A comparative study of gradient nonlinearity correction strategies for processing diffusion data obtained with ultra‐strong gradient MRI scanners

Purpose The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines negle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 85; H. 2; S. 1104 - 1113
Hauptverfasser: Rudrapatna, Umesh, Parker, Greg D., Roberts, Jamie, Jones, Derek K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.02.2021
John Wiley and Sons Inc
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines neglect the impact of subject motion during acquisition, which, in the presence of gradient nonlinearities, induces spatio‐temporal B‐matrix variations. Here, spatio‐temporal B‐matrix tracking (STB) is proposed and its performance compared to established pipelines. Methods Diffusion tensor MRI (DT‐MRI) was performed using a 300 mT/m gradient system. Data were acquired with volunteers positioned in regions with pronounced gradient nonlinearities, and used to compare the performance of six different processing pipelines, including STB. Results Up to 30% errors were observed in DT‐MRI parameter estimates when neglecting gradient nonlinearities. Moreover, the order in which B 0 inhomogeneity, eddy current and gradient nonlinearity corrections were performed was found to impact the consistency of parameter estimates significantly. Although, no pipeline emerged as a clear winner, the STB approach seemed to yield the most consistent parameter estimates under large gradient nonlinearities. Conclusions Under large gradient nonlinearities, the choice of preprocessing pipeline significantly impacts the estimated diffusion parameters. Motion‐induced spatio‐temporal B‐matrix variations can lead to systematic bias in the parameter estimates, that can be ameliorated using the proposed STB framework.
AbstractList The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines neglect the impact of subject motion during acquisition, which, in the presence of gradient nonlinearities, induces spatio-temporal B-matrix variations. Here, spatio-temporal B-matrix tracking (STB) is proposed and its performance compared to established pipelines.PURPOSEThe analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines neglect the impact of subject motion during acquisition, which, in the presence of gradient nonlinearities, induces spatio-temporal B-matrix variations. Here, spatio-temporal B-matrix tracking (STB) is proposed and its performance compared to established pipelines.Diffusion tensor MRI (DT-MRI) was performed using a 300 mT/m gradient system. Data were acquired with volunteers positioned in regions with pronounced gradient nonlinearities, and used to compare the performance of six different processing pipelines, including STB.METHODSDiffusion tensor MRI (DT-MRI) was performed using a 300 mT/m gradient system. Data were acquired with volunteers positioned in regions with pronounced gradient nonlinearities, and used to compare the performance of six different processing pipelines, including STB.Up to 30% errors were observed in DT-MRI parameter estimates when neglecting gradient nonlinearities. Moreover, the order in which B0 inhomogeneity, eddy current and gradient nonlinearity corrections were performed was found to impact the consistency of parameter estimates significantly. Although, no pipeline emerged as a clear winner, the STB approach seemed to yield the most consistent parameter estimates under large gradient nonlinearities.RESULTSUp to 30% errors were observed in DT-MRI parameter estimates when neglecting gradient nonlinearities. Moreover, the order in which B0 inhomogeneity, eddy current and gradient nonlinearity corrections were performed was found to impact the consistency of parameter estimates significantly. Although, no pipeline emerged as a clear winner, the STB approach seemed to yield the most consistent parameter estimates under large gradient nonlinearities.Under large gradient nonlinearities, the choice of preprocessing pipeline significantly impacts the estimated diffusion parameters. Motion-induced spatio-temporal B-matrix variations can lead to systematic bias in the parameter estimates, that can be ameliorated using the proposed STB framework.CONCLUSIONSUnder large gradient nonlinearities, the choice of preprocessing pipeline significantly impacts the estimated diffusion parameters. Motion-induced spatio-temporal B-matrix variations can lead to systematic bias in the parameter estimates, that can be ameliorated using the proposed STB framework.
PurposeThe analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines neglect the impact of subject motion during acquisition, which, in the presence of gradient nonlinearities, induces spatio‐temporal B‐matrix variations. Here, spatio‐temporal B‐matrix tracking (STB) is proposed and its performance compared to established pipelines.MethodsDiffusion tensor MRI (DT‐MRI) was performed using a 300 mT/m gradient system. Data were acquired with volunteers positioned in regions with pronounced gradient nonlinearities, and used to compare the performance of six different processing pipelines, including STB.ResultsUp to 30% errors were observed in DT‐MRI parameter estimates when neglecting gradient nonlinearities. Moreover, the order in which B 0 inhomogeneity, eddy current and gradient nonlinearity corrections were performed was found to impact the consistency of parameter estimates significantly. Although, no pipeline emerged as a clear winner, the STB approach seemed to yield the most consistent parameter estimates under large gradient nonlinearities.ConclusionsUnder large gradient nonlinearities, the choice of preprocessing pipeline significantly impacts the estimated diffusion parameters. Motion‐induced spatio‐temporal B‐matrix variations can lead to systematic bias in the parameter estimates, that can be ameliorated using the proposed STB framework.
Click here for author‐reader discussions
Purpose The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines neglect the impact of subject motion during acquisition, which, in the presence of gradient nonlinearities, induces spatio‐temporal B‐matrix variations. Here, spatio‐temporal B‐matrix tracking (STB) is proposed and its performance compared to established pipelines. Methods Diffusion tensor MRI (DT‐MRI) was performed using a 300 mT/m gradient system. Data were acquired with volunteers positioned in regions with pronounced gradient nonlinearities, and used to compare the performance of six different processing pipelines, including STB. Results Up to 30% errors were observed in DT‐MRI parameter estimates when neglecting gradient nonlinearities. Moreover, the order in which B 0 inhomogeneity, eddy current and gradient nonlinearity corrections were performed was found to impact the consistency of parameter estimates significantly. Although, no pipeline emerged as a clear winner, the STB approach seemed to yield the most consistent parameter estimates under large gradient nonlinearities. Conclusions Under large gradient nonlinearities, the choice of preprocessing pipeline significantly impacts the estimated diffusion parameters. Motion‐induced spatio‐temporal B‐matrix variations can lead to systematic bias in the parameter estimates, that can be ameliorated using the proposed STB framework.
Click here for author‐reader discussions
The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines neglect the impact of subject motion during acquisition, which, in the presence of gradient nonlinearities, induces spatio-temporal B-matrix variations. Here, spatio-temporal B-matrix tracking (STB) is proposed and its performance compared to established pipelines. Diffusion tensor MRI (DT-MRI) was performed using a 300 mT/m gradient system. Data were acquired with volunteers positioned in regions with pronounced gradient nonlinearities, and used to compare the performance of six different processing pipelines, including STB. Up to 30% errors were observed in DT-MRI parameter estimates when neglecting gradient nonlinearities. Moreover, the order in which inhomogeneity, eddy current and gradient nonlinearity corrections were performed was found to impact the consistency of parameter estimates significantly. Although, no pipeline emerged as a clear winner, the STB approach seemed to yield the most consistent parameter estimates under large gradient nonlinearities. Under large gradient nonlinearities, the choice of preprocessing pipeline significantly impacts the estimated diffusion parameters. Motion-induced spatio-temporal B-matrix variations can lead to systematic bias in the parameter estimates, that can be ameliorated using the proposed STB framework.
Author Rudrapatna, Umesh
Roberts, Jamie
Jones, Derek K.
Parker, Greg D.
AuthorAffiliation 3 Mary MacKillop Institute for Health Research, Faculty of Health Sciences Australian Catholic University Melbourne Victoria Australia
1 Cardiff University Brain Research Imaging Centre Cardiff University Cardiff United Kingdom
2 Royal United Hospitals Bath NHS Foundation Trust Bath United Kingdom
AuthorAffiliation_xml – name: 1 Cardiff University Brain Research Imaging Centre Cardiff University Cardiff United Kingdom
– name: 2 Royal United Hospitals Bath NHS Foundation Trust Bath United Kingdom
– name: 3 Mary MacKillop Institute for Health Research, Faculty of Health Sciences Australian Catholic University Melbourne Victoria Australia
Author_xml – sequence: 1
  givenname: Umesh
  orcidid: 0000-0001-7114-566X
  surname: Rudrapatna
  fullname: Rudrapatna, Umesh
  email: umeshrs@cardiff.ac.uk
  organization: Cardiff University
– sequence: 2
  givenname: Greg D.
  surname: Parker
  fullname: Parker, Greg D.
  organization: Cardiff University
– sequence: 3
  givenname: Jamie
  surname: Roberts
  fullname: Roberts, Jamie
  organization: NHS Foundation Trust
– sequence: 4
  givenname: Derek K.
  surname: Jones
  fullname: Jones, Derek K.
  organization: Australian Catholic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33009875$$D View this record in MEDLINE/PubMed
BookMark eNp1kt1qFDEUx4NU7Hb1wheQgDf1YtpkkmxmboRS_Ch0EYpeh0xyZpsyk6xJpmXvfATBN_RJzLrbokWvEsjv_xHOOUIHPnhA6CUlJ5SQ-nSM40nd8AV_gmZU1HVVi5YfoBmRnFSMtvwQHaV0QwhpW8mfoUPGyrWRYoZ-nGETxrWOOrtbwClPdoNDj1dRWwc-4xI1OA86urwpaIxgsgu-kEUCKwcJ9yHidQwGUnJ-ha3r-yltGauzxqHLuhhYfOfyNZ6Govv57XuRh8I-xCyvLnAy2nuI6Tl62ushwYv9OUdf3r_7fP6xuvz04eL87LIynDNeQbOwZCGYYJZJSbteAFDKWKclrTXlTHRCCMuMFETWLZHQWyn7FmQnFxw6Nkdvd77rqRvBmtIj6kGtoxt13Kignfr7xbtrtQq3qqGE0ZI8R8d7gxi-TpCyGl0yMAzaQ5iSqjlvOKWNYAV9_Qi9CVP05XuFEk1NOSFNoV792eihyv28CnC6A0wMKUXolXFZbwdSCrpBUaK2G6HKRqjfG1EUbx4p7k3_xe7d79wAm_-Danm13Cl-AV6tyec
CitedBy_id crossref_primary_10_1002_mrm_29161
crossref_primary_10_1016_j_neuroimage_2025_121356
crossref_primary_10_1002_mrm_30351
crossref_primary_10_1162_IMAG_a_68
crossref_primary_10_1097_RLI_0000000000001082
crossref_primary_10_1162_netn_a_00378
crossref_primary_10_3390_brainsci11010056
crossref_primary_10_1002_jmri_29248
crossref_primary_10_1002_mrm_30510
crossref_primary_10_1016_j_cmpb_2025_109034
crossref_primary_10_1016_j_neuroimage_2022_118958
crossref_primary_10_1038_s41598_021_93558_1
crossref_primary_10_1212_WNL_0000000000209695
crossref_primary_10_3389_fnins_2021_646034
crossref_primary_10_1007_s00415_023_12086_2
crossref_primary_10_1016_j_neuroimage_2021_117967
crossref_primary_10_1002_mrm_70035
crossref_primary_10_1038_s41597_021_00904_z
crossref_primary_10_1016_j_neuroimage_2021_118830
crossref_primary_10_1002_hbm_25359
crossref_primary_10_1016_j_mri_2023_01_004
crossref_primary_10_1002_hbm_25424
crossref_primary_10_1002_hbm_25859
crossref_primary_10_1162_imag_a_00012
Cites_doi 10.1016/S1053-8119(03)00336-7
10.1002/mrm.10545
10.1002/mrm.24773
10.1016/j.neuroimage.2005.09.046
10.1016/j.neuroimage.2015.10.019
10.1016/j.mri.2016.10.002
10.1016/j.neuroimage.2013.05.078
10.1016/j.media.2007.06.004
10.1002/mrm.28078
10.1016/j.neuroimage.2018.05.047
10.1007/978-3-319-24277-4
10.1016/j.neuroimage.2013.05.057
10.1016/j.neuroimage.2015.08.075
10.1016/j.neuroimage.2019.116127
10.1016/j.neuroimage.2011.12.009
10.1016/j.neuroimage.2013.04.127
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
10.1002/mrm.21890
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28464
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1


CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate RUDRAPATNA et al
EISSN 1522-2594
EndPage 1113
ExternalDocumentID PMC8103165
33009875
10_1002_mrm_28464
MRM28464
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust Strategic Award
  funderid: 104943/Z/14/Z
– fundername: EPSRC
  funderid: EP/M029778/1
– fundername: Wellcome Trust Investigator Award
  funderid: 096646/Z/11/Z
– fundername: Wellcome Trust
  grantid: 104943/Z/14/Z
– fundername: Wellcome Trust
  grantid: 096646/Z/11/Z
– fundername: Wellcome Trust Investigator Award
  grantid: 096646/Z/11/Z
– fundername: EPSRC
  grantid: EP/M029778/1
– fundername: Wellcome Trust Strategic Award
  grantid: 104943/Z/14/Z
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4434-e86d065353d3771bf5ee1133ba712a1435b555d3c75072907efd77f9e7b764eb3
IEDL.DBID 24P
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574658300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 01:58:20 EST 2025
Fri Jul 11 07:12:43 EDT 2025
Sat Nov 29 14:37:54 EST 2025
Mon Jul 21 06:09:37 EDT 2025
Sat Nov 29 06:34:30 EST 2025
Tue Nov 18 21:01:53 EST 2025
Wed Jan 22 16:31:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords diffusion MRI
connectom
ultra-strong gradients
diffusion preprocessing
gradient nonlinearity
human connectome project
Language English
License Attribution
2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-e86d065353d3771bf5ee1133ba712a1435b555d3c75072907efd77f9e7b764eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Click here for author‐reader discussions
ORCID 0000-0001-7114-566X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28464
PMID 33009875
PQID 2458214008
PQPubID 1016391
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8103165
proquest_miscellaneous_2448411853
proquest_journals_2458214008
pubmed_primary_33009875
crossref_citationtrail_10_1002_mrm_28464
crossref_primary_10_1002_mrm_28464
wiley_primary_10_1002_mrm_28464_MRM28464
PublicationCentury 2000
PublicationDate February 2021
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2012; 60
2018; 182
2006; 30
2012
2017; 36
2009; 61
2020; 83
2013; 80
2016; 124
2018
2008; 12
2020; 205
1999; 42
2016
2016; 125
2003; 50
2014; 71
2003; 20
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 205
  start-page: 116127
  year: 2020
  article-title: The adverse effect of gradient nonlinearities on diffusion MRI: from voxels to group studies
  publication-title: NeuroImage
– volume: 50
  start-page: 560
  year: 2003
  end-page: 569
  article-title: Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion‐weighted imaging
  publication-title: Magn Reson Med
– volume: 60
  start-page: 562
  year: 2012
  end-page: 570
  article-title: The effect of local perturbation fields on human DTI: characterisation, measurement and correction
  publication-title: NeuroImage
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 83
  start-page: 2173
  year: 2020
  end-page: 2184
  article-title: A comprehensive approach for correcting voxel‐wise b‐value errors in diffusion MRI
  publication-title: Magn Reson Med
– volume: 182
  start-page: 8
  year: 2018
  end-page: 38
  article-title: Microstructural imaging of the human brain with a ‘super‐scanner’: 10 key advantages of ultra‐strong gradients for diffusion MRI
  publication-title: NeuroImage
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
– volume: 61
  start-page: 1336
  year: 2009
  end-page: 1349
  article-title: The B‐matrix must be rotated when correcting for subject motion in DTI data
  publication-title: Magn Reson Med
– volume: 36
  start-page: 1
  year: 2017
  end-page: 6
  article-title: A theoretical validation of the B‐matrix spatial distribution approach to diffusion tensor imaging
  publication-title: Magn Reson Imaging
– volume: 80
  start-page: 125
  issue: Supplement C
  year: 2013
  end-page: 143
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: NeuroImage
– volume: 71
  start-page: 1312
  year: 2014
  end-page: 1323
  article-title: Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements
  publication-title: Magn Reson Med
– volume: 80
  start-page: 220
  year: 2013
  end-page: 233
  article-title: Pushing the limits of in vivo diffusion MRI for the Human Connectome Project
  publication-title: NeuroImage
– volume: 30
  start-page: 436
  year: 2006
  end-page: 443
  article-title: Reliability in multi‐site structural MRI studies: effects of gradient non‐linearity correction on phantom and human data
  publication-title: NeuroImage
– year: 2016
– year: 2018
– volume: 80
  start-page: 105
  issue: Supplement C
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
– volume: 125
  start-page: 1063
  issue: Supplement C
  year: 2016
  end-page: 1078
  article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging
  publication-title: NeuroImage
– volume: 124
  start-page: 1108
  year: 2016
  end-page: 1114
  article-title: MGHG‐USC Human Connectome Project datasets with ultra‐high b‐value diffusion MRI
  publication-title: NeuroImage
– year: 2012
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  article-title: Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med Image Anal
– ident: e_1_2_6_19_1
– ident: e_1_2_6_7_1
  doi: 10.1016/S1053-8119(03)00336-7
– ident: e_1_2_6_9_1
  doi: 10.1002/mrm.10545
– ident: e_1_2_6_13_1
  doi: 10.1002/mrm.24773
– ident: e_1_2_6_6_1
  doi: 10.1016/j.neuroimage.2005.09.046
– ident: e_1_2_6_8_1
  doi: 10.1016/j.neuroimage.2015.10.019
– ident: e_1_2_6_14_1
  doi: 10.1016/j.mri.2016.10.002
– ident: e_1_2_6_2_1
  doi: 10.1016/j.neuroimage.2013.05.078
– ident: e_1_2_6_20_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_6_15_1
  doi: 10.1002/mrm.28078
– ident: e_1_2_6_11_1
– ident: e_1_2_6_4_1
  doi: 10.1016/j.neuroimage.2018.05.047
– ident: e_1_2_6_21_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_6_3_1
  doi: 10.1016/j.neuroimage.2013.05.057
– ident: e_1_2_6_10_1
  doi: 10.1016/j.neuroimage.2015.08.075
– ident: e_1_2_6_16_1
  doi: 10.1016/j.neuroimage.2019.116127
– ident: e_1_2_6_12_1
  doi: 10.1016/j.neuroimage.2011.12.009
– ident: e_1_2_6_5_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_6_17_1
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.21890
SSID ssj0009974
Score 2.4852576
Snippet Purpose The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two...
Click here for author‐reader discussions
The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such...
PurposeThe analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two...
Click here for author‐reader discussions
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1104
SubjectTerms Comparative studies
connectom
Data acquisition
Data analysis
Diffusion
Diffusion Magnetic Resonance Imaging
diffusion MRI
diffusion preprocessing
Diffusion Tensor Imaging
Eddy currents
Estimates
gradient nonlinearity
human connectome project
Humans
Image Processing, Computer-Assisted
Inhomogeneity
Magnetic Resonance Imaging
Motion
Nonlinear systems
Nonlinearity
Notes—Computer Processing and Modeling
Parameter estimation
Pipelines
Preprocessing
Scanners
Small mammals
Tensors
ultra‐strong gradients
Title A comparative study of gradient nonlinearity correction strategies for processing diffusion data obtained with ultra‐strong gradient MRI scanners
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28464
https://www.ncbi.nlm.nih.gov/pubmed/33009875
https://www.proquest.com/docview/2458214008
https://www.proquest.com/docview/2448411853
https://pubmed.ncbi.nlm.nih.gov/PMC8103165
Volume 85
WOSCitedRecordID wos000574658300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB2VFhCXAgXa0FIZxKGXtJvEsRP1VBVWVGJX1YqKvUVxYpdKbbZKdjnzCUj8IV_CjJ1kWRUkJC5RIo9lJ56xn8eTNwBvpTAGDUn4ulDC5yY1vip57sdpGFLKIyUSl2xCjsfJdJqer8Fx9y-M44foHW5kGXa-JgPPVXO0JA29qW8OcW4V_B5sBEGUUN6GkJ8vGXdTR8EsOU00Ke9ohQbhUV91dTG6gzDvBkr-DmDtCjR8_F99fwKbLfBkJ05TnsKarrbg4ag9Wt-CBzYWtGiewY8TViw5wZkloGUzwy5rGx42Z5XrQk5571C0tpPmrGLNvOOdYAiF2a37BwHXRkZpWBbkl2MUkcpmihwSumTkBWaLa6z389v3hrzyl8tmRpMz1uDIV4hQn8PF8P2n0w9-m7vBLziPuK8TURLtbRyVkZSBMrHWOEqRymUQ5gTSVBzHZVQgYkF8P5DalFKaVEslBccd_gtYx7fRO8BwE1cIk-YpGbThCmsTruEmGuTaiNyDg24Qs6IlNqf8GteZo2QOM_zcmf3cHrzpRW8dm8efhPY6Tchag26ykM4XseFB4sHrvhhNkc5X8krPFiTDEx4QAPJg2ylO30oUEXOrjD2QKyrVCxDN92pJdfXF0n0nlIlDYM0Dq1J_73g2mozszct_F92FRyFF6dg49D1Yn9cL_QruF1_nV029by0Kr3Ka7MPGu8nw4iM-fT4b_wKLZSu0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB2VFgqXFgqloS0YxKGX0N3EsROJS1VRdUWzQlURvUVxYpdKbbZKdjnzCZX4Q76EGTvJsipISNwieSw79oz9PB6_AXgrhTFoSMLXhRI-N4nxVclzP0qCgFIeKRG7ZBNyPI7Pz5NPS_C-ewvj-CF6hxtZhl2vycDJIb0_Zw29rq_f4eIq-D1Y4Qg0KHHDl9F4TrmbOA5myWmlSXjHKzQI9vuqi7vRHYh5N1LydwRrt6Cj9f_r_GNYa6EnO3C68gSWdLUBq2l7ub4BD2w0aNE8hR8HrJizgjNLQcsmhl3UNkBsyirXh5wy36FobZfNScWaacc8wRAMsxv3CgF3R0aJWGbkmWMUk8omilwSumTkB2azK6z38_ttQ375i3kz6emINTj3FWLUZ_D56MPZ4bHfZm_wC85D7utYlER8G4VlKOVQmUjrIZ6IVS6HQU4wTUVRVIYFYhZE-AOpTSmlSbRUUnA842_CMv6N3gKGx7hCmCRPyKQNV1ibkA034SDXRuQe7HWzmBUttTll2LjKHClzkOFwZ3a4PXjTi944Po8_Ce10qpC1Jt1kAd0wYsOD2IPXfTEaI92w5JWezEiGx3xIEMiD505z-lbCkLhbZeSBXNCpXoCIvhdLqsuvlvA7plwcAmvuWZ36e8ez9DS1Hy_-XfQVPDw-S0-yk9H44zY8Cihmx0al78DytJ7pXbhffJteNvVLa16_AImRLHU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLVRc-Cm0TSlgEIdeQncTx04kLhVlRUV3Va2o1FsUJ3Zbqc2ukl3OPAISb8iTdMZOsqwKEhK3SB7Ljj1jfx6PvwF4J4UxaEjC17kSPjeJ8VXBMz9KgoBSHikRu2QTcjyOz8-T0zX40L6FcfwQncONLMOu12TgelaYgyVr6E118x4XV8HvwTqnJDI9WD-aDM9OlqS7iWNhlpzWmoS3zEL94KCrvLof3QGZd2Mlf8ewdhMaPv6_7j-BRw34ZIdOW57Cmi43YWPUXK9vwgMbD5rXz-DnIcuXvODMktCyqWEXlQ0Rm7PS9SGj3HcoWtmFc1qyet5yTzCEw2zm3iHg_sgoFcuCfHOMolLZVJFTQheMPMFscY31fn3_UZNn_mLZzGhyzGqc_RJR6nM4G376-vGz3-Rv8HPOQ-7rWBREfRuFRSjlQJlI6wGeiVUmB0FGQE1FUVSEOaIWxPh9qU0hpUm0VFJwPOVvQQ__Ru8Aw4NcLkySJWTUhiusTdiGm7CfaSMyD_bbWUzzhtyccmxcp46WOUhxuFM73B687URnjtHjT0J7rSqkjVHXaUB3jNhwP_bgTVeM5kh3LFmppwuS4TEfEAjyYNtpTtdKGBJ7q4w8kCs61QkQ1fdqSXl1aSm_Y8rGIbDmvtWpv3c8HU1G9mP330Vfw8bp0TA9OR5_eQEPAwrasWHpe9CbVwv9Eu7n3-ZXdfWqsa9bh7QtHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+gradient+nonlinearity+correction+strategies+for+processing+diffusion+data+obtained+with+ultra%E2%80%90strong+gradient+MRI+scanners&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Rudrapatna%2C+Umesh&rft.au=Parker%2C+Greg+D.&rft.au=Roberts%2C+Jamie&rft.au=Jones%2C+Derek+K.&rft.date=2021-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=2&rft.spage=1104&rft.epage=1113&rft_id=info:doi/10.1002%2Fmrm.28464&rft.externalDBID=10.1002%252Fmrm.28464&rft.externalDocID=MRM28464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon