PLoS One – volume: 37 year: 2018 article-title: LRRK2 is a negative regulator of phagosome maturation in macrophages publication-title: EMBO J – volume: 109 start-page: 18054 year: 2012 end-page: 18059 article-title: Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease publication-title: Proc Natl Acad Sci USA – volume: 98 start-page: 1294 year: 2018 article-title: APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC‐derived brain cell types publication-title: Neuron – volume: 116 start-page: 107 year: 2016 end-page: 119 article-title: A novel real time imaging platform to quantify macrophage phagocytosis publication-title: Biochem Pharmacol – year: 2018 article-title: Lentiviral gene therapy vector with UCOE stably restores function in iPSC‐derived neutrophils of a CDG patient publication-title: Matters – volume: 11 start-page: 689 year: 2015 end-page: 696 article-title: APP metabolism regulates tau proteostasis in human cerebral cortex neurons publication-title: Cell Rep – volume: 32 start-page: 2338 year: 2014 end-page: 2349 article-title: Gaucher iPSC‐derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development publication-title: Stem Cells – volume: 7 start-page: 15195 year: 2017 article-title: TALEN‐mediated functional correction of human iPSC‐derived macrophages in context of hereditary pulmonary alveolar proteinosis publication-title: Sci Rep – volume: 135 start-page: 551 year: 2018 end-page: 568 article-title: Distinguishing features of microglia‐ and monocyte‐derived macrophages after stroke publication-title: Acta Neuropathol – volume: 30 start-page: 599 year: 2012 end-page: 611 article-title: Derivation and functional analysis of patient‐specific induced pluripotent stem cells as an in vitro model of chronic granulomatous disease publication-title: Stem Cells – volume: 18 start-page: 579 year: 2010 end-page: 587 article-title: Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates publication-title: Mol Ther – volume: 7 year: 2018 article-title: An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein publication-title: eLife – volume: 47 start-page: 183 e6 year: 2017 end-page: 198 e6 article-title: Induced‐pluripotent‐stem‐cell‐derived primitive macrophages provide a platform for modeling tissue‐resident macrophage differentiation and function publication-title: Immunity – volume: 4 start-page: 4957 year: 2014 article-title: Direct induction of ramified microglia‐like cells from human monocytes: Dynamic microglial dysfunction in Nasu‐Hakola disease publication-title: Sci Rep – volume: 54 start-page: 183 year: 2006 end-page: 192 article-title: Characterization of human monocyte‐derived microglia‐like cells publication-title: Glia – volume: 94 start-page: 278 e9 year: 2017 end-page: 293 e9 article-title: iPSC‐derived human microglia‐like cells to study neurological diseases publication-title: Neuron – volume: 83 start-page: 51 year: 2014 end-page: 68 article-title: CORTECON: A temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells publication-title: Neuron – volume: 357 start-page: E48 year: 2015 article-title: Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR‐corrected motor neurons from patients with C9ORE72 mutations reveals disease‐specific cellular phenotypes publication-title: J Neurol Sci – volume: 64 start-page: 1857 year: 2016 end-page: 1868 article-title: Characterizing primary human microglia: A comparative study with myeloid subsets and culture models publication-title: Glia – volume: 8 start-page: 1873 year: 2018 article-title: A novel human induced pluripotent stem cell blood–brain barrier model: Applicability to study antibody‐triggered receptor‐mediated transcytosis publication-title: Sci Rep – volume: 110 start-page: 1448 year: 2007 end-page: 1457 article-title: Lentiviral vectors containing an enhancer‐less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells publication-title: Blood – volume: 12 start-page: e0178220 year: 2017 article-title: A human monocytic NF‐kappaB fluorescent reporter cell line for detection of microbial contaminants in biological samples publication-title: PLoS One – volume: 18 start-page: 2533 year: 2017 end-page: 2546 article-title: A knockin reporter allows purification and characterization of mDA neurons from heterogeneous populations publication-title: Cell Rep – volume: 40 start-page: 358 year: 2017 end-page: 370 article-title: The role of astrocyte dysfunction in Parkinson's disease pathogenesis publication-title: Trends Neurosci – volume: 24 start-page: 2300 year: 2018 end-page: 2311 article-title: Human induced pluripotent stem cell‐derived microglia‐like cells harboring TREM2 missense mutations show specific deficits in phagocytosis publication-title: Cell Rep – volume: 6 start-page: 35861 year: 2016 article-title: Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9‐mediated knock‐in and in utero electroporation techniques publication-title: Sci Rep – volume: 5 start-page: 1481 year: 2010 end-page: 1494 article-title: Generation of microglial cells from mouse embryonic stem cells publication-title: Nat Protoc – volume: 6 start-page: 486 year: 2015 article-title: Ontogeny of tissue‐resident macrophages publication-title: Front Immunol – volume: 5 start-page: 12524 year: 2015 article-title: Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription publication-title: Sci Rep – volume: 3 start-page: e33 year: 2007 article-title: Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior publication-title: PLoS Genet – volume: 32 start-page: 2338 year: 2014 ident: 2022022514390645600_stem2995-bib-0042 article-title: Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development publication-title: Stem Cells doi: 10.1002/stem.1732 – volume: 110 start-page: 1448 year: 2007 ident: 2022022514390645600_stem2995-bib-0059 article-title: Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells publication-title: Blood doi: 10.1182/blood-2006-12-060814 – volume: 95 start-page: 297 e6 year: 2017 ident: 2022022514390645600_stem2995-bib-0062 article-title: TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss publication-title: Neuron doi: 10.1016/j.neuron.2017.05.037 – volume: 81 start-page: 711 year: 2007 ident: 2022022514390645600_stem2995-bib-0013 article-title: Quantitative expansion of ES cell-derived myeloid progenitors capable of differentiating into macrophages publication-title: J Leukoc Biol doi: 10.1189/jlb.0906590 – volume: 21 start-page: 941 year: 2018 ident: 2022022514390645600_stem2995-bib-0048 article-title: A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease publication-title: Nat Neurosci doi: 10.1038/s41593-018-0175-4 – volume: 17 start-page: 131 year: 2014 ident: 2022022514390645600_stem2995-bib-0003 article-title: Identification of a unique TGF-beta-dependent molecular and functional signature in microglia publication-title: Nat Neurosci doi: 10.1038/nn.3599 – volume: 8 start-page: 334 year: 2017 ident: 2022022514390645600_stem2995-bib-0016 article-title: Human induced pluripotent stem cell-derived macrophages share ontogeny with MYB-independent tissue-resident macrophages publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2016.12.020 – volume: 24 start-page: 2300 year: 2018 ident: 2022022514390645600_stem2995-bib-0045 article-title: Human induced pluripotent stem cell-derived microglia-like cells harboring TREM2 missense mutations show specific deficits in phagocytosis publication-title: Cell Rep doi: 10.1016/j.celrep.2018.07.094 – volume: 24 start-page: 1317 year: 2018 ident: 2022022514390645600_stem2995-bib-0053 article-title: Fetal gene therapy for neurodegenerative disease of infants publication-title: Nat Med doi: 10.1038/s41591-018-0106-7 – volume: 13 start-page: 67 year: 2018 ident: 2022022514390645600_stem2995-bib-0026 article-title: Development and validation of a simplified method to generate human microglia from pluripotent stem cells publication-title: Mol Neurodegener doi: 10.1186/s13024-018-0297-x – volume: 40 start-page: 358 year: 2017 ident: 2022022514390645600_stem2995-bib-0002 article-title: The role of astrocyte dysfunction in Parkinson's disease pathogenesis publication-title: Trends Neurosci doi: 10.1016/j.tins.2017.04.001 – volume: 2 start-page: 789 year: 2012 ident: 2022022514390645600_stem2995-bib-0019 article-title: Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.09.007 – volume: 5 start-page: 1481 year: 2010 ident: 2022022514390645600_stem2995-bib-0018 article-title: Generation of microglial cells from mouse embryonic stem cells publication-title: Nat Protoc doi: 10.1038/nprot.2010.90 – volume: 11 start-page: 689 year: 2015 ident: 2022022514390645600_stem2995-bib-0030 article-title: APP metabolism regulates tau proteostasis in human cerebral cortex neurons publication-title: Cell Rep doi: 10.1016/j.celrep.2015.03.068 – volume: 18 start-page: 2533 year: 2017 ident: 2022022514390645600_stem2995-bib-0057 article-title: A knockin reporter allows purification and characterization of mDA neurons from heterogeneous populations publication-title: Cell Rep doi: 10.1016/j.celrep.2017.02.023 – volume: 19 start-page: 533 year: 2005 ident: 2022022514390645600_stem2995-bib-0036 article-title: Aggregated alpha-synuclein activates microglia: A process leading to disease progression in Parkinson's disease publication-title: FASEB J doi: 10.1096/fj.04-2751com – volume: 7 year: 2018 ident: 2022022514390645600_stem2995-bib-0040 article-title: FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex publication-title: eLife doi: 10.7554/eLife.35012 – volume: 22 start-page: 1358 year: 2016 ident: 2022022514390645600_stem2995-bib-0022 article-title: Efficient derivation of microglia-like cells from human pluripotent stem cells publication-title: Nat Med doi: 10.1038/nm.4189 – volume: 59 start-page: 1045 year: 2017 ident: 2022022514390645600_stem2995-bib-0001 article-title: Of mice and men: Comparative analysis of neuro-inflammatory mechanisms in human and mouse using cause-and-effect models publication-title: J Alzheimers Dis doi: 10.3233/JAD-170255 – volume: 19 year: 2018 ident: 2022022514390645600_stem2995-bib-0004 article-title: From neuronal differentiation of iPSCs to 3D neuro-organoids: Modelling and therapy of neurodegenerative diseases publication-title: Int J Mol Sci doi: 10.3390/ijms19123972 – volume: 64 start-page: 1857 year: 2016 ident: 2022022514390645600_stem2995-bib-0009 article-title: Characterizing primary human microglia: A comparative study with myeloid subsets and culture models publication-title: Glia doi: 10.1002/glia.23023 – volume: 13 start-page: 49 year: 2018 ident: 2022022514390645600_stem2995-bib-0031 article-title: The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans publication-title: Mol Neurodegener doi: 10.1186/s13024-018-0280-6 – volume: 83 start-page: 51 year: 2014 ident: 2022022514390645600_stem2995-bib-0028 article-title: CORTECON: A temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells publication-title: Neuron doi: 10.1016/j.neuron.2014.05.013 – volume: 2 start-page: 789 year: 2012 ident: 2022022514390645600_stem2995-bib-0046 article-title: Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects publication-title: Cell Rep doi: 10.1016/j.celrep.2012.09.007 – volume: 98 start-page: 1294 year: 2018 ident: 2022022514390645600_stem2995-bib-0047 article-title: APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types publication-title: Neuron doi: 10.1016/j.neuron.2018.06.011 – volume: 7 start-page: e1002194 year: 2011 ident: 2022022514390645600_stem2995-bib-0032 article-title: Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002194 – volume: 7 start-page: 15195 year: 2017 ident: 2022022514390645600_stem2995-bib-0049 article-title: TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis publication-title: Sci Rep doi: 10.1038/s41598-017-14566-8 – volume: 135 start-page: 551 year: 2018 ident: 2022022514390645600_stem2995-bib-0011 article-title: Distinguishing features of microglia- and monocyte-derived macrophages after stroke publication-title: Acta Neuropathol doi: 10.1007/s00401-017-1795-6 – volume: 20 start-page: 753 year: 2017 ident: 2022022514390645600_stem2995-bib-0023 article-title: Differentiation of human and murine induced pluripotent stem cells to microglia-like cells publication-title: Nat Neurosci doi: 10.1038/nn.4534 – volume: 209 start-page: 79 year: 2012 ident: 2022022514390645600_stem2995-bib-0007 article-title: A novel in vitro human microglia model: Characterization of human monocyte-derived microglia publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2012.05.025 – volume: 6 start-page: 35861 year: 2016 ident: 2022022514390645600_stem2995-bib-0054 article-title: Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques publication-title: Sci Rep doi: 10.1038/srep35861 – volume: 8 start-page: 1873 year: 2018 ident: 2022022514390645600_stem2995-bib-0050 article-title: A novel human induced pluripotent stem cell blood–brain barrier model: Applicability to study antibody-triggered receptor-mediated transcytosis publication-title: Sci Rep doi: 10.1038/s41598-018-19522-8 – volume: 142 start-page: 3178 year: 2015 ident: 2022022514390645600_stem2995-bib-0029 article-title: Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro publication-title: Development doi: 10.1242/dev.123851 – volume: 13 start-page: 2827 year: 2018 ident: 2022022514390645600_stem2995-bib-0051 article-title: Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics publication-title: Nat Protoc doi: 10.1038/s41596-018-0066-x – volume: 18 start-page: 579 year: 2010 ident: 2022022514390645600_stem2995-bib-0063 article-title: Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates publication-title: Mol Ther doi: 10.1038/mt.2009.216 – volume: 10 start-page: 1294 year: 2018 ident: 2022022514390645600_stem2995-bib-0025 article-title: Functional studies of missense TREM2 mutations in human stem cell-derived microglia publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2018.03.003 – volume: 9 start-page: 4167 year: 2018 ident: 2022022514390645600_stem2995-bib-0027 article-title: Microglia innately develop within cerebral organoids publication-title: Nat Commun doi: 10.1038/s41467-018-06684-2 – volume: 4 start-page: 4957 year: 2014 ident: 2022022514390645600_stem2995-bib-0008 article-title: Direct induction of ramified microglia-like cells from human monocytes: Dynamic microglial dysfunction in Nasu-Hakola disease publication-title: Sci Rep doi: 10.1038/srep04957 – volume: 43 start-page: 838 e3 year: 2015 ident: 2022022514390645600_stem2995-bib-0035 article-title: CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells publication-title: Exp Hematol doi: 10.1016/j.exphem.2015.06.002 – volume: 3 start-page: e33 year: 2007 ident: 2022022514390645600_stem2995-bib-0061 article-title: Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030033 – volume: 7 year: 2018 ident: 2022022514390645600_stem2995-bib-0060 article-title: An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein publication-title: eLife doi: 10.7554/eLife.35069 – volume: 8 start-page: e71098 year: 2013 ident: 2022022514390645600_stem2995-bib-0015 article-title: Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions publication-title: PLoS One doi: 10.1371/journal.pone.0071098 – volume: 9 start-page: e86071 year: 2014 ident: 2022022514390645600_stem2995-bib-0033 article-title: The productive entry pathway of HIV-1 in macrophages is dependent on endocytosis through lipid rafts containing CD4 publication-title: PLoS One doi: 10.1371/journal.pone.0086071 – volume: 54 start-page: 183 year: 2006 ident: 2022022514390645600_stem2995-bib-0006 article-title: Characterization of human monocyte-derived microglia-like cells publication-title: Glia doi: 10.1002/glia.20372 – volume: 94 start-page: 278 e9 year: 2017 ident: 2022022514390645600_stem2995-bib-0021 article-title: iPSC-derived human microglia-like cells to study neurological diseases publication-title: Neuron doi: 10.1016/j.neuron.2017.03.042 – volume: 116 start-page: 107 year: 2016 ident: 2022022514390645600_stem2995-bib-0039 article-title: A novel real time imaging platform to quantify macrophage phagocytosis publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2016.07.011 – volume: 112 start-page: 12516 year: 2015 ident: 2022022514390645600_stem2995-bib-0020 article-title: Human pluripotent stem cell-derived neural constructs for predicting neural toxicity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1516645112 – volume: 141 start-page: 2014 year: 2018 ident: 2022022514390645600_stem2995-bib-0064 article-title: A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency publication-title: Brain doi: 10.1093/brain/awy126 – volume: 548 start-page: 592 year: 2017 ident: 2022022514390645600_stem2995-bib-0065 article-title: Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model publication-title: Nature doi: 10.1038/nature23664 – volume: 30 start-page: 599 year: 2012 ident: 2022022514390645600_stem2995-bib-0034 article-title: Derivation and functional analysis of patient-specific induced pluripotent stem cells as an in vitro model of chronic granulomatous disease publication-title: Stem Cells doi: 10.1002/stem.1053 – volume: 3 start-page: 24 year: 2006 ident: 2022022514390645600_stem2995-bib-0012 article-title: Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy publication-title: Retrovirology doi: 10.1186/1742-4690-3-24 – year: 2018 ident: 2022022514390645600_stem2995-bib-0052 article-title: Lentiviral gene therapy vector with UCOE stably restores function in iPSC-derived neutrophils of a CDG patient publication-title: Matters doi: 10.19185/matters.201805000005 – volume: 357 start-page: E48 year: 2015 ident: 2022022514390645600_stem2995-bib-0056 article-title: Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected motor neurons from patients with C9ORE72 mutations reveals disease-specific cellular phenotypes publication-title: J Neurol Sci doi: 10.1016/j.jns.2015.08.198 – volume: 12 start-page: e0178220 year: 2017 ident: 2022022514390645600_stem2995-bib-0058 article-title: A human monocytic NF-kappaB fluorescent reporter cell line for detection of microbial contaminants in biological samples publication-title: PLoS One doi: 10.1371/journal.pone.0178220 – volume: 5 start-page: 12524 year: 2015 ident: 2022022514390645600_stem2995-bib-0037 article-title: Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription publication-title: Sci Rep doi: 10.1038/srep12524 – volume: 6 start-page: 486 year: 2015 ident: 2022022514390645600_stem2995-bib-0010 article-title: Ontogeny of tissue-resident macrophages publication-title: Front Immunol doi: 10.3389/fimmu.2015.00486 – volume: 37 year: 2018 ident: 2022022514390645600_stem2995-bib-0044 article-title: LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages publication-title: EMBO J doi: 10.15252/embj.201798694 – volume: 8 start-page: 1727 year: 2017 ident: 2022022514390645600_stem2995-bib-0017 article-title: A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2017.05.017 – volume: 109 start-page: 18054 year: 2012 ident: 2022022514390645600_stem2995-bib-0041 article-title: Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1207889109 – volume: 7 start-page: 9003 year: 2017 ident: 2022022514390645600_stem2995-bib-0043 article-title: Excess alpha-synuclein compromises phagocytosis in iPSC-derived macrophages publication-title: Sci Rep doi: 10.1038/s41598-017-09362-3 – volume: 9 start-page: 587 year: 2017 ident: 2022022514390645600_stem2995-bib-0005 article-title: MAPT genetic variation and neuronal maturity alter isoform expression affecting axonal transport in iPSC-derived dopamine neurons publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2017.06.005 – volume: 18 start-page: 53 year: 2017 ident: 2022022514390645600_stem2995-bib-0038 article-title: The nature and nurture of cell heterogeneity: Accounting for macrophage gene-environment interactions with single-cell RNA-Seq publication-title: BMC Genomics doi: 10.1186/s12864-016-3445-0 – year: 2018 ident: 2022022514390645600_stem2995-bib-0066 article-title: Concise Review: Towards the clinical translation of induced pluripotent stem cell-derived blood cells-ready for take-off publication-title: Stem Cells Translational Medicine – volume: 26 start-page: 4441 year: 2017 ident: 2022022514390645600_stem2995-bib-0055 article-title: Alpha-synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC-derived neurons publication-title: Hum Mol Genet doi: 10.1093/hmg/ddx331 – volume: 36 start-page: 1167 year: 2008 ident: 2022022514390645600_stem2995-bib-0014 article-title: Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3 publication-title: Exp Hematol doi: 10.1016/j.exphem.2008.04.009 – volume: 47 start-page: 183 e6 year: 2017 ident: 2022022514390645600_stem2995-bib-0024 article-title: Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function publication-title: Immunity doi: 10.1016/j.immuni.2017.06.017 |
| SSID | ssj0014588 |
| Score | 2.4858246 |
| SecondaryResourceType | review_article |
| Snippet | Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease,... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 724 |
| SubjectTerms | Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer Disease - therapy Alzheimer's disease Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - metabolism Amyotrophic Lateral Sclerosis - pathology Amyotrophic Lateral Sclerosis - therapy Brain Cell lines Cell- and Tissue-Based Therapy - methods Coculture Techniques Dementia disorders Disease control Drug screening Embryonic Stem Cells/Induced Pluripotent Stem Cells Experimental models Frontotemporal dementia Frontotemporal Dementia - genetics Frontotemporal Dementia - metabolism Frontotemporal Dementia - pathology Frontotemporal Dementia - therapy Gene Knockout Techniques Genetic Engineering - methods Glia High-Throughput Screening Assays Humans Immunology Induced pluripotent stem cells Induced Pluripotent Stem Cells - drug effects Induced Pluripotent Stem Cells - metabolism Induced Pluripotent Stem Cells - pathology Inflammation Macrophages Microglia Microglia - drug effects Microglia - metabolism Microglia - pathology Modelling Models, Biological Monoculture Movement disorders Myeloid cells Neurodegeneration Neurodegenerative diseases Neuroimmune Neurological diseases Neurons - drug effects Neurons - metabolism Neurons - pathology Neuroprotective Agents - therapeutic use Nootropic Agents - therapeutic use Parkinson Disease - genetics Parkinson Disease - metabolism Parkinson Disease - pathology Parkinson Disease - therapy Parkinson's disease Phenotyping Pluripotency Stem cells Synapses Yolk sac cell |
| Title | Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell‐Derived Microglia |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2995 https://www.ncbi.nlm.nih.gov/pubmed/30801863 https://www.proquest.com/docview/2231713083 https://www.proquest.com/docview/2185874979 https://pubmed.ncbi.nlm.nih.gov/PMC6849818 |
| Volume | 37 |
| WOSCitedRecordID | wos000474038500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1549-4918 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014588 issn: 1066-5099 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxEB7xK3GhQAsNhcqgHrhsyW689pqeUACVA1EkqMht5fV6IdJqU5EEiVsfoc_IkzBjJ1siqITExVrJY-3fzPgbj_0NwDdZEHJIwkAKowMeWcrv8izQBh1hodBvRr7YhOx0kl5Pdefgx_QsjOeHqBfcyDKcvyYD19nw8B9pKPEcf0dnGs_DYhi2EqrbEPFunUKgI5gu1SlEgLOimtIKNaPDeujsZPQCYb7cKPkcwLoZ6OzDu559DVYnwJMde01ZhzlbbcCyL0X58BFu2wNXYIP5ZMERoyJpdFSdOfqO3N44fmpyjuzEJ3WGjBZxmUsDsG45RvczQAQ-Ypd4X9a2Zfn45-8Javi9zdkFbfy7Kfv6E_w6O71q_wwmVRgCwxFLBUUzUQUGylaHYW6VMBig6EgTsDKJEhkFWMbyTGJfVhgMKONY0wlbIbAteGsTFqpBZT8DC3UeF5HQTY1KgMgwMzJX3PActaOV87gBB9PfkZoJRTlVyihTT64cpfThUvpwDdivRX97Xo7XhHam_zSdmOYwRTwUYmSO0LMBe3U3GhVlSnRlB2OUQRSTSK6kasCWV4H6LjgSlVvgaDmjHLUAEXbP9lT9W0fcLRKuECDhazrl-P-Dp5dXpxd0sf120S-wgmBO-W1sO7AwuhvbXVgy96P-8O6rsw1sZS_B9vq88wSAQhbi |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xYIIXYGxAgYFBe9hLRhMcJ0a8oAICjVZIdBpvkeM4UClKEW2ReOMn8Bv5JdzZbaCCSZN4iSL5rCTO3fk7n_0dwI8oJ-QQ-14ktPJ4YCi_y1NPaXSEuUS_GbhiE1GrFV9eyvMJ2B-dhXH8ENWCG1mG9ddk4LQgvfPCGkpEx7_Qm4afYIoj0KDCDX9PW1UOgc5g2lynEB5Oi3LEK1QPdqqu47PRG4j5dqfkawRrp6Dj-Y-9_ALMDaEnO3C68gUmTLkIn10xyvuvcN3o2hIbzKUL9hiVSaPD6swSeGTmyjJUk3tkhy6t02O0jMtsIoCdFwN0QF3E4H12gc9lDVMUTw-Ph6jjdyZjTdr6d1V01Df4c3zUbpx4wzoMnuaIpry8HsscQ2WjfD8zUmgMUVSgCFrpWIqUQixteBphW5prDCnDUNEZWyHwmvPdJZgsu6VZAearLMwDoeoK1QCxYaqjTHLNM9SP3YyHNfg5-h-JHpKUU62MInH0ykFCA5fQwNVguxK9ccwc7wmtj35qMjTOXoKIyMfYHMFnDbaqZjQrypWo0nQHKIM4Jo64jGQNlp0OVE_BnqjeAntHY9pRCRBl93hL2bm21N0i5hIhEn6m1Y5_v3hy0T5q0s3q_4tuwsxJu3mWnJ22fq_BLEI76Ta1rcNk_3ZgvsO0vut3ercb1lCeAZMaGUM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xKIgL9AnLo3WrHnoJbIJjx4gL2mXVqmW1ElTiFjmOAytFWcTuIvXWn8Bv5JcwY-8GVhSpEpcoksdyEs-Mv8nY3wB8lQUhhyQMpDA64JGl_C7PAm3QERYK_Wbki03Ibjc5P1e9OTicnoXx_BD1DzeyDOevycDtVV7sPbCGEtHxLnrTeB4WeSxD0umI9-ocAp3BdLlOIQJcFtWUV6gZ7dVdZ1ejJxDz6U7JxwjWLUGdtZc9_GtYnUBPduR15Q3M2eotLPlilH_ewWVr4EpsMJ8uOGBUJo0OqzNH4JHbC8dQTe6RtX1aZ8joNy5ziQDWK8fogAaIwUfsFMdlLVuWd39v26jjNzZnJ7T176Ls6_fwu3N81voeTOowBIYjmgqKZqIKDJWtDsPcKmEwRNGRJmhlEiUyCrGM5ZnEtqwwGFLGsaYztkLgteD7H2ChGlR2A1io87iIhG5qVAPEhpmRueKG56gf-zmPG_BtOh-pmZCUU62MMvX0ylFKHy6lD9eAL7XolWfm-JfQ9nRS04lxDlNERCHG5gg-G_C5bkazolyJruxgjDKIYxLJlVQNWPc6UI-CPVG9BfaWM9pRCxBl92xL1b901N0i4QohEr6m047nHzw9PTs-oZvN_xf9BMu9dif99aP7cwtWENkpv6dtGxZG12O7A6_Mzag_vP7o7OQecJwYWg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concise+Review%3A+Modeling+Neurodegenerative+Diseases+with+Human+Pluripotent+Stem+Cell-Derived+Microglia&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Haenseler%2C+Walther&rft.au=Rajendran%2C+Lawrence&rft.date=2019-06-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=37&rft.issue=6&rft.spage=724&rft.epage=730&rft_id=info:doi/10.1002%2Fstem.2995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stem_2995 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |