Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell‐Derived Microglia

Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Stem cells (Dayton, Ohio) Ročník 37; číslo 6; s. 724 - 730
Hlavní autori: Haenseler, Walther, Rajendran, Lawrence
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.06.2019
Oxford University Press
Predmet:
ISSN:1066-5099, 1549-4918, 1549-4918
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. Stem Cells 2019;37:724–730 Modelling of neurological diseases can be done in mono‐cultures for many readouts, but for authentic modelling of neuron‐microglia interactions such as synapse pruning events it is crucial to use co‐cultures.
AbstractList Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)-derived microglia have recently been developed and provide unlimited access to patient-derived material. In this present study, we give an overview of iPSC-derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia-induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient-specific therapies against neurodegeneration. Stem Cells  2019;37:724–730
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)-derived microglia have recently been developed and provide unlimited access to patient-derived material. In this present study, we give an overview of iPSC-derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia-induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient-specific therapies against neurodegeneration. Stem Cells 2019;37:724-730.Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)-derived microglia have recently been developed and provide unlimited access to patient-derived material. In this present study, we give an overview of iPSC-derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia-induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient-specific therapies against neurodegeneration. Stem Cells 2019;37:724-730.
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. stem cells 2019;37:724–730 Modelling of neurological diseases can be done in mono‐cultures for many readouts, but for authentic modelling of neuron‐microglia interactions such as synapse pruning events it is crucial to use co‐cultures.
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. Stem Cells 2019;37:724–730
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. Stem Cells 2019;37:724–730 Modelling of neurological diseases can be done in mono‐cultures for many readouts, but for authentic modelling of neuron‐microglia interactions such as synapse pruning events it is crucial to use co‐cultures.
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)-derived microglia have recently been developed and provide unlimited access to patient-derived material. In this present study, we give an overview of iPSC-derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia-induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient-specific therapies against neurodegeneration. Stem Cells 2019;37:724-730.
Author Rajendran, Lawrence
Haenseler, Walther
AuthorAffiliation 2 UK‐Dementia Research Institute (UK‐DRI), Maurice Wohl Basic & Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience King's College London London United Kingdom
1 Systems and Cell Biology of Neurodegeneration IREM, University of Zurich Schlieren Switzerland
AuthorAffiliation_xml – name: 1 Systems and Cell Biology of Neurodegeneration IREM, University of Zurich Schlieren Switzerland
– name: 2 UK‐Dementia Research Institute (UK‐DRI), Maurice Wohl Basic & Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience King's College London London United Kingdom
Author_xml – sequence: 1
  givenname: Walther
  orcidid: 0000-0003-4868-3704
  surname: Haenseler
  fullname: Haenseler, Walther
  email: walther.haenseler@irem.uzh.ch
  organization: IREM, University of Zurich
– sequence: 2
  givenname: Lawrence
  surname: Rajendran
  fullname: Rajendran, Lawrence
  email: lawrence.rajendran@kcl.ac.uk
  organization: King's College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30801863$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9uEzEQxi1URP_AgRdAlrjAYVvba3ttDkgoLRSpAUTL2XKc2cTVrh3s3US98Qg8I0-CQ1MEFVzskeY3n76Z7xDthRgAoaeUHFNC2EkeoD9mWosH6IAKriuuqdorNZGyEkTrfXSY8zUhlAulHqH9mihClawP0HISg_MZ8GdYe9i8wtM4h86HBf4AYyr1AgIkO_g14NPC2QwZb_ywxOdjbwP-1I3Jr-IAYcCXxQaeQNf9-Pb9FFIZmeOpdykuOm8fo4et7TI82f1H6Mvbs6vJeXXx8d37yZuLynFei6olSreNUmApnYOWrpHKMqtqzZzScqaFJA74rCm9WesYpUJYxlgjZXlbXh-h17e6q3HWw9wVY8l2ZpV8b9ONidabvzvBL80iro1UXCuqisCLnUCKX0fIg-l9dmUrGyCO2TCqhGq4bnRBn99Dr-OYQlnPMFbThpY714V69qej31buQijAyS1QTpVzgtY4P5STx61B3xlKzDZms43ZbGMuEy_vTdyJ_ovdqW98Bzf_B83l1dn018RPOSC5kg
CitedBy_id crossref_primary_10_1016_j_neuron_2021_07_004
crossref_primary_10_1016_j_nbd_2020_105015
crossref_primary_10_1007_s13365_021_01049_w
crossref_primary_10_3390_ijms26020620
crossref_primary_10_1016_j_pneurobio_2020_101973
crossref_primary_10_1002_med_21974
crossref_primary_10_1093_stcltm_szac077
crossref_primary_10_3389_fcell_2021_649538
crossref_primary_10_1155_2021_5511630
crossref_primary_10_3389_fimmu_2020_614972
crossref_primary_10_1038_s41380_020_00936_8
crossref_primary_10_3390_cancers15041253
crossref_primary_10_3389_fpsyt_2020_00789
crossref_primary_10_3389_fcell_2021_766773
crossref_primary_10_1016_j_stem_2021_12_008
crossref_primary_10_1186_s40035_019_0161_0
crossref_primary_10_1097_MOG_0000000000000726
crossref_primary_10_3389_fnmol_2021_767041
crossref_primary_10_1084_jem_20202717
crossref_primary_10_3390_cells8080838
crossref_primary_10_1016_j_msard_2025_106666
crossref_primary_10_1146_annurev_immunol_101921_035222
crossref_primary_10_1186_s12974_024_03037_3
crossref_primary_10_1186_s41231_024_00182_y
crossref_primary_10_3390_ijms23137140
crossref_primary_10_3390_biomedicines9101393
crossref_primary_10_1002_glia_23781
crossref_primary_10_1177_09636897231171001
crossref_primary_10_1038_s41596_020_00447_4
crossref_primary_10_1007_s00109_021_02046_6
crossref_primary_10_1089_scd_2020_0069
crossref_primary_10_1186_s13024_025_00837_w
crossref_primary_10_1007_s13311_019_00810_8
crossref_primary_10_1002_stem_3137
crossref_primary_10_1177_11795735221123896
crossref_primary_10_3390_brainsci14111101
crossref_primary_10_3390_molecules25082000
Cites_doi 10.1002/stem.1732
10.1182/blood-2006-12-060814
10.1016/j.neuron.2017.05.037
10.1189/jlb.0906590
10.1038/s41593-018-0175-4
10.1038/nn.3599
10.1016/j.stemcr.2016.12.020
10.1016/j.celrep.2018.07.094
10.1038/s41591-018-0106-7
10.1186/s13024-018-0297-x
10.1016/j.tins.2017.04.001
10.1016/j.celrep.2012.09.007
10.1038/nprot.2010.90
10.1016/j.celrep.2015.03.068
10.1016/j.celrep.2017.02.023
10.1096/fj.04-2751com
10.7554/eLife.35012
10.1038/nm.4189
10.3233/JAD-170255
10.3390/ijms19123972
10.1002/glia.23023
10.1186/s13024-018-0280-6
10.1016/j.neuron.2014.05.013
10.1016/j.neuron.2018.06.011
10.1371/journal.ppat.1002194
10.1038/s41598-017-14566-8
10.1007/s00401-017-1795-6
10.1038/nn.4534
10.1016/j.jneumeth.2012.05.025
10.1038/srep35861
10.1038/s41598-018-19522-8
10.1242/dev.123851
10.1038/s41596-018-0066-x
10.1038/mt.2009.216
10.1016/j.stemcr.2018.03.003
10.1038/s41467-018-06684-2
10.1038/srep04957
10.1016/j.exphem.2015.06.002
10.1371/journal.pgen.0030033
10.7554/eLife.35069
10.1371/journal.pone.0071098
10.1371/journal.pone.0086071
10.1002/glia.20372
10.1016/j.neuron.2017.03.042
10.1016/j.bcp.2016.07.011
10.1073/pnas.1516645112
10.1093/brain/awy126
10.1038/nature23664
10.1002/stem.1053
10.1186/1742-4690-3-24
10.19185/matters.201805000005
10.1016/j.jns.2015.08.198
10.1371/journal.pone.0178220
10.1038/srep12524
10.3389/fimmu.2015.00486
10.15252/embj.201798694
10.1016/j.stemcr.2017.05.017
10.1073/pnas.1207889109
10.1038/s41598-017-09362-3
10.1016/j.stemcr.2017.06.005
10.1186/s12864-016-3445-0
10.1093/hmg/ddx331
10.1016/j.exphem.2008.04.009
10.1016/j.immuni.2017.06.017
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019
2019 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019.
2019 AlphaMed Press
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019
– notice: 2019 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019.
– notice: 2019 AlphaMed Press
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/stem.2995
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Genetics Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Modeling Neurodegenerative Diseases with HPSC
EISSN 1549-4918
EndPage 730
ExternalDocumentID PMC6849818
30801863
10_1002_stem_2995
STEM2995
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Velux Stiftung
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: CRSII5_177195
– fundername: ;
– fundername: ;
  grantid: CRSII5_177195
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABDFA
ABEJV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AHMMS
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
NU-
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
AAMMB
AAYXX
ABGNP
ABJNI
ABVGC
ABXZS
AEFGJ
AGXDD
AIDQK
AIDYY
AJNCP
ALUQN
ALXQX
CITATION
NTU
WIN
AFFQV
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4435-f089f788ea11de96c768a2a8392c896b9560ce4b7e96bfc21155a222766222f43
IEDL.DBID 24P
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474038500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-5099
1549-4918
IngestDate Tue Nov 04 01:57:53 EST 2025
Sun Sep 28 07:32:02 EDT 2025
Tue Oct 07 06:50:54 EDT 2025
Wed Feb 19 02:30:35 EST 2025
Tue Nov 18 21:44:00 EST 2025
Sat Nov 29 01:35:12 EST 2025
Wed Jan 22 16:52:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Myeloid cells
Glia
Yolk sac cell
Induced pluripotent stem cells
Experimental models
Neuroimmune
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/4.0
2019 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4435-f089f788ea11de96c768a2a8392c896b9560ce4b7e96bfc21155a222766222f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4868-3704
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2995
PMID 30801863
PQID 2231713083
PQPubID 1046343
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6849818
proquest_miscellaneous_2185874979
proquest_journals_2231713083
pubmed_primary_30801863
crossref_citationtrail_10_1002_stem_2995
crossref_primary_10_1002_stem_2995
wiley_primary_10_1002_stem_2995_STEM2995
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Oxford
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Oxford University Press
Publisher_xml – name: John Wiley & Sons, Inc
– name: Oxford University Press
References 2017; 40
2017; 7
2017; 8
2017; 47
2010; 18
2015; 142
2008; 36
2013; 8
2017; 9
2012; 209
2018; 7
2018; 9
2018; 8
2014; 4
2018; 135
2015; 43
2016; 116
2014; 17
2007; 3
2014; 9
2010; 5
2018; 37
2018; 141
2017; 20
2015; 6
2015; 5
2017; 26
2006; 54
2015; 11
2006; 3
2014; 83
2018; 21
2011; 7
2012; 30
2012; 109
2018; 24
2017; 95
2017; 548
2018; 19
2017; 94
2016; 6
2012; 2
2005; 19
2017; 59
2015; 357
2007; 110
2015; 112
2017; 12
2016; 64
2018
2007; 81
2017; 18
2018; 10
2018; 98
2014; 32
2016; 22
2018; 13
Almeida (2022022514390645600_stem2995-bib-0046) 2012; 2
Melief (2022022514390645600_stem2995-bib-0009) 2016; 64
Haenseler (2022022514390645600_stem2995-bib-0052) 2018
Dewari (2022022514390645600_stem2995-bib-0060) 2018; 7
Xia (2022022514390645600_stem2995-bib-0057) 2017; 18
Booth (2022022514390645600_stem2995-bib-0002) 2017; 40
Paolicelli (2022022514390645600_stem2995-bib-0062) 2017; 95
Mutihac (2022022514390645600_stem2995-bib-0056) 2015; 357
Moore (2022022514390645600_stem2995-bib-0030) 2015; 11
Almeida (2022022514390645600_stem2995-bib-0019) 2012; 2
Ribecco-Lutkiewicz (2022022514390645600_stem2995-bib-0050) 2018; 8
Ohgidani (2022022514390645600_stem2995-bib-0008) 2014; 4
Xiang (2022022514390645600_stem2995-bib-0031) 2018; 13
McQuade (2022022514390645600_stem2995-bib-0026) 2018; 13
Hartlova (2022022514390645600_stem2995-bib-0044) 2018; 37
Kuhn (2022022514390645600_stem2995-bib-0049) 2017; 7
Hong (2022022514390645600_stem2995-bib-0061) 2007; 3
Karlsson (2022022514390645600_stem2995-bib-0014) 2008; 36
Haenseler (2022022514390645600_stem2995-bib-0017) 2017; 8
Brownjohn (2022022514390645600_stem2995-bib-0025) 2018; 10
Kirwan (2022022514390645600_stem2995-bib-0029) 2015; 142
Zhou (2022022514390645600_stem2995-bib-0032) 2011; 7
Zhang (2022022514390645600_stem2995-bib-0059) 2007; 110
Beevers (2022022514390645600_stem2995-bib-0005) 2017; 9
Beutner (2022022514390645600_stem2995-bib-0018) 2010; 5
Hoeffel (2022022514390645600_stem2995-bib-0010) 2015; 6
Haake (2022022514390645600_stem2995-bib-0066) 2018
Panicker (2022022514390645600_stem2995-bib-0042) 2014; 32
Jiang (2022022514390645600_stem2995-bib-0034) 2012; 30
Butovsky (2022022514390645600_stem2995-bib-0003) 2014; 17
Park (2022022514390645600_stem2995-bib-0048) 2018; 21
Panicker (2022022514390645600_stem2995-bib-0041) 2012; 109
Dodiya (2022022514390645600_stem2995-bib-0063) 2010; 18
Kikuchi (2022022514390645600_stem2995-bib-0065) 2017; 548
Wilgenburg (2022022514390645600_stem2995-bib-0015) 2013; 8
Uemura (2022022514390645600_stem2995-bib-0054) 2016; 6
Alasoo (2022022514390645600_stem2995-bib-0037) 2015; 5
Kunzel (2022022514390645600_stem2995-bib-0040) 2018; 7
Flynn (2022022514390645600_stem2995-bib-0035) 2015; 43
Wilgenburg (2022022514390645600_stem2995-bib-0033) 2014; 9
Massaro (2022022514390645600_stem2995-bib-0053) 2018; 24
Buchrieser (2022022514390645600_stem2995-bib-0016) 2017; 8
Leemput (2022022514390645600_stem2995-bib-0028) 2014; 83
Anderson (2022022514390645600_stem2995-bib-0012) 2006; 3
Ormel (2022022514390645600_stem2995-bib-0027) 2018; 9
Zhang (2022022514390645600_stem2995-bib-0036) 2005; 19
Odegaard (2022022514390645600_stem2995-bib-0013) 2007; 81
Kapellos (2022022514390645600_stem2995-bib-0039) 2016; 116
Battin (2022022514390645600_stem2995-bib-0058) 2017; 12
Kronenberg (2022022514390645600_stem2995-bib-0011) 2018; 135
Wills (2022022514390645600_stem2995-bib-0038) 2017; 18
Kodamullil (2022022514390645600_stem2995-bib-0001) 2017; 59
Haenseler (2022022514390645600_stem2995-bib-0043) 2017; 7
Bordoni (2022022514390645600_stem2995-bib-0004) 2018; 19
Heman-Ackah (2022022514390645600_stem2995-bib-0055) 2017; 26
Lin (2022022514390645600_stem2995-bib-0047) 2018; 98
Takata (2022022514390645600_stem2995-bib-0024) 2017; 47
Bergmann (2022022514390645600_stem2995-bib-0051) 2018; 13
Garcia-Reitboeck (2022022514390645600_stem2995-bib-0045) 2018; 24
Etemad (2022022514390645600_stem2995-bib-0007) 2012; 209
Muffat (2022022514390645600_stem2995-bib-0022) 2016; 22
Pandya (2022022514390645600_stem2995-bib-0023) 2017; 20
Tordo (2022022514390645600_stem2995-bib-0064) 2018; 141
Leone (2022022514390645600_stem2995-bib-0006) 2006; 54
Schwartz (2022022514390645600_stem2995-bib-0020) 2015; 112
Abud (2022022514390645600_stem2995-bib-0021) 2017; 94
References_xml – volume: 59
  start-page: 1045
  year: 2017
  end-page: 1055
  article-title: Of mice and men: Comparative analysis of neuro‐inflammatory mechanisms in human and mouse using cause‐and‐effect models
  publication-title: J Alzheimers Dis
– volume: 3
  start-page: 24
  year: 2006
  article-title: Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy
  publication-title: Retrovirology
– volume: 10
  start-page: 1294
  year: 2018
  end-page: 1307
  article-title: Functional studies of missense TREM2 mutations in human stem cell‐derived microglia
  publication-title: Stem Cell Rep
– volume: 13
  start-page: 2827
  year: 2018
  end-page: 2843
  article-title: Blood–brain‐barrier organoids for investigating the permeability of CNS therapeutics
  publication-title: Nat Protoc
– volume: 81
  start-page: 711
  year: 2007
  end-page: 719
  article-title: Quantitative expansion of ES cell‐derived myeloid progenitors capable of differentiating into macrophages
  publication-title: J Leukoc Biol
– volume: 8
  start-page: 334
  year: 2017
  end-page: 345
  article-title: Human induced pluripotent stem cell‐derived macrophages share ontogeny with MYB‐independent tissue‐resident macrophages
  publication-title: Stem Cell Rep
– volume: 9
  start-page: 587
  year: 2017
  end-page: 599
  article-title: MAPT genetic variation and neuronal maturity alter isoform expression affecting axonal transport in iPSC‐derived dopamine neurons
  publication-title: Stem Cell Rep
– volume: 142
  start-page: 3178
  year: 2015
  end-page: 3187
  article-title: Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro
  publication-title: Development
– volume: 13
  start-page: 67
  year: 2018
  article-title: Development and validation of a simplified method to generate human microglia from pluripotent stem cells
  publication-title: Mol Neurodegener
– volume: 21
  start-page: 941
  year: 2018
  end-page: 951
  article-title: A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease
  publication-title: Nat Neurosci
– volume: 112
  start-page: 12516
  year: 2015
  end-page: 12521
  article-title: Human pluripotent stem cell‐derived neural constructs for predicting neural toxicity
  publication-title: Proc Natl Acad Sci USA
– volume: 95
  start-page: 297 e6
  year: 2017
  end-page: 308 e6
  article-title: TDP‐43 depletion in microglia promotes amyloid clearance but also induces synapse loss
  publication-title: Neuron
– volume: 141
  start-page: 2014
  year: 2018
  end-page: 2031
  article-title: A novel adeno‐associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency
  publication-title: Brain
– volume: 548
  start-page: 592
  year: 2017
  end-page: 596
  article-title: Human iPS cell‐derived dopaminergic neurons function in a primate Parkinson's disease model
  publication-title: Nature
– volume: 9
  start-page: 4167
  year: 2018
  article-title: Microglia innately develop within cerebral organoids
  publication-title: Nat Commun
– volume: 8
  start-page: e71098
  year: 2013
  article-title: Efficient, long term production of monocyte‐derived macrophages from human pluripotent stem cells under partly‐defined and fully‐defined conditions
  publication-title: PLoS One
– volume: 20
  start-page: 753
  year: 2017
  end-page: 759
  article-title: Differentiation of human and murine induced pluripotent stem cells to microglia‐like cells
  publication-title: Nat Neurosci
– volume: 2
  start-page: 789
  year: 2012
  end-page: 798
  article-title: Induced pluripotent stem cell models of progranulin‐deficient frontotemporal dementia uncover specific reversible neuronal defects
  publication-title: Cell Rep
– year: 2018
  article-title: Concise Review: Towards the clinical translation of induced pluripotent stem cell‐derived blood cells‐ready for take‐off
  publication-title: Stem Cells Translational Medicine
– volume: 19
  year: 2018
  end-page: 3972
  article-title: From neuronal differentiation of iPSCs to 3D neuro‐organoids: Modelling and therapy of neurodegenerative diseases
  publication-title: Int J Mol Sci
– volume: 7
  start-page: 9003
  year: 2017
  article-title: Excess alpha‐synuclein compromises phagocytosis in iPSC‐derived macrophages
  publication-title: Sci Rep
– volume: 209
  start-page: 79
  year: 2012
  end-page: 89
  article-title: A novel in vitro human microglia model: Characterization of human monocyte‐derived microglia
  publication-title: J Neurosci Methods
– volume: 43
  start-page: 838 e3
  year: 2015
  end-page: 848 e3
  article-title: CRISPR‐mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells
  publication-title: Exp Hematol
– volume: 8
  start-page: 1727
  year: 2017
  end-page: 1742
  article-title: A highly efficient human pluripotent stem cell microglia model displays a neuronal‐co‐culture‐specific expression profile and inflammatory response
  publication-title: Stem Cell Rep
– volume: 26
  start-page: 4441
  year: 2017
  end-page: 4450
  article-title: Alpha‐synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC‐derived neurons
  publication-title: Hum Mol Genet
– volume: 7
  year: 2018
  article-title: FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex
  publication-title: eLife
– volume: 7
  start-page: e1002194
  year: 2011
  article-title: Transportin 3 promotes a nuclear maturation step required for efficient HIV‐1 integration
  publication-title: PLoS Pathog
– volume: 36
  start-page: 1167
  year: 2008
  end-page: 1175
  article-title: Homogeneous monocytes and macrophages from human embryonic stem cells following coculture‐free differentiation in M‐CSF and IL‐3
  publication-title: Exp Hematol
– volume: 19
  start-page: 533
  year: 2005
  end-page: 542
  article-title: Aggregated alpha‐synuclein activates microglia: A process leading to disease progression in Parkinson's disease
  publication-title: FASEB J
– volume: 17
  start-page: 131
  year: 2014
  end-page: 143
  article-title: Identification of a unique TGF‐beta‐dependent molecular and functional signature in microglia
  publication-title: Nat Neurosci
– volume: 24
  start-page: 1317
  year: 2018
  end-page: 1323
  article-title: Fetal gene therapy for neurodegenerative disease of infants
  publication-title: Nat Med
– volume: 13
  start-page: 49
  year: 2018
  article-title: The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans
  publication-title: Mol Neurodegener
– volume: 2
  start-page: 789
  year: 2012
  end-page: 798
  article-title: Induced pluripotent stem cell models of progranulin‐deficient frontotemporal dementia uncover specific reversible neuronal defects
  publication-title: Cell Rep.
– volume: 22
  start-page: 1358
  year: 2016
  end-page: 1367
  article-title: Efficient derivation of microglia‐like cells from human pluripotent stem cells
  publication-title: Nat Med
– volume: 18
  start-page: 53
  year: 2017
  article-title: The nature and nurture of cell heterogeneity: Accounting for macrophage gene‐environment interactions with single‐cell RNA‐Seq
  publication-title: BMC Genomics
– volume: 9
  start-page: e86071
  year: 2014
  article-title: The productive entry pathway of HIV‐1 in macrophages is dependent on endocytosis through lipid rafts containing CD4
  publication-title: PLoS One
– volume: 37
  year: 2018
  article-title: LRRK2 is a negative regulator of phagosome maturation in macrophages
  publication-title: EMBO J
– volume: 109
  start-page: 18054
  year: 2012
  end-page: 18059
  article-title: Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease
  publication-title: Proc Natl Acad Sci USA
– volume: 98
  start-page: 1294
  year: 2018
  article-title: APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC‐derived brain cell types
  publication-title: Neuron
– volume: 116
  start-page: 107
  year: 2016
  end-page: 119
  article-title: A novel real time imaging platform to quantify macrophage phagocytosis
  publication-title: Biochem Pharmacol
– year: 2018
  article-title: Lentiviral gene therapy vector with UCOE stably restores function in iPSC‐derived neutrophils of a CDG patient
  publication-title: Matters
– volume: 11
  start-page: 689
  year: 2015
  end-page: 696
  article-title: APP metabolism regulates tau proteostasis in human cerebral cortex neurons
  publication-title: Cell Rep
– volume: 32
  start-page: 2338
  year: 2014
  end-page: 2349
  article-title: Gaucher iPSC‐derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development
  publication-title: Stem Cells
– volume: 7
  start-page: 15195
  year: 2017
  article-title: TALEN‐mediated functional correction of human iPSC‐derived macrophages in context of hereditary pulmonary alveolar proteinosis
  publication-title: Sci Rep
– volume: 135
  start-page: 551
  year: 2018
  end-page: 568
  article-title: Distinguishing features of microglia‐ and monocyte‐derived macrophages after stroke
  publication-title: Acta Neuropathol
– volume: 30
  start-page: 599
  year: 2012
  end-page: 611
  article-title: Derivation and functional analysis of patient‐specific induced pluripotent stem cells as an in vitro model of chronic granulomatous disease
  publication-title: Stem Cells
– volume: 18
  start-page: 579
  year: 2010
  end-page: 587
  article-title: Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates
  publication-title: Mol Ther
– volume: 7
  year: 2018
  article-title: An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein
  publication-title: eLife
– volume: 47
  start-page: 183 e6
  year: 2017
  end-page: 198 e6
  article-title: Induced‐pluripotent‐stem‐cell‐derived primitive macrophages provide a platform for modeling tissue‐resident macrophage differentiation and function
  publication-title: Immunity
– volume: 4
  start-page: 4957
  year: 2014
  article-title: Direct induction of ramified microglia‐like cells from human monocytes: Dynamic microglial dysfunction in Nasu‐Hakola disease
  publication-title: Sci Rep
– volume: 54
  start-page: 183
  year: 2006
  end-page: 192
  article-title: Characterization of human monocyte‐derived microglia‐like cells
  publication-title: Glia
– volume: 94
  start-page: 278 e9
  year: 2017
  end-page: 293 e9
  article-title: iPSC‐derived human microglia‐like cells to study neurological diseases
  publication-title: Neuron
– volume: 83
  start-page: 51
  year: 2014
  end-page: 68
  article-title: CORTECON: A temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells
  publication-title: Neuron
– volume: 357
  start-page: E48
  year: 2015
  article-title: Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR‐corrected motor neurons from patients with C9ORE72 mutations reveals disease‐specific cellular phenotypes
  publication-title: J Neurol Sci
– volume: 64
  start-page: 1857
  year: 2016
  end-page: 1868
  article-title: Characterizing primary human microglia: A comparative study with myeloid subsets and culture models
  publication-title: Glia
– volume: 8
  start-page: 1873
  year: 2018
  article-title: A novel human induced pluripotent stem cell blood–brain barrier model: Applicability to study antibody‐triggered receptor‐mediated transcytosis
  publication-title: Sci Rep
– volume: 110
  start-page: 1448
  year: 2007
  end-page: 1457
  article-title: Lentiviral vectors containing an enhancer‐less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells
  publication-title: Blood
– volume: 12
  start-page: e0178220
  year: 2017
  article-title: A human monocytic NF‐kappaB fluorescent reporter cell line for detection of microbial contaminants in biological samples
  publication-title: PLoS One
– volume: 18
  start-page: 2533
  year: 2017
  end-page: 2546
  article-title: A knockin reporter allows purification and characterization of mDA neurons from heterogeneous populations
  publication-title: Cell Rep
– volume: 40
  start-page: 358
  year: 2017
  end-page: 370
  article-title: The role of astrocyte dysfunction in Parkinson's disease pathogenesis
  publication-title: Trends Neurosci
– volume: 24
  start-page: 2300
  year: 2018
  end-page: 2311
  article-title: Human induced pluripotent stem cell‐derived microglia‐like cells harboring TREM2 missense mutations show specific deficits in phagocytosis
  publication-title: Cell Rep
– volume: 6
  start-page: 35861
  year: 2016
  article-title: Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9‐mediated knock‐in and in utero electroporation techniques
  publication-title: Sci Rep
– volume: 5
  start-page: 1481
  year: 2010
  end-page: 1494
  article-title: Generation of microglial cells from mouse embryonic stem cells
  publication-title: Nat Protoc
– volume: 6
  start-page: 486
  year: 2015
  article-title: Ontogeny of tissue‐resident macrophages
  publication-title: Front Immunol
– volume: 5
  start-page: 12524
  year: 2015
  article-title: Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription
  publication-title: Sci Rep
– volume: 3
  start-page: e33
  year: 2007
  article-title: Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior
  publication-title: PLoS Genet
– volume: 32
  start-page: 2338
  year: 2014
  ident: 2022022514390645600_stem2995-bib-0042
  article-title: Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development
  publication-title: Stem Cells
  doi: 10.1002/stem.1732
– volume: 110
  start-page: 1448
  year: 2007
  ident: 2022022514390645600_stem2995-bib-0059
  article-title: Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells
  publication-title: Blood
  doi: 10.1182/blood-2006-12-060814
– volume: 95
  start-page: 297 e6
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0062
  article-title: TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.037
– volume: 81
  start-page: 711
  year: 2007
  ident: 2022022514390645600_stem2995-bib-0013
  article-title: Quantitative expansion of ES cell-derived myeloid progenitors capable of differentiating into macrophages
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0906590
– volume: 21
  start-page: 941
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0048
  article-title: A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-018-0175-4
– volume: 17
  start-page: 131
  year: 2014
  ident: 2022022514390645600_stem2995-bib-0003
  article-title: Identification of a unique TGF-beta-dependent molecular and functional signature in microglia
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3599
– volume: 8
  start-page: 334
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0016
  article-title: Human induced pluripotent stem cell-derived macrophages share ontogeny with MYB-independent tissue-resident macrophages
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2016.12.020
– volume: 24
  start-page: 2300
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0045
  article-title: Human induced pluripotent stem cell-derived microglia-like cells harboring TREM2 missense mutations show specific deficits in phagocytosis
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.07.094
– volume: 24
  start-page: 1317
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0053
  article-title: Fetal gene therapy for neurodegenerative disease of infants
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0106-7
– volume: 13
  start-page: 67
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0026
  article-title: Development and validation of a simplified method to generate human microglia from pluripotent stem cells
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-018-0297-x
– volume: 40
  start-page: 358
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0002
  article-title: The role of astrocyte dysfunction in Parkinson's disease pathogenesis
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2017.04.001
– volume: 2
  start-page: 789
  year: 2012
  ident: 2022022514390645600_stem2995-bib-0019
  article-title: Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.09.007
– volume: 5
  start-page: 1481
  year: 2010
  ident: 2022022514390645600_stem2995-bib-0018
  article-title: Generation of microglial cells from mouse embryonic stem cells
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2010.90
– volume: 11
  start-page: 689
  year: 2015
  ident: 2022022514390645600_stem2995-bib-0030
  article-title: APP metabolism regulates tau proteostasis in human cerebral cortex neurons
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.03.068
– volume: 18
  start-page: 2533
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0057
  article-title: A knockin reporter allows purification and characterization of mDA neurons from heterogeneous populations
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.02.023
– volume: 19
  start-page: 533
  year: 2005
  ident: 2022022514390645600_stem2995-bib-0036
  article-title: Aggregated alpha-synuclein activates microglia: A process leading to disease progression in Parkinson's disease
  publication-title: FASEB J
  doi: 10.1096/fj.04-2751com
– volume: 7
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0040
  article-title: FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex
  publication-title: eLife
  doi: 10.7554/eLife.35012
– volume: 22
  start-page: 1358
  year: 2016
  ident: 2022022514390645600_stem2995-bib-0022
  article-title: Efficient derivation of microglia-like cells from human pluripotent stem cells
  publication-title: Nat Med
  doi: 10.1038/nm.4189
– volume: 59
  start-page: 1045
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0001
  article-title: Of mice and men: Comparative analysis of neuro-inflammatory mechanisms in human and mouse using cause-and-effect models
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-170255
– volume: 19
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0004
  article-title: From neuronal differentiation of iPSCs to 3D neuro-organoids: Modelling and therapy of neurodegenerative diseases
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19123972
– volume: 64
  start-page: 1857
  year: 2016
  ident: 2022022514390645600_stem2995-bib-0009
  article-title: Characterizing primary human microglia: A comparative study with myeloid subsets and culture models
  publication-title: Glia
  doi: 10.1002/glia.23023
– volume: 13
  start-page: 49
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0031
  article-title: The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-018-0280-6
– volume: 83
  start-page: 51
  year: 2014
  ident: 2022022514390645600_stem2995-bib-0028
  article-title: CORTECON: A temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.013
– volume: 2
  start-page: 789
  year: 2012
  ident: 2022022514390645600_stem2995-bib-0046
  article-title: Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.09.007
– volume: 98
  start-page: 1294
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0047
  article-title: APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.06.011
– volume: 7
  start-page: e1002194
  year: 2011
  ident: 2022022514390645600_stem2995-bib-0032
  article-title: Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002194
– volume: 7
  start-page: 15195
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0049
  article-title: TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-14566-8
– volume: 135
  start-page: 551
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0011
  article-title: Distinguishing features of microglia- and monocyte-derived macrophages after stroke
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-017-1795-6
– volume: 20
  start-page: 753
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0023
  article-title: Differentiation of human and murine induced pluripotent stem cells to microglia-like cells
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4534
– volume: 209
  start-page: 79
  year: 2012
  ident: 2022022514390645600_stem2995-bib-0007
  article-title: A novel in vitro human microglia model: Characterization of human monocyte-derived microglia
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.05.025
– volume: 6
  start-page: 35861
  year: 2016
  ident: 2022022514390645600_stem2995-bib-0054
  article-title: Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques
  publication-title: Sci Rep
  doi: 10.1038/srep35861
– volume: 8
  start-page: 1873
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0050
  article-title: A novel human induced pluripotent stem cell blood–brain barrier model: Applicability to study antibody-triggered receptor-mediated transcytosis
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-19522-8
– volume: 142
  start-page: 3178
  year: 2015
  ident: 2022022514390645600_stem2995-bib-0029
  article-title: Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro
  publication-title: Development
  doi: 10.1242/dev.123851
– volume: 13
  start-page: 2827
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0051
  article-title: Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics
  publication-title: Nat Protoc
  doi: 10.1038/s41596-018-0066-x
– volume: 18
  start-page: 579
  year: 2010
  ident: 2022022514390645600_stem2995-bib-0063
  article-title: Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates
  publication-title: Mol Ther
  doi: 10.1038/mt.2009.216
– volume: 10
  start-page: 1294
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0025
  article-title: Functional studies of missense TREM2 mutations in human stem cell-derived microglia
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2018.03.003
– volume: 9
  start-page: 4167
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0027
  article-title: Microglia innately develop within cerebral organoids
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06684-2
– volume: 4
  start-page: 4957
  year: 2014
  ident: 2022022514390645600_stem2995-bib-0008
  article-title: Direct induction of ramified microglia-like cells from human monocytes: Dynamic microglial dysfunction in Nasu-Hakola disease
  publication-title: Sci Rep
  doi: 10.1038/srep04957
– volume: 43
  start-page: 838 e3
  year: 2015
  ident: 2022022514390645600_stem2995-bib-0035
  article-title: CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2015.06.002
– volume: 3
  start-page: e33
  year: 2007
  ident: 2022022514390645600_stem2995-bib-0061
  article-title: Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030033
– volume: 7
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0060
  article-title: An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein
  publication-title: eLife
  doi: 10.7554/eLife.35069
– volume: 8
  start-page: e71098
  year: 2013
  ident: 2022022514390645600_stem2995-bib-0015
  article-title: Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071098
– volume: 9
  start-page: e86071
  year: 2014
  ident: 2022022514390645600_stem2995-bib-0033
  article-title: The productive entry pathway of HIV-1 in macrophages is dependent on endocytosis through lipid rafts containing CD4
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086071
– volume: 54
  start-page: 183
  year: 2006
  ident: 2022022514390645600_stem2995-bib-0006
  article-title: Characterization of human monocyte-derived microglia-like cells
  publication-title: Glia
  doi: 10.1002/glia.20372
– volume: 94
  start-page: 278 e9
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0021
  article-title: iPSC-derived human microglia-like cells to study neurological diseases
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.03.042
– volume: 116
  start-page: 107
  year: 2016
  ident: 2022022514390645600_stem2995-bib-0039
  article-title: A novel real time imaging platform to quantify macrophage phagocytosis
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2016.07.011
– volume: 112
  start-page: 12516
  year: 2015
  ident: 2022022514390645600_stem2995-bib-0020
  article-title: Human pluripotent stem cell-derived neural constructs for predicting neural toxicity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1516645112
– volume: 141
  start-page: 2014
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0064
  article-title: A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency
  publication-title: Brain
  doi: 10.1093/brain/awy126
– volume: 548
  start-page: 592
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0065
  article-title: Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model
  publication-title: Nature
  doi: 10.1038/nature23664
– volume: 30
  start-page: 599
  year: 2012
  ident: 2022022514390645600_stem2995-bib-0034
  article-title: Derivation and functional analysis of patient-specific induced pluripotent stem cells as an in vitro model of chronic granulomatous disease
  publication-title: Stem Cells
  doi: 10.1002/stem.1053
– volume: 3
  start-page: 24
  year: 2006
  ident: 2022022514390645600_stem2995-bib-0012
  article-title: Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-3-24
– year: 2018
  ident: 2022022514390645600_stem2995-bib-0052
  article-title: Lentiviral gene therapy vector with UCOE stably restores function in iPSC-derived neutrophils of a CDG patient
  publication-title: Matters
  doi: 10.19185/matters.201805000005
– volume: 357
  start-page: E48
  year: 2015
  ident: 2022022514390645600_stem2995-bib-0056
  article-title: Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected motor neurons from patients with C9ORE72 mutations reveals disease-specific cellular phenotypes
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2015.08.198
– volume: 12
  start-page: e0178220
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0058
  article-title: A human monocytic NF-kappaB fluorescent reporter cell line for detection of microbial contaminants in biological samples
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0178220
– volume: 5
  start-page: 12524
  year: 2015
  ident: 2022022514390645600_stem2995-bib-0037
  article-title: Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription
  publication-title: Sci Rep
  doi: 10.1038/srep12524
– volume: 6
  start-page: 486
  year: 2015
  ident: 2022022514390645600_stem2995-bib-0010
  article-title: Ontogeny of tissue-resident macrophages
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2015.00486
– volume: 37
  year: 2018
  ident: 2022022514390645600_stem2995-bib-0044
  article-title: LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages
  publication-title: EMBO J
  doi: 10.15252/embj.201798694
– volume: 8
  start-page: 1727
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0017
  article-title: A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2017.05.017
– volume: 109
  start-page: 18054
  year: 2012
  ident: 2022022514390645600_stem2995-bib-0041
  article-title: Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1207889109
– volume: 7
  start-page: 9003
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0043
  article-title: Excess alpha-synuclein compromises phagocytosis in iPSC-derived macrophages
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09362-3
– volume: 9
  start-page: 587
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0005
  article-title: MAPT genetic variation and neuronal maturity alter isoform expression affecting axonal transport in iPSC-derived dopamine neurons
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2017.06.005
– volume: 18
  start-page: 53
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0038
  article-title: The nature and nurture of cell heterogeneity: Accounting for macrophage gene-environment interactions with single-cell RNA-Seq
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3445-0
– year: 2018
  ident: 2022022514390645600_stem2995-bib-0066
  article-title: Concise Review: Towards the clinical translation of induced pluripotent stem cell-derived blood cells-ready for take-off
  publication-title: Stem Cells Translational Medicine
– volume: 26
  start-page: 4441
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0055
  article-title: Alpha-synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC-derived neurons
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddx331
– volume: 36
  start-page: 1167
  year: 2008
  ident: 2022022514390645600_stem2995-bib-0014
  article-title: Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2008.04.009
– volume: 47
  start-page: 183 e6
  year: 2017
  ident: 2022022514390645600_stem2995-bib-0024
  article-title: Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.06.017
SSID ssj0014588
Score 2.4858246
SecondaryResourceType review_article
Snippet Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 724
SubjectTerms Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer Disease - therapy
Alzheimer's disease
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - pathology
Amyotrophic Lateral Sclerosis - therapy
Brain
Cell lines
Cell- and Tissue-Based Therapy - methods
Coculture Techniques
Dementia disorders
Disease control
Drug screening
Embryonic Stem Cells/Induced Pluripotent Stem Cells
Experimental models
Frontotemporal dementia
Frontotemporal Dementia - genetics
Frontotemporal Dementia - metabolism
Frontotemporal Dementia - pathology
Frontotemporal Dementia - therapy
Gene Knockout Techniques
Genetic Engineering - methods
Glia
High-Throughput Screening Assays
Humans
Immunology
Induced pluripotent stem cells
Induced Pluripotent Stem Cells - drug effects
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
Inflammation
Macrophages
Microglia
Microglia - drug effects
Microglia - metabolism
Microglia - pathology
Modelling
Models, Biological
Monoculture
Movement disorders
Myeloid cells
Neurodegeneration
Neurodegenerative diseases
Neuroimmune
Neurological diseases
Neurons - drug effects
Neurons - metabolism
Neurons - pathology
Neuroprotective Agents - therapeutic use
Nootropic Agents - therapeutic use
Parkinson Disease - genetics
Parkinson Disease - metabolism
Parkinson Disease - pathology
Parkinson Disease - therapy
Parkinson's disease
Phenotyping
Pluripotency
Stem cells
Synapses
Yolk sac cell
Title Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell‐Derived Microglia
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2995
https://www.ncbi.nlm.nih.gov/pubmed/30801863
https://www.proquest.com/docview/2231713083
https://www.proquest.com/docview/2185874979
https://pubmed.ncbi.nlm.nih.gov/PMC6849818
Volume 37
WOSCitedRecordID wos000474038500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1549-4918
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014588
  issn: 1066-5099
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VQiUulEcLaUtlEAcuYdfZxInLCW23AomuVmqBvUWO42xXirJoXxK3_oT-xv6SztibwGpBqsTFiuSx8poZf-OxvwF4pwsl8qijfZ4LWq3SxlehLvxAoLykTKfdm_P9a9zvJ8OhHGzBx_osjOOHaBbcyDKsvyYDV9ms9Zs0lHiOP6AzjR7AQ847CdVtCMJBk0KgI5g21SmEj7OirGmF2kGrGbo-GW0gzM2Nkn8CWDsDne3-17M_hScr4Mk-OU15Blumeg47rhTlrxdw1Z3YAhvMJQtOGBVJo6PqzNJ35GZk-anJObJTl9SZMVrEZTYNwAblAt3PBBH4nF3gfVnXlOXt9c0pavjS5OycNv6NyrHag29nvcvuZ39VhcHXIWIpv2gnssBA2SjOcyOFxgBFBYqAlU6kyCjA0ibMYuzLCo0BZRQpOmErBLZF2NmH7WpSmVfAEJ1lGP4FBaewlBdSqXZGTiNSUiDS9OB9_TtSvaIop0oZZerIlYOUPlxKH86Dt43oT8fL8Teho_qfpivTnKWIhzhG5gg9PXjTdKNRUaZEVWayQBlEMUkcylh68NKpQHMXHNnmicDR8ZpyNAJE2L3eU42vLHG3SEKJAAlf0yrHvx88vbjsndPFwf1FD-ExgjnptrEdwfZ8ujCv4ZFezsez6bG1DWzjYYLtjy_9O3StFyg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8xxrS9MGAwyvhjEA97CTRp4sQTL6iAQLQVEoXxFjmOQytFKaIt0t74CHxGPgl3dhuoAGkSL1Ekn5XEuTv_zmf_DmBbZZKnQU05bspptUppR_oqczyO8oIynWZvzmUjbLWiqytxNgV747Mwlh-iXHAjyzD-mgycFqR3n1lDieh4B71p8Ak--wg0qHDD35NWmUOgM5gm18m5g9OiGPMKVb3dsuvkbPQKYr7eKfkSwZop6Oj7x15-DmZH0JPtW12ZhyldLMAXW4zy3w_o1HumxAaz6YI_jMqk0WF1Zgg8Un1tGKrJPbIDm9bpM1rGZSYRwM7yITqgHmLwATvH57K6zvPH-4cD1PE7nbImbf27zrtyES6ODtv1Y2dUh8FRPqIpJ6tGIsNQWUvXTbXgCkMU6UmCVioSPKEQS2k_CbEtyRSGlEEg6Ywt53jN_NoSTBe9Qi8DQ3yWYADoZS4Fpm4mpKwm5DYCKThizQr8Hv-PWI1IyqlWRh5bemUvpoGLaeAqsFWK3lhmjreEVsc_NR4ZZz9GRORibI7gswKbZTOaFeVKZKF7Q5RBHBOFvghFBX5aHSifgj2rbsSxdzihHaUAUXZPthTdjqHu5pEvECLhZxrteP_F4_P2YZNuVv5fdAO-Hrebjbhx0jr9Bd8Q2gm7qW0Vpge3Q70GM-pu0O3frhtDeQKJ7xmJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8BG4gXBmODjn_etAdeAk1InBjxgloqEFBVgk28RY5jQ6UoRbRF2ts-Ap-RT7I7uw1UMAmJlyiSz0ri3J1_57N_B_BTGcnzaE95fs5ptUppT4bKeAFHeUGZTrs35_dZ3G4nV1eiMwUH47Mwjh-iWnAjy7D-mgxc3-Zm94k1lIiOd9CbRtPwIYxin3Q6CDtVDoHOYNpcJ-ceTotizCtUD3arrpOz0QuI-XKn5HMEa6eg1qf3vfwiLIygJzt0urIEU7r8DLOuGOWfZbhp9GyJDebSBfuMyqTRYXVmCTxyfW0Zqsk9sqZL6_QZLeMymwhgnWKIDqiHGHzALvC5rKGL4vHvQxN1_F7n7Jy2_l0XXfkFfrWOLhvH3qgOg6dCRFOeqSfCYKispe_nWnCFIYoMJEErlQieUYildJjF2JYZhSFlFEk6Y8s5Xk249xVmyl6pV4EhPsswAAyMT4Gpb4SU9YzcRiQFR6xZg-3x_0jViKScamUUqaNXDlIauJQGrgY_KtFbx8zxmtD6-KemI-Psp4iIfIzNEXzW4HvVjGZFuRJZ6t4QZRDHJHEoYlGDFacD1VOwZ91POPaOJ7SjEiDK7smWsntjqbt5EgqESPiZVjv-_-LpxeXROd18e7voFsx1mq307KR9ugbziOyE29O2DjODu6HegI_qftDt321aO_kHZysYoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concise+Review%3A+Modeling+Neurodegenerative+Diseases+with+Human+Pluripotent+Stem+Cell%E2%80%90Derived+Microglia&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Walther+Haenseler&rft.au=Rajendran%2C+Lawrence&rft.date=2019-06-01&rft.pub=Oxford+University+Press&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=37&rft.issue=6&rft.spage=724&rft.epage=730&rft_id=info:doi/10.1002%2Fstem.2995&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon