fromage: A library for the study of molecular crystal excited states at the aggregate scale
The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the interm...
Uloženo v:
| Vydáno v: | Journal of computational chemistry Ročník 41; číslo 10; s. 1045 - 1058 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
15.04.2020
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0192-8651, 1096-987X, 1096-987X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage.
Accurately modeling the photoexcitations of molecular aggregates involves complementing excited state methodologies with auxiliary calculations. Due to the diversity of chemical and structural space in multimolecular complexes, these calculations require a high degree of adaptability which calls for the use of modular programming tools hitherto unavailable for the investigation of photochemical properties of molecular aggregates. The FRamewOrk for Molecular AGgregate Excitations (fromage), described herein, compiles geometry manipulation tools, exciton state characterization, and QM:QM′ models for geometry optimization. |
|---|---|
| AbstractList | The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in-house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready-to-use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage.The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in-house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready-to-use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage. The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage. The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage. Accurately modeling the photoexcitations of molecular aggregates involves complementing excited state methodologies with auxiliary calculations. Due to the diversity of chemical and structural space in multimolecular complexes, these calculations require a high degree of adaptability which calls for the use of modular programming tools hitherto unavailable for the investigation of photochemical properties of molecular aggregates. The FRamewOrk for Molecular AGgregate Excitations (fromage), described herein, compiles geometry manipulation tools, exciton state characterization, and QM:QM′ models for geometry optimization. The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage . The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage. Accurately modeling the photoexcitations of molecular aggregates involves complementing excited state methodologies with auxiliary calculations. Due to the diversity of chemical and structural space in multimolecular complexes, these calculations require a high degree of adaptability which calls for the use of modular programming tools hitherto unavailable for the investigation of photochemical properties of molecular aggregates. The FRamewOrk for Molecular AGgregate Excitations (fromage), described herein, compiles geometry manipulation tools, exciton state characterization, and QM:QM′ models for geometry optimization. |
| Author | Dommett, Michael Crespo‐Otero, Rachel Rivera, Miguel Sidat, Amir Rahim, Warda |
| AuthorAffiliation | 1 Department of Chemistry, School of Biological and Chemical Sciences Queen Mary University of London London UK |
| AuthorAffiliation_xml | – name: 1 Department of Chemistry, School of Biological and Chemical Sciences Queen Mary University of London London UK |
| Author_xml | – sequence: 1 givenname: Miguel orcidid: 0000-0003-3699-2403 surname: Rivera fullname: Rivera, Miguel organization: Queen Mary University of London – sequence: 2 givenname: Michael surname: Dommett fullname: Dommett, Michael organization: Queen Mary University of London – sequence: 3 givenname: Amir surname: Sidat fullname: Sidat, Amir organization: Queen Mary University of London – sequence: 4 givenname: Warda surname: Rahim fullname: Rahim, Warda organization: Queen Mary University of London – sequence: 5 givenname: Rachel orcidid: 0000-0002-8725-5350 surname: Crespo‐Otero fullname: Crespo‐Otero, Rachel email: r.crespo-otero@qmul.ac.uk organization: Queen Mary University of London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31909830$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU9v1DAQxS3Uim4LB74AssQFDmnt2ElsDpWqFX-KKnHpAYmDNfGO06ycuNgJsN8eb3dblQpOlsa_9-bNzDE5GMOIhLzi7JQzVp6trT0tay7lM7LgTNeFVs23A7JgXJeFqit-RI5TWjPGRFXL5-RIcM20EmxBvrsYBujwPb2gvm8jxA11IdLpBmma5tWGBkeH4NHOHiK1cZMm8BR_237CVUZgwkRhuhNA10XscoUmCx5fkEMHPuHL_XtCrj9-uF5-Lq6-frpcXlwVVkohC9sI1mjdStko7bBGx1SlLIATALJydcVQQwual5VyLbe8hkqWreKuVijECTnf2d7O7YAri-MUwZvb2A95GhOgN3__jP2N6cJP0-S2TPFs8HZvEMOPGdNkhj5Z9B5GDHMypRCy5KLR215vnqDrMMcxT5epholSKV5l6vXjRA9R7teegbMdYGNIKaIzeZ0w9WEbsPeGM7M9rMmHNXeHzYp3TxT3pv9i9-6_eo-b_4Pmy3K5U_wBj8SyKQ |
| CitedBy_id | crossref_primary_10_1080_00268976_2022_2133748 crossref_primary_10_1016_j_matt_2023_01_015 crossref_primary_10_1063_5_0177278 crossref_primary_10_1039_D4QM00421C crossref_primary_10_3390_molecules27082443 crossref_primary_10_1039_D5CP00603A crossref_primary_10_1002_jcc_26534 crossref_primary_10_1039_D0SC04646A crossref_primary_10_1146_annurev_physchem_102822_100945 crossref_primary_10_1002_agt2_160 crossref_primary_10_1002_jcc_27288 crossref_primary_10_1021_acs_jctc_5c00539 crossref_primary_10_1002_cphc_202400563 crossref_primary_10_1038_s41467_025_56480_y crossref_primary_10_1021_acs_jpcc_5c02605 |
| Cites_doi | 10.1002/jcc.24367 10.1016/S0010-4655(00)00071-0 10.1351/pac196511030371 10.1021/acs.jctc.6b00263 10.1002/anie.201503914 10.1073/pnas.1608421113 10.1103/PhysRevLett.114.026402 10.1021/ct500154k 10.1002/wcms.1163 10.1063/1.2814164 10.1063/1.480776 10.1002/wcms.1360 10.1002/jcc.20035 10.1039/C4CP02518K 10.1021/acs.jctc.7b00328 10.1021/acs.jctc.5b00022 10.1063/1.3382485 10.1039/C6CP07541J 10.1002/asia.201801649 10.1063/1.4790797 10.1021/ct300844y 10.1002/jcc.25612 10.1021/acs.jctc.8b01180 10.1021/jp0761618 10.1021/ja990934r 10.1021/jp070186p 10.1021/ct300307c 10.1021/cr5004419 10.1039/B909870D 10.1002/hlca.200390097 10.1016/0010-4655(96)00016-1 10.1016/j.jmgm.2005.12.005 10.1021/ct3008149 10.1002/qua.560420525 10.1107/S2052520616003954 10.1002/jcc.540160911 10.1039/c3cp51263k 10.1021/acs.jpcc.7b08060 10.1021/ar800153f 10.1021/jz400985t 10.1021/acs.jpclett.7b02601 10.1002/jcc.24221 10.1063/1.472065 10.1021/ct500868s 10.1002/jcc.24282 10.1007/s00214-016-1808-x 10.1021/cr00091a006 10.1142/9789813148598_0004 10.1021/acs.jpclett.7b02893 10.1021/acs.jctc.8b01036 10.1088/0953-8984/21/39/395502 10.1002/cptc.201900075 10.1002/jcc.25118 10.1007/978-1-4020-2154-1 10.1007/s00214-012-1237-4 10.1007/128_2014_605 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. 2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. – notice: 2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc. |
| DBID | 24P AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1002/jcc.26144 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| DocumentTitleAlternate | Rivera et al |
| EISSN | 1096-987X |
| EndPage | 1058 |
| ExternalDocumentID | PMC7079081 31909830 10_1002_jcc_26144 JCC26144 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: EP/L000202/1; EP/P020194/1; EP/R029385/1 – fundername: ; grantid: EP/L000202/1; EP/P020194/1; EP/R029385/1 |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c4434-c730799b44789fe6ef0858caaf3aa45f650e9aba91258fb1c16a542b81f68e33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505857200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0192-8651 1096-987X |
| IngestDate | Tue Nov 04 01:59:22 EST 2025 Thu Oct 02 11:36:19 EDT 2025 Fri Jul 25 19:24:12 EDT 2025 Thu Apr 03 06:59:09 EDT 2025 Tue Nov 18 22:28:51 EST 2025 Sat Nov 29 03:23:41 EST 2025 Wed Jan 22 16:34:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | molecular aggregate ONIOM Python library exciton photochemistry |
| Language | English |
| License | Attribution 2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4434-c730799b44789fe6ef0858caaf3aa45f650e9aba91258fb1c16a542b81f68e33 |
| Notes | Funding information Engineering and Physical Sciences Research Council, Grant/Award Numbers: EP/L000202/1, EP/P020194/1, EP/R029385/1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Engineering and Physical Sciences Research Council, Grant/Award Numbers: EP/L000202/1, EP/P020194/1, EP/R029385/1 |
| ORCID | 0000-0003-3699-2403 0000-0002-8725-5350 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26144 |
| PMID | 31909830 |
| PQID | 2370328815 |
| PQPubID | 48816 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7079081 proquest_miscellaneous_2334213793 proquest_journals_2370328815 pubmed_primary_31909830 crossref_citationtrail_10_1002_jcc_26144 crossref_primary_10_1002_jcc_26144 wiley_primary_10_1002_jcc_26144_JCC26144 |
| PublicationCentury | 2000 |
| PublicationDate | April 15, 2020 |
| PublicationDateYYYYMMDD | 2020-04-15 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 15, 2020 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
| PublicationTitle | Journal of computational chemistry |
| PublicationTitleAlternate | J Comput Chem |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2010; 12 2017; 8 1965; 11 2013; 4 1989; 89 2009; 42 2004; 25 1907; 133 2019; 15 2019; 14 1999; 121 2016; 72 2000; 131 2018; 40 2016; 37 2013; 9 1996; 105 2018; 8 2012; 131 2018; 39 2013; 15 2014; 4 2001 2006; 25 2016; 113 2014; 16 2017; 121 1992; 42 2008; 112 2017; 273002 2003; 86 2014; 10 2019; 3 2009; 21 1995; 16 2010 2015; 11 2015; 54 2016; 52 2006 2008; 128 1996; 95 2005 2004 2016; 368 2000; 112 2016; 12 2015; 115 2015; 114 2013; 138 2007; 111 2017; 13 2010; 132 2016; 135 2019 2017 2016 2017; 19 2012; 8 e_1_2_6_51_1 TURBOMOLE V6.2 (e_1_2_6_12_1) 2010 Dommett M. (e_1_2_6_15_1) 2019 Frisch M. J. (e_1_2_6_10_1) 2016 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_55_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 Tang B. (e_1_2_6_30_1) 2016; 52 Plasser F. (e_1_2_6_32_1) 2017 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 Hjorth Larsen A. (e_1_2_6_5_1) 2017; 273002 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_31_1 e_1_2_6_50_1 Kittel C. (e_1_2_6_53_1) 2005 Voronoi G. (e_1_2_6_22_1) 1907; 133 e_1_2_6_14_1 e_1_2_6_35_1 Oliphant T. (e_1_2_6_16_1) 2006 e_1_2_6_33_1 RDKit (e_1_2_6_6_1) e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 Presti D. (e_1_2_6_67_1) 2017; 121 e_1_2_6_65_1 e_1_2_6_21_1 Eric Jones P. P. (e_1_2_6_17_1) 2001 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – volume: 138 year: 2013 publication-title: J. Chem. Phys. – volume: 37 start-page: 861 year: 2016 publication-title: J. Comput. Chem. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 1317 year: 2019 publication-title: J. Chem. Theory Comput. – volume: 131 start-page: 1237 year: 2012 publication-title: Theor. Chem. Acc. – volume: 11 start-page: 371 year: 1965 publication-title: Pure Appl. Chem. – year: 2005 – volume: 11 start-page: 5758 year: 2015 publication-title: J. Chem. Theory Comput. – volume: 72 start-page: 171 year: 2016 publication-title: Acta Crystallogr. Sect. B – year: 2001 – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 8 start-page: 6148 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 115 start-page: 5678 year: 2015 publication-title: Chem. Rev. – volume: 135 start-page: 86 year: 2016 publication-title: Theor. Chem. Acc. – volume: 121 start-page: 5747 year: 2017 publication-title: J. Phys. Chem. B – volume: 19 start-page: 2409 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 1170 year: 1995 publication-title: J. Comput. Chem. – volume: 21 year: 2009 publication-title: J. Phys. Condens. Matter – volume: 121 start-page: 5910 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 1959 year: 1996 publication-title: J. Chem. Phys. – volume: 15 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 273002 start-page: 29 year: 2017 publication-title: J. Phys. Condens. Matter – volume: 131 start-page: 120 year: 2000 publication-title: Comput. Phys. Commun. – year: 2004 – volume: 39 start-page: 279 year: 2018 publication-title: J. Comput. Chem. – volume: 12 start-page: 3316 year: 2016 publication-title: J. Chem. Theory Comput. – volume: 42 start-page: 1515 year: 1992 publication-title: Int. J. Quantum Chem. – volume: 86 start-page: 1113 year: 2003 publication-title: Helv. Chim. Acta – volume: 8 start-page: 5603 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 40 start-page: 381 year: 2018 end-page: 386 publication-title: J. Comput. Chem. – volume: 111 start-page: 5678 year: 2007 publication-title: J. Phys. Chem. A – volume: 368 start-page: 415 year: 2016 publication-title: Top. Curr. Chem. – volume: 15 start-page: 2504 year: 2019 publication-title: Theory Comput. – volume: 133 start-page: 97 year: 1907 publication-title: J. Reine Angew. Math. – volume: 112 start-page: 405 year: 2008 publication-title: J. Phys. Chem. B – volume: 112 start-page: 2074 year: 2000 publication-title: J. Chem. Phys. – volume: 10 start-page: 3074 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 8 year: 2018 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 12 start-page: 583 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 95 start-page: 73 year: 1996 publication-title: Comput. Phys. Commun. – volume: 37 start-page: 1626 year: 2016 publication-title: J. Comput. Chem. – year: 2016 – volume: 14 start-page: 700 year: 2019 publication-title: Chem. Asian J. – volume: 52 start-page: 6577 year: 2016 publication-title: ChemComm – volume: 10 start-page: 5577 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 4 start-page: 2686 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 25 start-page: 247 year: 2006 publication-title: J. Mol. Graph. – volume: 9 start-page: 1182 year: 2013 publication-title: J. Chem. Theory Comput. – year: 2010 – volume: 128 year: 2008 publication-title: Journal of Chemical Physics – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 2777 year: 2012 publication-title: J. Chem. Theory Comput. – volume: 37 start-page: 506 year: 2016 publication-title: J. Comput. Chem. – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 3 start-page: 907 year: 2019 publication-title: ChemPhotoChem – year: 2006 – volume: 13 start-page: 3754 year: 2017 publication-title: J. Chem. Theory Comput. – year: 2019 publication-title: Chemrxiv – year: 2017 – volume: 9 start-page: 533 year: 2013 publication-title: J. Chem. Theory Comput. – volume: 4 start-page: 101 year: 2014 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 25 start-page: 1157 year: 2004 publication-title: J. Comput. Chem. – volume: 89 start-page: 199 year: 1989 publication-title: Chem. Rev. – volume: 42 start-page: 509 year: 2009 publication-title: Acc. Chem. Res. – volume: 54 start-page: 8369 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_6_8_1 doi: 10.1002/jcc.24367 – ident: e_1_2_6_19_1 doi: 10.1016/S0010-4655(00)00071-0 – volume-title: Open‐Source Cheminformatics ident: e_1_2_6_6_1 – ident: e_1_2_6_29_1 doi: 10.1351/pac196511030371 – volume: 52 start-page: 6577 year: 2016 ident: e_1_2_6_30_1 publication-title: ChemComm – ident: e_1_2_6_56_1 doi: 10.1021/acs.jctc.6b00263 – ident: e_1_2_6_27_1 doi: 10.1002/anie.201503914 – ident: e_1_2_6_26_1 doi: 10.1073/pnas.1608421113 – ident: e_1_2_6_2_1 doi: 10.1103/PhysRevLett.114.026402 – ident: e_1_2_6_60_1 doi: 10.1021/ct500154k – ident: e_1_2_6_47_1 doi: 10.1002/wcms.1163 – ident: e_1_2_6_52_1 doi: 10.1063/1.2814164 – ident: e_1_2_6_18_1 doi: 10.1063/1.480776 – ident: e_1_2_6_3_1 doi: 10.1002/wcms.1360 – volume-title: Gaussian 16 Revision B.01 year: 2016 ident: e_1_2_6_10_1 – ident: e_1_2_6_57_1 doi: 10.1002/jcc.20035 – volume-title: A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, Since 2007 year: 2010 ident: e_1_2_6_12_1 – ident: e_1_2_6_62_1 doi: 10.1039/C4CP02518K – ident: e_1_2_6_43_1 doi: 10.1021/acs.jctc.7b00328 – ident: e_1_2_6_61_1 doi: 10.1021/acs.jctc.5b00022 – ident: e_1_2_6_24_1 doi: 10.1063/1.3382485 – ident: e_1_2_6_64_1 doi: 10.1039/C6CP07541J – year: 2019 ident: e_1_2_6_15_1 publication-title: Chemrxiv – ident: e_1_2_6_21_1 doi: 10.1002/asia.201801649 – ident: e_1_2_6_25_1 doi: 10.1063/1.4790797 – ident: e_1_2_6_34_1 doi: 10.1021/ct300844y – ident: e_1_2_6_46_1 doi: 10.1002/jcc.25612 – ident: e_1_2_6_13_1 doi: 10.1021/acs.jctc.8b01180 – ident: e_1_2_6_59_1 doi: 10.1021/jp0761618 – ident: e_1_2_6_41_1 doi: 10.1021/ja990934r – ident: e_1_2_6_9_1 doi: 10.1021/jp070186p – ident: e_1_2_6_31_1 doi: 10.1021/ct300307c – ident: e_1_2_6_50_1 doi: 10.1021/cr5004419 – ident: e_1_2_6_55_1 doi: 10.1039/B909870D – ident: e_1_2_6_35_1 doi: 10.1002/hlca.200390097 – ident: e_1_2_6_68_1 doi: 10.1016/0010-4655(96)00016-1 – ident: e_1_2_6_58_1 doi: 10.1016/j.jmgm.2005.12.005 – volume-title: NumPy: A Guide to NumPy year: 2006 ident: e_1_2_6_16_1 – ident: e_1_2_6_45_1 doi: 10.1021/ct3008149 – ident: e_1_2_6_23_1 doi: 10.1002/qua.560420525 – volume-title: Travis Oliphant, SciPy: Open Source Scientific Tools for Python year: 2001 ident: e_1_2_6_17_1 – ident: e_1_2_6_4_1 doi: 10.1107/S2052520616003954 – volume-title: Theodore: A Package for Theoretical Density, Orbital Relaxation, and Exciton Analysis year: 2017 ident: e_1_2_6_32_1 – ident: e_1_2_6_48_1 doi: 10.1002/jcc.540160911 – volume-title: Introduction to solid state physics year: 2005 ident: e_1_2_6_53_1 – ident: e_1_2_6_44_1 doi: 10.1039/c3cp51263k – ident: e_1_2_6_40_1 doi: 10.1021/acs.jpcc.7b08060 – ident: e_1_2_6_38_1 doi: 10.1021/ar800153f – ident: e_1_2_6_39_1 doi: 10.1021/jz400985t – ident: e_1_2_6_28_1 doi: 10.1021/acs.jpclett.7b02601 – ident: e_1_2_6_11_1 doi: 10.1002/jcc.24221 – ident: e_1_2_6_49_1 doi: 10.1063/1.472065 – ident: e_1_2_6_65_1 doi: 10.1021/ct500868s – volume: 133 start-page: 97 year: 1907 ident: e_1_2_6_22_1 publication-title: J. Reine Angew. Math. – ident: e_1_2_6_66_1 doi: 10.1002/jcc.24282 – ident: e_1_2_6_51_1 doi: 10.1007/s00214-016-1808-x – ident: e_1_2_6_69_1 doi: 10.1021/cr00091a006 – ident: e_1_2_6_36_1 doi: 10.1142/9789813148598_0004 – ident: e_1_2_6_20_1 doi: 10.1021/acs.jpclett.7b02893 – ident: e_1_2_6_7_1 doi: 10.1021/acs.jctc.8b01036 – ident: e_1_2_6_42_1 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_2_6_14_1 doi: 10.1002/cptc.201900075 – ident: e_1_2_6_37_1 doi: 10.1002/jcc.25118 – ident: e_1_2_6_54_1 doi: 10.1007/978-1-4020-2154-1 – volume: 273002 start-page: 29 year: 2017 ident: e_1_2_6_5_1 publication-title: J. Phys. Condens. Matter – ident: e_1_2_6_33_1 doi: 10.1007/s00214-012-1237-4 – ident: e_1_2_6_63_1 doi: 10.1007/128_2014_605 – volume: 121 start-page: 5747 year: 2017 ident: e_1_2_6_67_1 publication-title: J. Phys. Chem. B |
| SSID | ssj0003564 |
| Score | 2.4574006 |
| Snippet | The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1045 |
| SubjectTerms | Aggregates Excitation exciton Excitons molecular aggregate Obstacle avoidance ONIOM Organic chemistry photochemistry Python library Software and Updates |
| Title | fromage: A library for the study of molecular crystal excited states at the aggregate scale |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26144 https://www.ncbi.nlm.nih.gov/pubmed/31909830 https://www.proquest.com/docview/2370328815 https://www.proquest.com/docview/2334213793 https://pubmed.ncbi.nlm.nih.gov/PMC7079081 |
| Volume | 41 |
| WOSCitedRecordID | wos000505857200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1096-987X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003564 issn: 0192-8651 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_OO0Ff_P6onkcUH3ypt_lqEn06VhcROQ45YcGHMs2m58nZle2e6H_vJP3Q5RQEX0ohkzZNZia_JJ3fADy1OtBEFM8MpdS5MqbOq8WC5zRZVV4vOEqHKdmEOTy087k72oKXQyxMxw8xbrhFy0j-Oho4Vu3-L9LQz94_F3E5cwl2OJc25m0Q6mh0w1J33FEEYXJbaD7QCk3E_lh1czK6gDAv_ij5O4BNM9Ds-n-1_QZc64EnO-g05SZsheYWXJkO-d5uw8cYaULe5QU7YP3TGSFaRgiRJRJatqzZlyGbLvOrHwQsz1j47iNqZSkyqWW4ThXwhNbxcYeOtaQE4Q4cz14fT9_kfeqF3CslVe7J8I1zlVLGujoUoSZoZj1iLRGVrgnXBYcVOsJHtq645wVqJSrL68IGKe_CdrNswn1gEyOk8l5aRK_QC3Q2RuMW2uCiKrDO4NkwBKXvacljdoyzsiNUFiV1Vpk6K4Mno-jXjovjT0K7wziWvTm2pZAm8gZarjN4PBZT_8bTEWzC8jzKSCW4JH-Vwb1u2Me3kJ-aOCsnGZgNhRgFIkn3Zklz-imRdUcGQoJd9JlJIf7e8PLtdJpuHvy76EO4KuL6P3JP6l3YXq_OwyO47L-tT9vVXrIHupq53YOdV-9nH979BPMHD_Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VgtReeFMCBQziwCXtxo_YRlyqFVWBsuphD5U4RBOvDUUli3a3CP49Y-cBq4KExCmRPE4ce2b8eRx_A_DcKE8TUdwzFELlUuuQ17NZkdNkVTs1K1BYTMkm9GRiTk_tyQa86s_CtPwQQ8AtWkby19HAY0B6_xdr6Gfn9nhcz1yBq5KuUcu5PBn8sFAteRRhmNyUquh5hUZ8f6i6PhtdgpiX_5T8HcGmKejwxv81_iZc76AnO2h15RZs-OY2bI37jG934EM8a0L-5SU7YN3jGWFaRhiRJRpaNg_sS59Pl7nFD4KW58x_dxG3snQ2aclwlSrgR1rJxxgdW5Ia-LswPXw9HR_lXfKF3EkpZO7I9LW1tZTa2OBLHwicGYcYBKJUgZCdt1ijJYRkQl24okQleW2KUBovxD3YbOaNvw9spLmQzgmD6CQ6jtbE87il0jirSwwZvOjHoHIdMXnMj3FetZTKvKLOqlJnZfBsEP3asnH8SWi3H8iqM8hlxYWOzIGmUBk8HYqpf-P-CDZ-fhFlhOSFII-VwU477sNbyFONrBGjDPSaRgwCkaZ7vaQ5-5TouiMHIQEv-sykEX9vePV2PE43D_5d9AlsHU3fH1fHbybvHsI2j9GAyESpdmFztbjwj-Ca-7Y6Wy4eJ-P4CTICEVc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VLQJeuI9AAYN44CXtxkfsIF6qLSuOalWhIlXiIZo4NhSVbLW7RfDvGTsHrAoSEm-RPM5hz_HZznwD8MwoR4EonBkKoVKptU-rus5SClaVVXWGosBYbELPZuboqDjYgJd9LkzLDzFsuAXLiP46GLg7rf3OL9bQL9Zu87CeuQCbMhSRGcHm3vvph_3BEwvV0kcRiklNrrKeWWjMd4bO6_HoHMg8_6_k7xg2BqHptf97_etwtQOfbLfVlhuw4ZqbcHnS13y7BR9Dtgl5mBdsl3W3Z4RqGaFEFolo2dyzr31FXWYXPwhcnjD33QbkymJ20pLhKnbAT7SWD7t0bEmK4G7D4fTV4eR12pVfSK2UQqaWjF8XRSWlNoV3ufMEz4xF9AJRKk_YzhVYYUEYyfgqs1mOSvLKZD43Tog7MGrmjbsHbKy5kNYKg2glWo6FCRm5udJYVzn6BJ73c1Dajpo8VMg4KVtSZV7SYJVxsBJ4OoietnwcfxLa6iey7ExyWXKhA3egyVQCT4ZmGt9wQoKNm58FGSF5JshnJXC3nffhKeSrxoUR4wT0mkYMAoGoe72lOf4cCbsDCyFBL_rMqBF_f_Hy7WQSL-7_u-hjuHSwNy3338zePYArPGwHBCpKtQWj1eLMPYSL9tvqeLl41FnHT5zkEm0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=fromage%3A+A+library+for+the+study+of+molecular+crystal+excited+states+at+the+aggregate+scale&rft.jtitle=Journal+of+computational+chemistry&rft.au=Rivera%2C+Miguel&rft.au=Dommett%2C+Michael&rft.au=Sidat%2C+Amir&rft.au=Rahim%2C+Warda&rft.date=2020-04-15&rft.issn=1096-987X&rft.eissn=1096-987X&rft.volume=41&rft.issue=10&rft.spage=1045&rft_id=info:doi/10.1002%2Fjcc.26144&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |