fromage: A library for the study of molecular crystal excited states at the aggregate scale

The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the interm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational chemistry Ročník 41; číslo 10; s. 1045 - 1058
Hlavní autoři: Rivera, Miguel, Dommett, Michael, Sidat, Amir, Rahim, Warda, Crespo‐Otero, Rachel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.04.2020
Wiley Subscription Services, Inc
Témata:
ISSN:0192-8651, 1096-987X, 1096-987X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage. Accurately modeling the photoexcitations of molecular aggregates involves complementing excited state methodologies with auxiliary calculations. Due to the diversity of chemical and structural space in multimolecular complexes, these calculations require a high degree of adaptability which calls for the use of modular programming tools hitherto unavailable for the investigation of photochemical properties of molecular aggregates. The FRamewOrk for Molecular AGgregate Excitations (fromage), described herein, compiles geometry manipulation tools, exciton state characterization, and QM:QM′ models for geometry optimization.
AbstractList The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in-house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready-to-use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage.The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in-house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready-to-use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage.
The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage.
The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage. Accurately modeling the photoexcitations of molecular aggregates involves complementing excited state methodologies with auxiliary calculations. Due to the diversity of chemical and structural space in multimolecular complexes, these calculations require a high degree of adaptability which calls for the use of modular programming tools hitherto unavailable for the investigation of photochemical properties of molecular aggregates. The FRamewOrk for Molecular AGgregate Excitations (fromage), described herein, compiles geometry manipulation tools, exciton state characterization, and QM:QM′ models for geometry optimization.
The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage .
The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage. Accurately modeling the photoexcitations of molecular aggregates involves complementing excited state methodologies with auxiliary calculations. Due to the diversity of chemical and structural space in multimolecular complexes, these calculations require a high degree of adaptability which calls for the use of modular programming tools hitherto unavailable for the investigation of photochemical properties of molecular aggregates. The FRamewOrk for Molecular AGgregate Excitations (fromage), described herein, compiles geometry manipulation tools, exciton state characterization, and QM:QM′ models for geometry optimization.
Author Dommett, Michael
Crespo‐Otero, Rachel
Rivera, Miguel
Sidat, Amir
Rahim, Warda
AuthorAffiliation 1 Department of Chemistry, School of Biological and Chemical Sciences Queen Mary University of London London UK
AuthorAffiliation_xml – name: 1 Department of Chemistry, School of Biological and Chemical Sciences Queen Mary University of London London UK
Author_xml – sequence: 1
  givenname: Miguel
  orcidid: 0000-0003-3699-2403
  surname: Rivera
  fullname: Rivera, Miguel
  organization: Queen Mary University of London
– sequence: 2
  givenname: Michael
  surname: Dommett
  fullname: Dommett, Michael
  organization: Queen Mary University of London
– sequence: 3
  givenname: Amir
  surname: Sidat
  fullname: Sidat, Amir
  organization: Queen Mary University of London
– sequence: 4
  givenname: Warda
  surname: Rahim
  fullname: Rahim, Warda
  organization: Queen Mary University of London
– sequence: 5
  givenname: Rachel
  orcidid: 0000-0002-8725-5350
  surname: Crespo‐Otero
  fullname: Crespo‐Otero, Rachel
  email: r.crespo-otero@qmul.ac.uk
  organization: Queen Mary University of London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31909830$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9v1DAQxS3Uim4LB74AssQFDmnt2ElsDpWqFX-KKnHpAYmDNfGO06ycuNgJsN8eb3dblQpOlsa_9-bNzDE5GMOIhLzi7JQzVp6trT0tay7lM7LgTNeFVs23A7JgXJeFqit-RI5TWjPGRFXL5-RIcM20EmxBvrsYBujwPb2gvm8jxA11IdLpBmma5tWGBkeH4NHOHiK1cZMm8BR_237CVUZgwkRhuhNA10XscoUmCx5fkEMHPuHL_XtCrj9-uF5-Lq6-frpcXlwVVkohC9sI1mjdStko7bBGx1SlLIATALJydcVQQwual5VyLbe8hkqWreKuVijECTnf2d7O7YAri-MUwZvb2A95GhOgN3__jP2N6cJP0-S2TPFs8HZvEMOPGdNkhj5Z9B5GDHMypRCy5KLR215vnqDrMMcxT5epholSKV5l6vXjRA9R7teegbMdYGNIKaIzeZ0w9WEbsPeGM7M9rMmHNXeHzYp3TxT3pv9i9-6_eo-b_4Pmy3K5U_wBj8SyKQ
CitedBy_id crossref_primary_10_1080_00268976_2022_2133748
crossref_primary_10_1016_j_matt_2023_01_015
crossref_primary_10_1063_5_0177278
crossref_primary_10_1039_D4QM00421C
crossref_primary_10_3390_molecules27082443
crossref_primary_10_1039_D5CP00603A
crossref_primary_10_1002_jcc_26534
crossref_primary_10_1039_D0SC04646A
crossref_primary_10_1146_annurev_physchem_102822_100945
crossref_primary_10_1002_agt2_160
crossref_primary_10_1002_jcc_27288
crossref_primary_10_1021_acs_jctc_5c00539
crossref_primary_10_1002_cphc_202400563
crossref_primary_10_1038_s41467_025_56480_y
crossref_primary_10_1021_acs_jpcc_5c02605
Cites_doi 10.1002/jcc.24367
10.1016/S0010-4655(00)00071-0
10.1351/pac196511030371
10.1021/acs.jctc.6b00263
10.1002/anie.201503914
10.1073/pnas.1608421113
10.1103/PhysRevLett.114.026402
10.1021/ct500154k
10.1002/wcms.1163
10.1063/1.2814164
10.1063/1.480776
10.1002/wcms.1360
10.1002/jcc.20035
10.1039/C4CP02518K
10.1021/acs.jctc.7b00328
10.1021/acs.jctc.5b00022
10.1063/1.3382485
10.1039/C6CP07541J
10.1002/asia.201801649
10.1063/1.4790797
10.1021/ct300844y
10.1002/jcc.25612
10.1021/acs.jctc.8b01180
10.1021/jp0761618
10.1021/ja990934r
10.1021/jp070186p
10.1021/ct300307c
10.1021/cr5004419
10.1039/B909870D
10.1002/hlca.200390097
10.1016/0010-4655(96)00016-1
10.1016/j.jmgm.2005.12.005
10.1021/ct3008149
10.1002/qua.560420525
10.1107/S2052520616003954
10.1002/jcc.540160911
10.1039/c3cp51263k
10.1021/acs.jpcc.7b08060
10.1021/ar800153f
10.1021/jz400985t
10.1021/acs.jpclett.7b02601
10.1002/jcc.24221
10.1063/1.472065
10.1021/ct500868s
10.1002/jcc.24282
10.1007/s00214-016-1808-x
10.1021/cr00091a006
10.1142/9789813148598_0004
10.1021/acs.jpclett.7b02893
10.1021/acs.jctc.8b01036
10.1088/0953-8984/21/39/395502
10.1002/cptc.201900075
10.1002/jcc.25118
10.1007/978-1-4020-2154-1
10.1007/s00214-012-1237-4
10.1007/128_2014_605
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc.
2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc.
– notice: 2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals, Inc.
DBID 24P
AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1002/jcc.26144
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Computer Science Collection
PubMed

CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Rivera et al
EISSN 1096-987X
EndPage 1058
ExternalDocumentID PMC7079081
31909830
10_1002_jcc_26144
JCC26144
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/L000202/1; EP/P020194/1; EP/R029385/1
– fundername: ;
  grantid: EP/L000202/1; EP/P020194/1; EP/R029385/1
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c4434-c730799b44789fe6ef0858caaf3aa45f650e9aba91258fb1c16a542b81f68e33
IEDL.DBID 24P
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505857200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
1096-987X
IngestDate Tue Nov 04 01:59:22 EST 2025
Thu Oct 02 11:36:19 EDT 2025
Fri Jul 25 19:24:12 EDT 2025
Thu Apr 03 06:59:09 EDT 2025
Tue Nov 18 22:28:51 EST 2025
Sat Nov 29 03:23:41 EST 2025
Wed Jan 22 16:34:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords molecular aggregate
ONIOM
Python library
exciton
photochemistry
Language English
License Attribution
2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-c730799b44789fe6ef0858caaf3aa45f650e9aba91258fb1c16a542b81f68e33
Notes Funding information
Engineering and Physical Sciences Research Council, Grant/Award Numbers: EP/L000202/1, EP/P020194/1, EP/R029385/1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Engineering and Physical Sciences Research Council, Grant/Award Numbers: EP/L000202/1, EP/P020194/1, EP/R029385/1
ORCID 0000-0003-3699-2403
0000-0002-8725-5350
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26144
PMID 31909830
PQID 2370328815
PQPubID 48816
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7079081
proquest_miscellaneous_2334213793
proquest_journals_2370328815
pubmed_primary_31909830
crossref_citationtrail_10_1002_jcc_26144
crossref_primary_10_1002_jcc_26144
wiley_primary_10_1002_jcc_26144_JCC26144
PublicationCentury 2000
PublicationDate April 15, 2020
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: April 15, 2020
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 12
2017; 8
1965; 11
2013; 4
1989; 89
2009; 42
2004; 25
1907; 133
2019; 15
2019; 14
1999; 121
2016; 72
2000; 131
2018; 40
2016; 37
2013; 9
1996; 105
2018; 8
2012; 131
2018; 39
2013; 15
2014; 4
2001
2006; 25
2016; 113
2014; 16
2017; 121
1992; 42
2008; 112
2017; 273002
2003; 86
2014; 10
2019; 3
2009; 21
1995; 16
2010
2015; 11
2015; 54
2016; 52
2006
2008; 128
1996; 95
2005
2004
2016; 368
2000; 112
2016; 12
2015; 115
2015; 114
2013; 138
2007; 111
2017; 13
2010; 132
2016; 135
2019
2017
2016
2017; 19
2012; 8
e_1_2_6_51_1
TURBOMOLE V6.2 (e_1_2_6_12_1) 2010
Dommett M. (e_1_2_6_15_1) 2019
Frisch M. J. (e_1_2_6_10_1) 2016
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_55_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
Tang B. (e_1_2_6_30_1) 2016; 52
Plasser F. (e_1_2_6_32_1) 2017
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
Hjorth Larsen A. (e_1_2_6_5_1) 2017; 273002
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_50_1
Kittel C. (e_1_2_6_53_1) 2005
Voronoi G. (e_1_2_6_22_1) 1907; 133
e_1_2_6_14_1
e_1_2_6_35_1
Oliphant T. (e_1_2_6_16_1) 2006
e_1_2_6_33_1
RDKit (e_1_2_6_6_1)
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
Presti D. (e_1_2_6_67_1) 2017; 121
e_1_2_6_65_1
e_1_2_6_21_1
Eric Jones P. P. (e_1_2_6_17_1) 2001
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 138
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 37
  start-page: 861
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 1317
  year: 2019
  publication-title: J. Chem. Theory Comput.
– volume: 131
  start-page: 1237
  year: 2012
  publication-title: Theor. Chem. Acc.
– volume: 11
  start-page: 371
  year: 1965
  publication-title: Pure Appl. Chem.
– year: 2005
– volume: 11
  start-page: 5758
  year: 2015
  publication-title: J. Chem. Theory Comput.
– volume: 72
  start-page: 171
  year: 2016
  publication-title: Acta Crystallogr. Sect. B
– year: 2001
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 6148
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 115
  start-page: 5678
  year: 2015
  publication-title: Chem. Rev.
– volume: 135
  start-page: 86
  year: 2016
  publication-title: Theor. Chem. Acc.
– volume: 121
  start-page: 5747
  year: 2017
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 2409
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 1170
  year: 1995
  publication-title: J. Comput. Chem.
– volume: 21
  year: 2009
  publication-title: J. Phys. Condens. Matter
– volume: 121
  start-page: 5910
  year: 1999
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 1959
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 15
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 273002
  start-page: 29
  year: 2017
  publication-title: J. Phys. Condens. Matter
– volume: 131
  start-page: 120
  year: 2000
  publication-title: Comput. Phys. Commun.
– year: 2004
– volume: 39
  start-page: 279
  year: 2018
  publication-title: J. Comput. Chem.
– volume: 12
  start-page: 3316
  year: 2016
  publication-title: J. Chem. Theory Comput.
– volume: 42
  start-page: 1515
  year: 1992
  publication-title: Int. J. Quantum Chem.
– volume: 86
  start-page: 1113
  year: 2003
  publication-title: Helv. Chim. Acta
– volume: 8
  start-page: 5603
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 40
  start-page: 381
  year: 2018
  end-page: 386
  publication-title: J. Comput. Chem.
– volume: 111
  start-page: 5678
  year: 2007
  publication-title: J. Phys. Chem. A
– volume: 368
  start-page: 415
  year: 2016
  publication-title: Top. Curr. Chem.
– volume: 15
  start-page: 2504
  year: 2019
  publication-title: Theory Comput.
– volume: 133
  start-page: 97
  year: 1907
  publication-title: J. Reine Angew. Math.
– volume: 112
  start-page: 405
  year: 2008
  publication-title: J. Phys. Chem. B
– volume: 112
  start-page: 2074
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 3074
  year: 2014
  publication-title: J. Chem. Theory Comput.
– volume: 8
  year: 2018
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 12
  start-page: 583
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 95
  start-page: 73
  year: 1996
  publication-title: Comput. Phys. Commun.
– volume: 37
  start-page: 1626
  year: 2016
  publication-title: J. Comput. Chem.
– year: 2016
– volume: 14
  start-page: 700
  year: 2019
  publication-title: Chem. Asian J.
– volume: 52
  start-page: 6577
  year: 2016
  publication-title: ChemComm
– volume: 10
  start-page: 5577
  year: 2014
  publication-title: J. Chem. Theory Comput.
– volume: 4
  start-page: 2686
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 25
  start-page: 247
  year: 2006
  publication-title: J. Mol. Graph.
– volume: 9
  start-page: 1182
  year: 2013
  publication-title: J. Chem. Theory Comput.
– year: 2010
– volume: 128
  year: 2008
  publication-title: Journal of Chemical Physics
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 2777
  year: 2012
  publication-title: J. Chem. Theory Comput.
– volume: 37
  start-page: 506
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 113
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 3
  start-page: 907
  year: 2019
  publication-title: ChemPhotoChem
– year: 2006
– volume: 13
  start-page: 3754
  year: 2017
  publication-title: J. Chem. Theory Comput.
– year: 2019
  publication-title: Chemrxiv
– year: 2017
– volume: 9
  start-page: 533
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 4
  start-page: 101
  year: 2014
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 25
  start-page: 1157
  year: 2004
  publication-title: J. Comput. Chem.
– volume: 89
  start-page: 199
  year: 1989
  publication-title: Chem. Rev.
– volume: 42
  start-page: 509
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 8369
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_6_8_1
  doi: 10.1002/jcc.24367
– ident: e_1_2_6_19_1
  doi: 10.1016/S0010-4655(00)00071-0
– volume-title: Open‐Source Cheminformatics
  ident: e_1_2_6_6_1
– ident: e_1_2_6_29_1
  doi: 10.1351/pac196511030371
– volume: 52
  start-page: 6577
  year: 2016
  ident: e_1_2_6_30_1
  publication-title: ChemComm
– ident: e_1_2_6_56_1
  doi: 10.1021/acs.jctc.6b00263
– ident: e_1_2_6_27_1
  doi: 10.1002/anie.201503914
– ident: e_1_2_6_26_1
  doi: 10.1073/pnas.1608421113
– ident: e_1_2_6_2_1
  doi: 10.1103/PhysRevLett.114.026402
– ident: e_1_2_6_60_1
  doi: 10.1021/ct500154k
– ident: e_1_2_6_47_1
  doi: 10.1002/wcms.1163
– ident: e_1_2_6_52_1
  doi: 10.1063/1.2814164
– ident: e_1_2_6_18_1
  doi: 10.1063/1.480776
– ident: e_1_2_6_3_1
  doi: 10.1002/wcms.1360
– volume-title: Gaussian 16 Revision B.01
  year: 2016
  ident: e_1_2_6_10_1
– ident: e_1_2_6_57_1
  doi: 10.1002/jcc.20035
– volume-title: A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, Since 2007
  year: 2010
  ident: e_1_2_6_12_1
– ident: e_1_2_6_62_1
  doi: 10.1039/C4CP02518K
– ident: e_1_2_6_43_1
  doi: 10.1021/acs.jctc.7b00328
– ident: e_1_2_6_61_1
  doi: 10.1021/acs.jctc.5b00022
– ident: e_1_2_6_24_1
  doi: 10.1063/1.3382485
– ident: e_1_2_6_64_1
  doi: 10.1039/C6CP07541J
– year: 2019
  ident: e_1_2_6_15_1
  publication-title: Chemrxiv
– ident: e_1_2_6_21_1
  doi: 10.1002/asia.201801649
– ident: e_1_2_6_25_1
  doi: 10.1063/1.4790797
– ident: e_1_2_6_34_1
  doi: 10.1021/ct300844y
– ident: e_1_2_6_46_1
  doi: 10.1002/jcc.25612
– ident: e_1_2_6_13_1
  doi: 10.1021/acs.jctc.8b01180
– ident: e_1_2_6_59_1
  doi: 10.1021/jp0761618
– ident: e_1_2_6_41_1
  doi: 10.1021/ja990934r
– ident: e_1_2_6_9_1
  doi: 10.1021/jp070186p
– ident: e_1_2_6_31_1
  doi: 10.1021/ct300307c
– ident: e_1_2_6_50_1
  doi: 10.1021/cr5004419
– ident: e_1_2_6_55_1
  doi: 10.1039/B909870D
– ident: e_1_2_6_35_1
  doi: 10.1002/hlca.200390097
– ident: e_1_2_6_68_1
  doi: 10.1016/0010-4655(96)00016-1
– ident: e_1_2_6_58_1
  doi: 10.1016/j.jmgm.2005.12.005
– volume-title: NumPy: A Guide to NumPy
  year: 2006
  ident: e_1_2_6_16_1
– ident: e_1_2_6_45_1
  doi: 10.1021/ct3008149
– ident: e_1_2_6_23_1
  doi: 10.1002/qua.560420525
– volume-title: Travis Oliphant, SciPy: Open Source Scientific Tools for Python
  year: 2001
  ident: e_1_2_6_17_1
– ident: e_1_2_6_4_1
  doi: 10.1107/S2052520616003954
– volume-title: Theodore: A Package for Theoretical Density, Orbital Relaxation, and Exciton Analysis
  year: 2017
  ident: e_1_2_6_32_1
– ident: e_1_2_6_48_1
  doi: 10.1002/jcc.540160911
– volume-title: Introduction to solid state physics
  year: 2005
  ident: e_1_2_6_53_1
– ident: e_1_2_6_44_1
  doi: 10.1039/c3cp51263k
– ident: e_1_2_6_40_1
  doi: 10.1021/acs.jpcc.7b08060
– ident: e_1_2_6_38_1
  doi: 10.1021/ar800153f
– ident: e_1_2_6_39_1
  doi: 10.1021/jz400985t
– ident: e_1_2_6_28_1
  doi: 10.1021/acs.jpclett.7b02601
– ident: e_1_2_6_11_1
  doi: 10.1002/jcc.24221
– ident: e_1_2_6_49_1
  doi: 10.1063/1.472065
– ident: e_1_2_6_65_1
  doi: 10.1021/ct500868s
– volume: 133
  start-page: 97
  year: 1907
  ident: e_1_2_6_22_1
  publication-title: J. Reine Angew. Math.
– ident: e_1_2_6_66_1
  doi: 10.1002/jcc.24282
– ident: e_1_2_6_51_1
  doi: 10.1007/s00214-016-1808-x
– ident: e_1_2_6_69_1
  doi: 10.1021/cr00091a006
– ident: e_1_2_6_36_1
  doi: 10.1142/9789813148598_0004
– ident: e_1_2_6_20_1
  doi: 10.1021/acs.jpclett.7b02893
– ident: e_1_2_6_7_1
  doi: 10.1021/acs.jctc.8b01036
– ident: e_1_2_6_42_1
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_2_6_14_1
  doi: 10.1002/cptc.201900075
– ident: e_1_2_6_37_1
  doi: 10.1002/jcc.25118
– ident: e_1_2_6_54_1
  doi: 10.1007/978-1-4020-2154-1
– volume: 273002
  start-page: 29
  year: 2017
  ident: e_1_2_6_5_1
  publication-title: J. Phys. Condens. Matter
– ident: e_1_2_6_33_1
  doi: 10.1007/s00214-012-1237-4
– ident: e_1_2_6_63_1
  doi: 10.1007/128_2014_605
– volume: 121
  start-page: 5747
  year: 2017
  ident: e_1_2_6_67_1
  publication-title: J. Phys. Chem. B
SSID ssj0003564
Score 2.4574006
Snippet The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1045
SubjectTerms Aggregates
Excitation
exciton
Excitons
molecular aggregate
Obstacle avoidance
ONIOM
Organic chemistry
photochemistry
Python library
Software and Updates
Title fromage: A library for the study of molecular crystal excited states at the aggregate scale
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26144
https://www.ncbi.nlm.nih.gov/pubmed/31909830
https://www.proquest.com/docview/2370328815
https://www.proquest.com/docview/2334213793
https://pubmed.ncbi.nlm.nih.gov/PMC7079081
Volume 41
WOSCitedRecordID wos000505857200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_OO0Ff_P6onkcUH3ypt_lqEn06VhcROQ45YcGHMs2m58nZle2e6H_vJP3Q5RQEX0ohkzZNZia_JJ3fADy1OtBEFM8MpdS5MqbOq8WC5zRZVV4vOEqHKdmEOTy087k72oKXQyxMxw8xbrhFy0j-Oho4Vu3-L9LQz94_F3E5cwl2OJc25m0Q6mh0w1J33FEEYXJbaD7QCk3E_lh1czK6gDAv_ij5O4BNM9Ds-n-1_QZc64EnO-g05SZsheYWXJkO-d5uw8cYaULe5QU7YP3TGSFaRgiRJRJatqzZlyGbLvOrHwQsz1j47iNqZSkyqWW4ThXwhNbxcYeOtaQE4Q4cz14fT9_kfeqF3CslVe7J8I1zlVLGujoUoSZoZj1iLRGVrgnXBYcVOsJHtq645wVqJSrL68IGKe_CdrNswn1gEyOk8l5aRK_QC3Q2RuMW2uCiKrDO4NkwBKXvacljdoyzsiNUFiV1Vpk6K4Mno-jXjovjT0K7wziWvTm2pZAm8gZarjN4PBZT_8bTEWzC8jzKSCW4JH-Vwb1u2Me3kJ-aOCsnGZgNhRgFIkn3Zklz-imRdUcGQoJd9JlJIf7e8PLtdJpuHvy76EO4KuL6P3JP6l3YXq_OwyO47L-tT9vVXrIHupq53YOdV-9nH979BPMHD_Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VgtReeFMCBQziwCXtxo_YRlyqFVWBsuphD5U4RBOvDUUli3a3CP49Y-cBq4KExCmRPE4ce2b8eRx_A_DcKE8TUdwzFELlUuuQ17NZkdNkVTs1K1BYTMkm9GRiTk_tyQa86s_CtPwQQ8AtWkby19HAY0B6_xdr6Gfn9nhcz1yBq5KuUcu5PBn8sFAteRRhmNyUquh5hUZ8f6i6PhtdgpiX_5T8HcGmKejwxv81_iZc76AnO2h15RZs-OY2bI37jG934EM8a0L-5SU7YN3jGWFaRhiRJRpaNg_sS59Pl7nFD4KW58x_dxG3snQ2aclwlSrgR1rJxxgdW5Ia-LswPXw9HR_lXfKF3EkpZO7I9LW1tZTa2OBLHwicGYcYBKJUgZCdt1ijJYRkQl24okQleW2KUBovxD3YbOaNvw9spLmQzgmD6CQ6jtbE87il0jirSwwZvOjHoHIdMXnMj3FetZTKvKLOqlJnZfBsEP3asnH8SWi3H8iqM8hlxYWOzIGmUBk8HYqpf-P-CDZ-fhFlhOSFII-VwU477sNbyFONrBGjDPSaRgwCkaZ7vaQ5-5TouiMHIQEv-sykEX9vePV2PE43D_5d9AlsHU3fH1fHbybvHsI2j9GAyESpdmFztbjwj-Ca-7Y6Wy4eJ-P4CTICEVc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VLQJeuI9AAYN44CXtxkfsIF6qLSuOalWhIlXiIZo4NhSVbLW7RfDvGTsHrAoSEm-RPM5hz_HZznwD8MwoR4EonBkKoVKptU-rus5SClaVVXWGosBYbELPZuboqDjYgJd9LkzLDzFsuAXLiP46GLg7rf3OL9bQL9Zu87CeuQCbMhSRGcHm3vvph_3BEwvV0kcRiklNrrKeWWjMd4bO6_HoHMg8_6_k7xg2BqHptf97_etwtQOfbLfVlhuw4ZqbcHnS13y7BR9Dtgl5mBdsl3W3Z4RqGaFEFolo2dyzr31FXWYXPwhcnjD33QbkymJ20pLhKnbAT7SWD7t0bEmK4G7D4fTV4eR12pVfSK2UQqaWjF8XRSWlNoV3ufMEz4xF9AJRKk_YzhVYYUEYyfgqs1mOSvLKZD43Tog7MGrmjbsHbKy5kNYKg2glWo6FCRm5udJYVzn6BJ73c1Dajpo8VMg4KVtSZV7SYJVxsBJ4OoietnwcfxLa6iey7ExyWXKhA3egyVQCT4ZmGt9wQoKNm58FGSF5JshnJXC3nffhKeSrxoUR4wT0mkYMAoGoe72lOf4cCbsDCyFBL_rMqBF_f_Hy7WQSL-7_u-hjuHSwNy3338zePYArPGwHBCpKtQWj1eLMPYSL9tvqeLl41FnHT5zkEm0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=fromage%3A+A+library+for+the+study+of+molecular+crystal+excited+states+at+the+aggregate+scale&rft.jtitle=Journal+of+computational+chemistry&rft.au=Rivera%2C+Miguel&rft.au=Dommett%2C+Michael&rft.au=Sidat%2C+Amir&rft.au=Rahim%2C+Warda&rft.date=2020-04-15&rft.issn=1096-987X&rft.eissn=1096-987X&rft.volume=41&rft.issue=10&rft.spage=1045&rft_id=info:doi/10.1002%2Fjcc.26144&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon