Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling

Purpose To determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability. Methods In a simulation framework, 5‐minute scan protocols with differe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Magnetic resonance in medicine Ročník 84; číslo 5; s. 2523 - 2536
Hlavní autori: Bladt, Piet, van Osch, Matthias J. P., Clement, Patricia, Achten, Eric, Sijbers, Jan, den Dekker, Arnold J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Wiley Subscription Services, Inc 01.11.2020
John Wiley and Sons Inc
Predmet:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose To determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability. Methods In a simulation framework, 5‐minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single‐post‐labeling delay (PLD), multi‐PLD, and free‐lunch time‐encoded (te‐FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation. Results For the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5‐minute scan time compared to only acquiring ASL data. Compared to single‐PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single‐PLD, free‐lunch, and multi‐PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment. Conclusions Spending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population.
AbstractList To determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood is beneficial in terms of CBF quantification reliability. In a simulation framework, 5-minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation. For the considered population statistics, measuring the labeling efficiency and the blood proved beneficial in terms of CBF estimation variability for any distribution of the 5-minute scan time compared to only acquiring ASL data. Compared to single-PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single-PLD, free-lunch, and multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood into account was also demonstrated in the real data experiment. Spending time to measure the labeling efficiency and the blood instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population.
To determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability.PURPOSETo determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability.In a simulation framework, 5-minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation.METHODSIn a simulation framework, 5-minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation.For the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5-minute scan time compared to only acquiring ASL data. Compared to single-PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single-PLD, free-lunch, and multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment.RESULTSFor the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5-minute scan time compared to only acquiring ASL data. Compared to single-PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single-PLD, free-lunch, and multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment.Spending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population.CONCLUSIONSSpending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population.
PurposeTo determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability.MethodsIn a simulation framework, 5‐minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single‐post‐labeling delay (PLD), multi‐PLD, and free‐lunch time‐encoded (te‐FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation.ResultsFor the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5‐minute scan time compared to only acquiring ASL data. Compared to single‐PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single‐PLD, free‐lunch, and multi‐PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment.ConclusionsSpending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population.
Purpose To determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability. Methods In a simulation framework, 5‐minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single‐post‐labeling delay (PLD), multi‐PLD, and free‐lunch time‐encoded (te‐FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation. Results For the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5‐minute scan time compared to only acquiring ASL data. Compared to single‐PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single‐PLD, free‐lunch, and multi‐PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment. Conclusions Spending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population.
Author van Osch, Matthias J. P.
Clement, Patricia
den Dekker, Arnold J.
Achten, Eric
Sijbers, Jan
Bladt, Piet
AuthorAffiliation 2 Department of Radiology Leiden University Medical Center Leiden The Netherlands
3 Leiden Institute of Brain and Cognition Leiden University Leiden The Netherlands
4 Department of Radiology and Nuclear Medicine Ghent University Ghent Belgium
1 imec - Vision Lab, Department of Physics University of Antwerp Antwerp Belgium
AuthorAffiliation_xml – name: 4 Department of Radiology and Nuclear Medicine Ghent University Ghent Belgium
– name: 1 imec - Vision Lab, Department of Physics University of Antwerp Antwerp Belgium
– name: 2 Department of Radiology Leiden University Medical Center Leiden The Netherlands
– name: 3 Leiden Institute of Brain and Cognition Leiden University Leiden The Netherlands
Author_xml – sequence: 1
  givenname: Piet
  orcidid: 0000-0002-1294-9948
  surname: Bladt
  fullname: Bladt, Piet
  email: piet.bladt@uantwerpen.be
  organization: University of Antwerp
– sequence: 2
  givenname: Matthias J. P.
  orcidid: 0000-0001-7034-8959
  surname: van Osch
  fullname: van Osch, Matthias J. P.
  organization: Leiden University
– sequence: 3
  givenname: Patricia
  surname: Clement
  fullname: Clement, Patricia
  organization: Ghent University
– sequence: 4
  givenname: Eric
  orcidid: 0000-0002-5148-4178
  surname: Achten
  fullname: Achten, Eric
  organization: Ghent University
– sequence: 5
  givenname: Jan
  surname: Sijbers
  fullname: Sijbers, Jan
  organization: University of Antwerp
– sequence: 6
  givenname: Arnold J.
  surname: den Dekker
  fullname: den Dekker, Arnold J.
  organization: University of Antwerp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32424947$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1rFTEYhYNU7G114R-QgBu7mDaTZL42FilqhRbBj3XI5L65puRjmmRaZusvb-q9FS26CuR9zuG8yTlAez54QOhlTY5rQuiJi-6Y9qzmT9CqbiitaDPwPbQiHScVqwe-jw5SuiKEDEPHn6F9RjnlA-9W6OfXeZpCzMZvsAOZ5ggOfE44ROxCBCxvIMoNpFN8Hm5xDvh6lj4bvWAFEcYoLR5tCGusbZm7kDKOYI0c7YKNxw12xs8ZEh4XLGOGaIoiTWVk5VhAv3mOnmppE7zYnYfo-4f3387Oq4vPHz-dvbuoFOeMV0x367aTvGFKDYRy3TSqBt1RNei-VWOnWdfUpGYtdOWajaShPVc9BzkMnGl2iN5ufad5dLBWZc2SXkzROBkXEaQRf0-8-SE24UaUV6Sk7ovBm51BDNczpCycSQqslR7CnATlhLec9R0p6OtH6FWYoy_rFYoOjLd90xbq1Z-Jfkd5-J4CnGwBFUNKEbRQJstswn1AY0VNxH0BRCmA-FWAojh6pHgw_Re7c781Fpb_g-Lyy-VWcQfG28Gb
CitedBy_id crossref_primary_10_1016_j_neuroimage_2021_117955
crossref_primary_10_1186_s12916_023_02928_1
crossref_primary_10_1002_mrm_29268
crossref_primary_10_1259_bjr_20220034
crossref_primary_10_1007_s12975_021_00983_5
crossref_primary_10_3389_fphys_2024_1437973
crossref_primary_10_1002_mrm_30091
crossref_primary_10_1002_jmri_28758
crossref_primary_10_1016_j_mri_2020_07_010
crossref_primary_10_1016_j_mri_2021_09_012
Cites_doi 10.1002/(SICI)1522-2594(200005)43:5<739::AID-MRM17>3.0.CO;2-2
10.1002/mrm.22245
10.1016/0022-2364(74)90088-2
10.1002/mrm.20390
10.1002/mrm.26325
10.1002/mrm.20178
10.1016/j.mri.2016.08.021
10.1002/mrm.25083
10.1002/mrm.22465
10.1016/j.neuroimage.2014.02.011
10.1038/jcbfm.1987.102
10.1002/mrm.26513
10.1016/0026-2862(74)90059-4
10.1109/TSMC.1979.4310076
10.1016/j.neuroimage.2012.10.087
10.1002/mrm.26984
10.1002/mrm.25197
10.1002/mrm.22218
10.1177/0271678X17713434
10.1016/0006-8993(81)90619-3
10.1109/TSP.2008.2005752
10.1038/jcbfm.2014.92
10.1177/0271678X15605856
10.1016/j.zemedi.2014.07.003
10.1002/mrm.1910230106
10.1002/mrm.26266
10.1002/mrm.21403
10.1002/mrm.24335
10.1016/j.neuroimage.2009.07.068
10.1002/mrm.21790
10.1016/j.media.2014.11.005
10.1002/mrm.1910400308
10.1002/mrm.25875
10.1371/journal.pone.0109230
10.1002/mrm.27580
10.1177/0271678X16636393
10.1002/mrm.10180
10.1007/BF02364653
10.1002/1522-2594(200009)44:3<440::AID-MRM15>3.0.CO;2-6
10.1002/jmri.24246
10.1002/mrm.23104
10.1002/nbm.1693
10.1002/jmri.23822
10.1002/mrm.21442
10.1002/mrm.21039
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28314
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate BLADT et al
EISSN 1522-2594
EndPage 2536
ExternalDocumentID PMC7402018
32424947
10_1002_mrm_28314
MRM28314
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Space Agency (ESA) and BELSPO Prodex through the BrainDTI project
– fundername: Dutch Heart Foundation and the Netherlands Organisation for Scientific Research (NWO)
  funderid: Project: Brain@Risk
– fundername: Research Foundation Flanders (FWO)
  funderid: 1S69918N
– fundername: EU
  funderid: Horizon2020, CDS‐QUAMRI, Project number 634541
– fundername: Netherlands Organisation for Scientific Research (NWO)
  funderid: VICI‐project; nr.016.160.351
– fundername: Dutch Heart Foundation and the Netherlands Organisation for Scientific Research (NWO)
  grantid: Project: Brain@Risk
– fundername: EU
  grantid: Horizon2020, CDS‐QUAMRI, Project number 634541
– fundername: Research Foundation Flanders (FWO)
  grantid: 1S69918N
– fundername: Netherlands Organisation for Scientific Research (NWO)
  grantid: VICI‐project; nr.016.160.351
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4434-3f7d67a453cc9024f55c1ef72c9f86cb7f37510136e7ef73b05284c84ea9943f3
IEDL.DBID 24P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533695700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:01:09 EST 2025
Fri Jul 11 09:20:13 EDT 2025
Sat Nov 29 14:51:40 EST 2025
Wed Feb 19 02:29:43 EST 2025
Tue Nov 18 22:49:39 EST 2025
Sat Nov 29 06:34:29 EST 2025
Wed Jan 22 16:34:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords labeling efficiency
cerebral blood flow
absolute quantification
pseudo-continuous arterial spin labeling
longitudinal relaxation time of blood
Language English
License Attribution-NonCommercial
2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-3f7d67a453cc9024f55c1ef72c9f86cb7f37510136e7ef73b05284c84ea9943f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5148-4178
0000-0001-7034-8959
0000-0002-1294-9948
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28314
PMID 32424947
PQID 2429346856
PQPubID 1016391
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7402018
proquest_miscellaneous_2404643870
proquest_journals_2429346856
pubmed_primary_32424947
crossref_citationtrail_10_1002_mrm_28314
crossref_primary_10_1002_mrm_28314
wiley_primary_10_1002_mrm_28314_MRM28314
PublicationCentury 2000
PublicationDate November 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1974; 15
2014; 92
2013; 69
2013; 66
2006; 56
2015; 73
2010; 18
2000; 43
2000; 44
1987; 7
2016; 76
2008; 59
1981; 208
2007
1981; 9
1998; 40
2011; 19
1974; 8
2016; 36
2010; 63
2007; 58
2016; 77
2004; 52
2015; 25
2009; 57
2002; 48
2010; 64
2010; 49
2013; 37
2019; 81
2017; 77
2015; 20
2017; 35
2017; 78
2019
2005; 53
2011; 24
2014; 39
2014; 9
2014; 72
2012; 67
2008; 60
1992; 23
2014; 34
2018; 38
1979; 9
2018; 79
e_1_2_7_5_1
Bladt P (e_1_2_7_31_1) 2019
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
Gunther M (e_1_2_7_20_1) 2007
e_1_2_7_37_1
e_1_2_7_39_1
Günther M (e_1_2_7_17_1) 2019
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 38
  start-page: 1461
  year: 2018
  end-page: 1480
  article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow
  publication-title: J Cerebral Blood Flow Metabolism
– volume: 7
  start-page: 527
  year: 1987
  end-page: 542
  article-title: Positron emission tomographic measurement of cerebral blood flow and permeability‐surface area product of water using [ O]water and [ C]butanol
  publication-title: J Cereb Blood Flow Metab
– volume: 77
  start-page: 1841
  year: 2017
  end-page: 1852
  article-title: Measuring the labeling efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 72
  start-page: 1712
  year: 2014
  end-page: 1722
  article-title: Time‐encoded pseudocontinuous arterial spin labeling: basic properties and timing strategies for human applications
  publication-title: Magn Reson Med
– volume: 36
  start-page: 842
  year: 2016
  end-page: 861
  article-title: Comparison of cerebral blood flow measurement with [15O]‐water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review
  publication-title: J Cereb Blood Flow Metab
– volume: 23
  start-page: 37
  year: 1992
  end-page: 45
  article-title: Perfusion imaging
  publication-title: Magn Reson Med
– volume: 36
  start-page: 370
  year: 2016
  end-page: 374
  article-title: A general model to calculate the spin‐lattice ( ) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength
  publication-title: J Cereb Blood Flow Metab
– volume: 52
  start-page: 679
  year: 2004
  end-page: 682
  article-title: Determining the longitudinal relaxation time ( ) of blood at 3.0 Tesla
  publication-title: Magn Reson Med
– year: 2019
  article-title: The costs and benefits of estimating of tissue alongside cerebral blood flow and arterial transit time in pseudo‐continuous arterial spin labeling
  publication-title: NMR Biomed
– volume: 76
  start-page: 270
  year: 2016
  end-page: 281
  article-title: Quantitative theory for the longitudinal relaxation time of blood water
  publication-title: Magn Reson Med
– volume: 208
  start-page: 35
  year: 1981
  end-page: 58
  article-title: Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study
  publication-title: Brain Res
– volume: 44
  start-page: 440
  year: 2000
  end-page: 449
  article-title: Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation
  publication-title: Magn Reson Med
– volume: 63
  start-page: 374
  year: 2010
  end-page: 384
  article-title: Arterial transit time effects in pulsed arterial spin labeling CBF mapping: insight from a PET and MR study in normal human subjects
  publication-title: Magn Reson Med
– volume: 92
  start-page: 182
  year: 2014
  end-page: 192
  article-title: Accuracy and precision of pseudo‐continuous arterial spin labeling perfusion during baseline and hypercapnia: a head‐to‐head comparison with O H O positron emission tomography
  publication-title: NeuroImage
– volume: 34
  start-page: 1373
  year: 2014
  end-page: 1380
  article-title: Comparison of cerebral blood flow acquired by simultaneous [ O]water positron emission tomography and arterial spin labeling magnetic resonance imaging
  publication-title: J Cereb Blood Flow Metab.
– volume: 77
  start-page: 2296
  year: 2016
  end-page: 2302
  article-title: Fast measurement of blood in the human carotid artery at 3T: accuracy, precision, and reproducibility
  publication-title: Magn Reson Med
– volume: 15
  start-page: 344
  year: 1974
  end-page: 353
  article-title: Magnetic‐field‐dependent water proton spin‐lattice relaxation rates of hemoglobin solutions and whole blood
  publication-title: J Magn Reson (1969)
– volume: 69
  start-page: 1014
  year: 2013
  end-page: 1022
  article-title: Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling
  publication-title: Magn Reson Med
– year: 2019
– volume: 79
  start-page: 3249
  year: 2018
  end-page: 3255
  article-title: Fisher information and Cramér‐Rao lower bound for experimental design in parallel imaging
  publication-title: Magn Reson Med
– volume: 39
  start-page: 931
  year: 2014
  end-page: 939
  article-title: Reliability of two‐dimensional and three‐dimensional pseudo‐continuous arterial spin labeling perfusion MRI in elderly populations: comparison with O‐water positron emission tomography
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 1313
  year: 2011
  end-page: 1325
  article-title: Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent
  publication-title: NMR Biomed
– volume: 56
  start-page: 891
  year: 2006
  end-page: 906
  article-title: Bayesian inference of hemodynamic changes in functional arterial spin labeling data
  publication-title: Magn Reson Med
– volume: 64
  start-page: 799
  year: 2010
  end-page: 810
  article-title: Multiphase pseudocontinuous arterial spin labeling (MP‐PCASL) for robust quantification of cerebral blood flow
  publication-title: Magn Reson Med
– volume: 18
  start-page: 1736
  year: 2010
– year: 2007
– volume: 8
  start-page: 1
  year: 1974
  end-page: 13
  article-title: On‐line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat
  publication-title: Microvascular Res
– volume: 78
  start-page: 1342
  year: 2017
  end-page: 1351
  article-title: Improving the robustness of pseudo‐continuous arterial spin labeling to off‐resonance and pulsatile flow velocity
  publication-title: Magn Reson Med
– volume: 25
  start-page: 221
  year: 2015
  end-page: 229
  article-title: Improving perfusion quantification in arterial spin labeling for delayed arrival times using optimized acquisition schemes
  publication-title: Z Med Phys
– volume: 49
  start-page: 104
  year: 2010
  end-page: 113
  article-title: The QUASAR reproducibility study, part II: results from a multi‐center arterial spin labeling test‐retest study
  publication-title: NeuroImage
– volume: 43
  start-page: 739
  year: 2000
  end-page: 746
  article-title: Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 19
  start-page: 300
  year: 2011
– volume: 48
  start-page: 27
  year: 2002
  end-page: 41
  article-title: Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: Accounting for capillary water permeability
  publication-title: Magn Reson Med
– volume: 53
  start-page: 511
  year: 2005
  end-page: 518
  article-title: Four‐phase single‐capillary stepwise model for kinetics in arterial spin labeling MRI
  publication-title: Magn Reson Med
– volume: 63
  start-page: 765
  year: 2010
  end-page: 771
  article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 66
  start-page: 662
  year: 2013
  end-page: 671
  article-title: Comparison of 2D and 3D single‐shot ASL perfusion fMRI sequences
  publication-title: NeuroImage
– volume: 58
  start-page: 1020
  year: 2007
  end-page: 1027
  article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 20
  start-page: 184
  year: 2015
  end-page: 197
  article-title: Spatially variant noise estimation in MRI: a homomorphic approach
  publication-title: Med Image Anal
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med.
– volume: 40
  start-page: 383
  year: 1998
  end-page: 396
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 9
  start-page: 303
  year: 1981
  end-page: 321
  article-title: Microcirculatory model relating geometrical variation to changes in pressure and flow rate
  publication-title: Ann Biomed Eng
– volume: 57
  start-page: 223
  year: 2009
  end-page: 236
  article-title: Variational bayesian inference for a nonlinear forward model
  publication-title: IEEE Trans Signal Process
– volume: 35
  start-page: 69
  year: 2017
  end-page: 80
  article-title: What are normal relaxation times of tissues at 3 T?
  publication-title: Magn Reson Imaging
– volume: 60
  start-page: 1488
  year: 2008
  end-page: 1497
  article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray‐level histograms
  publication-title: IEEE Trans Syst, Man, Cybernet
– volume: 37
  start-page: 332
  year: 2013
  end-page: 342
  article-title: ‐based arterial spin labeling measurements of blood to tissue water transfer in human brain
  publication-title: J Magn Reson Imaging
– volume: 9
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Blood tracer kinetics in the arterial tree
  publication-title: PLOS ONE
– volume: 81
  start-page: 2474
  year: 2019
  end-page: 2488
  article-title: A general framework for optimizing arterial spin labeling MRI experiments
  publication-title: Magn Reson Med
– volume: 59
  start-page: 316
  year: 2008
  end-page: 325
  article-title: Modeling and optimization of look‐locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1275
  year: 2012
  end-page: 1284
  article-title: A two‐stage approach for measuring vascular water exchange and arterial transit time by diffusion‐weighted perfusion MRI
  publication-title: Magn Reson Med
– ident: e_1_2_7_18_1
  doi: 10.1002/(SICI)1522-2594(200005)43:5<739::AID-MRM17>3.0.CO;2-2
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.22245
– ident: e_1_2_7_10_1
  doi: 10.1016/0022-2364(74)90088-2
– ident: e_1_2_7_48_1
  doi: 10.1002/mrm.20390
– volume-title: ISMRM Workshop on Cerebral Perfusion and Brain Function: Novel Techniques and Applications, Salvador da Bahia, Brazil
  year: 2007
  ident: e_1_2_7_20_1
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.26325
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.20178
– ident: e_1_2_7_30_1
  doi: 10.1016/j.mri.2016.08.021
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.25083
– ident: e_1_2_7_40_1
  doi: 10.1002/mrm.22465
– ident: e_1_2_7_4_1
  doi: 10.1016/j.neuroimage.2014.02.011
– ident: e_1_2_7_44_1
  doi: 10.1038/jcbfm.1987.102
– ident: e_1_2_7_41_1
  doi: 10.1002/mrm.26513
– ident: e_1_2_7_50_1
  doi: 10.1016/0026-2862(74)90059-4
– ident: e_1_2_7_32_1
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neuroimage.2012.10.087
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.26984
– ident: e_1_2_7_2_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.22218
– ident: e_1_2_7_6_1
  doi: 10.1177/0271678X17713434
– ident: e_1_2_7_49_1
  doi: 10.1016/0006-8993(81)90619-3
– ident: e_1_2_7_35_1
  doi: 10.1109/TSP.2008.2005752
– ident: e_1_2_7_3_1
  doi: 10.1038/jcbfm.2014.92
– ident: e_1_2_7_8_1
  doi: 10.1177/0271678X15605856
– ident: e_1_2_7_19_1
  doi: 10.1016/j.zemedi.2014.07.003
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.1910230106
– ident: e_1_2_7_29_1
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.26266
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.21403
– ident: e_1_2_7_22_1
– ident: e_1_2_7_39_1
  doi: 10.1002/mrm.24335
– start-page: e4182
  year: 2019
  ident: e_1_2_7_31_1
  article-title: The costs and benefits of estimating T 1 of tissue alongside cerebral blood flow and arterial transit time in pseudo‐continuous arterial spin labeling
  publication-title: NMR Biomed
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroimage.2009.07.068
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.21790
– volume-title: University of Michigan International Workshop on Arterial Spin Labeling MRI: Technical Updates and Clinical Experience, Ann Arbor, Michigan, USA
  year: 2019
  ident: e_1_2_7_17_1
– ident: e_1_2_7_26_1
  doi: 10.1016/j.media.2014.11.005
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.1910400308
– ident: e_1_2_7_42_1
  doi: 10.1002/mrm.25875
– ident: e_1_2_7_23_1
  doi: 10.1371/journal.pone.0109230
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.27580
– ident: e_1_2_7_33_1
  doi: 10.1177/0271678X16636393
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.10180
– ident: e_1_2_7_51_1
  doi: 10.1007/BF02364653
– ident: e_1_2_7_24_1
  doi: 10.1002/1522-2594(200009)44:3<440::AID-MRM15>3.0.CO;2-6
– ident: e_1_2_7_5_1
  doi: 10.1002/jmri.24246
– ident: e_1_2_7_43_1
  doi: 10.1002/mrm.23104
– ident: e_1_2_7_47_1
  doi: 10.1002/nbm.1693
– ident: e_1_2_7_45_1
  doi: 10.1002/jmri.23822
– ident: e_1_2_7_46_1
  doi: 10.1002/mrm.21442
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.21039
SSID ssj0009974
Score 2.39577
Snippet Purpose To determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency...
To determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood...
PurposeTo determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2523
SubjectTerms absolute quantification
Arteries
Blood flow
Brain - diagnostic imaging
Cerebral blood flow
Cerebrovascular Circulation
Data acquisition
Efficiency
Full Papers—Imaging Methodology
Ground truth
Humans
Labeling
labeling efficiency
longitudinal relaxation time of blood
Magnetic Resonance Angiography
Population (statistical)
Population distribution
Population statistics
pseudo‐continuous arterial spin labeling
Reproducibility of Results
Spin labeling
Spin Labels
Variability
Title Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28314
https://www.ncbi.nlm.nih.gov/pubmed/32424947
https://www.proquest.com/docview/2429346856
https://www.proquest.com/docview/2404643870
https://pubmed.ncbi.nlm.nih.gov/PMC7402018
Volume 84
WOSCitedRecordID wos000533695700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-aNkC7MBgfCxuTQRy4hCWxE9vigBBQDWmtpomJ3qLEtaFSk4yk3dQrfznPTppSDSQkLlGS96I49vuK_fx7AK8wgogDlSg_Zyb2mUiEn8cq9IVgNNJxYrKJG-kzPhqJ8Vieb8Hb1V6YFh-in3CzmuHstVXwLG9O1qChRV28Qd9oi1jvhCEVtm5DxM7XiLuyhWDmzBoayVawQkF00j-66YxuRZi3EyV_D2CdBxrs_VfbH8D9LvAk71tJeQhbutyHe8NuaX0f7rpcUNU8gp-20mdl0QW-kWI9hdiQqiY2LZdkKP5ohpp35LS6IfOK_FhkNudoSZSu7UL0jLh8eGJmSC-qZk5qbHCWz5ZkWpKYFNNygSEuyZfEpZSiDpDmCkkokm5__GO4HHz68uHU70o1-Ioxynxq-CThGYupUhLdvolxwLXhkZJGJCrnhnKr_TTRHG_TPIjRLyrBdCYlo4Y-ge2yKvUBEBZqZhLKJ4qjvORoUKSiVGseTGgU5MyD16sxS1WHY27LaczSFoE5SrF3U9e7HrzsWa9a8I4_MR2tBj7t9LdJMXCRlCUiTjx40ZNR8-xySlbqamF57LIwRYPnwdNWTvq32DCVScY94BsS1DNYVO9NSjn97tC9uf2jDwV-ppOgvzc8HV4M3cmzf2c9hN3IThi4zZRHsD2vF_o53FHX82lTHzsFwiMfi2PY-XgxuDzDq6-fR78AKekjBw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N42O88DFgBAYYxAMv2dLYiWMJCSHE1Im2QmiIvUWJa0OlJhlJC-orfzl3TppSDSQk3qLcRXF8n7HPvwN4gRlEFOhY-7mwkS-SOPHzSA_8JBE8NFFss6mT9EhOJsn5ufqwA6_WZ2FafIh-wY0sw_lrMnBakD7eoIYWdXGEwZG6WF8RmGhQ44bPp5MN5K5qMZilIE-jxBpXKAiP-0e3o9GlFPNypeTvGawLQSe3_m_wt-Fml3qyN62u3IEdU-7D9XG3ub4P11w1qG7uwk_q9VkRvsAXVmwWERtW1YwKc1mGBoCOqHnNhtUPtqjYt2VGVUcrpk1NW9Fz5irimZ0jvaiaBatxxFk-X7FZySJWzMolJrksXzFXVIpWwJoLJKFSuhPy9-DTybuzt0O_a9bgayG48LmV01hmIuJaKwz8NkKRGytDrWwS61xaLsn-eWwk3uZ5EGFk1IkwmVKCW34fdsuqNA-AiYERNuZyqiVqTI4uRWnOjZHBlIdBLjx4uRZaqjskc2qoMU9bDOYwxdlN3ex68LxnvWjhO_7EdLiWfNpZcJNi6qK4iJMo9uBZT0bbow2VrDTVknhoY5ijy_PgoFWU_i2UqAolpAdyS4V6BsL13qaUs68O31vSP_0gwc90KvT3gafjj2N38fDfWZ_C3vBsPEpHp5P3j-BGSMsH7mjlIewu6qV5DFf198WsqZ84a_oFWIEjyA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NHUy88DG-AgMM4oGXsDS241hCQohRDdFW08SkvUWJY0OlJilJC-orfzlnJ02pBhISb1F8URzfZ3zn3wG8xAiCBypSfsYM91kcxX7G1dCPY0ZDzSOT5o7TYzGdxpeX8mwP3mzOwrT4EP2Gm9UMZ6-tgutFbo63qKFFXbxG52i7WO8z20RmAPsn56OL8RZ0V7YozIJZWyPZBlkoCI_7h3f90ZUg82qt5O8xrHNCo1v_N_3bcLMLPsm7VlruwJ4uD-Fg0qXXD-G6qwdVzV34abt9VhZh4AspttuIDalqYktzSYoqgKaoeUtOqx9kWZFvq9TWHa2J0rVNRs-Jq4knZo7jRdUsSY0zTrP5msxKwkkxK1cY5pJsTVxZKeoBaRY4hGLpzsjfg4vRh8_vT_2uXYOvGKPMp0bkkUgZp0pJdP2GI9O1EaGSJo5UJgwV1gLQSAu8TbOAo29UMdOplIwaeh8GZVXqh0DYUDMTUZErgTKToVGRilKtRZDTMMiYB682TEtUh2VuW2rMkxaFOUxwdRO3uh686EkXLYDHn4iONpxPOh1uEgxeJGVRzCMPnvfDqH02pZKWulpZGpsapmj0PHjQCkr_FhuqMsmEB2JHhHoCi-y9O1LOvjqEb2H_6ocxfqYTob9PPJmcT9zFo38nfQYHZyejZPxx-ukx3Ajt_oE7W3kEg2W90k_gmvq-nDX1006dfgFF0CRx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supporting+measurements+or+more+averages%3F+How+to+quantify+cerebral+blood+flow+most+reliably+in+5+minutes+by+arterial+spin+labeling&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bladt%2C+Piet&rft.au=van+Osch%2C+Matthias+J.+P.&rft.au=Clement%2C+Patricia&rft.au=Achten%2C+Eric&rft.date=2020-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=84&rft.issue=5&rft.spage=2523&rft.epage=2536&rft_id=info:doi/10.1002%2Fmrm.28314&rft_id=info%3Apmid%2F32424947&rft.externalDocID=PMC7402018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon