Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling
Purpose To determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability. Methods In a simulation framework, 5‐minute scan protocols with differe...
Uložené v:
| Vydané v: | Magnetic resonance in medicine Ročník 84; číslo 5; s. 2523 - 2536 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Wiley Subscription Services, Inc
01.11.2020
John Wiley and Sons Inc |
| Predmet: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Purpose
To determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood
T1 is beneficial in terms of CBF quantification reliability.
Methods
In a simulation framework, 5‐minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single‐post‐labeling delay (PLD), multi‐PLD, and free‐lunch time‐encoded (te‐FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation.
Results
For the considered population statistics, measuring the labeling efficiency and the blood
T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5‐minute scan time compared to only acquiring ASL data. Compared to single‐PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single‐PLD, free‐lunch, and multi‐PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood
T1 into account was also demonstrated in the real data experiment.
Conclusions
Spending time to measure the labeling efficiency and the blood
T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population. |
|---|---|
| AbstractList | To determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood
is beneficial in terms of CBF quantification reliability.
In a simulation framework, 5-minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation.
For the considered population statistics, measuring the labeling efficiency and the blood
proved beneficial in terms of CBF estimation variability for any distribution of the 5-minute scan time compared to only acquiring ASL data. Compared to single-PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single-PLD, free-lunch, and multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood
into account was also demonstrated in the real data experiment.
Spending time to measure the labeling efficiency and the blood
instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population. To determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability.PURPOSETo determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability.In a simulation framework, 5-minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation.METHODSIn a simulation framework, 5-minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation.For the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5-minute scan time compared to only acquiring ASL data. Compared to single-PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single-PLD, free-lunch, and multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment.RESULTSFor the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5-minute scan time compared to only acquiring ASL data. Compared to single-PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single-PLD, free-lunch, and multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment.Spending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population.CONCLUSIONSSpending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population. PurposeTo determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability.MethodsIn a simulation framework, 5‐minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single‐post‐labeling delay (PLD), multi‐PLD, and free‐lunch time‐encoded (te‐FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation.ResultsFor the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5‐minute scan time compared to only acquiring ASL data. Compared to single‐PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single‐PLD, free‐lunch, and multi‐PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment.ConclusionsSpending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population. Purpose To determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability. Methods In a simulation framework, 5‐minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single‐post‐labeling delay (PLD), multi‐PLD, and free‐lunch time‐encoded (te‐FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation. Results For the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5‐minute scan time compared to only acquiring ASL data. Compared to single‐PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single‐PLD, free‐lunch, and multi‐PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment. Conclusions Spending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population. |
| Author | van Osch, Matthias J. P. Clement, Patricia den Dekker, Arnold J. Achten, Eric Sijbers, Jan Bladt, Piet |
| AuthorAffiliation | 2 Department of Radiology Leiden University Medical Center Leiden The Netherlands 3 Leiden Institute of Brain and Cognition Leiden University Leiden The Netherlands 4 Department of Radiology and Nuclear Medicine Ghent University Ghent Belgium 1 imec - Vision Lab, Department of Physics University of Antwerp Antwerp Belgium |
| AuthorAffiliation_xml | – name: 4 Department of Radiology and Nuclear Medicine Ghent University Ghent Belgium – name: 1 imec - Vision Lab, Department of Physics University of Antwerp Antwerp Belgium – name: 2 Department of Radiology Leiden University Medical Center Leiden The Netherlands – name: 3 Leiden Institute of Brain and Cognition Leiden University Leiden The Netherlands |
| Author_xml | – sequence: 1 givenname: Piet orcidid: 0000-0002-1294-9948 surname: Bladt fullname: Bladt, Piet email: piet.bladt@uantwerpen.be organization: University of Antwerp – sequence: 2 givenname: Matthias J. P. orcidid: 0000-0001-7034-8959 surname: van Osch fullname: van Osch, Matthias J. P. organization: Leiden University – sequence: 3 givenname: Patricia surname: Clement fullname: Clement, Patricia organization: Ghent University – sequence: 4 givenname: Eric orcidid: 0000-0002-5148-4178 surname: Achten fullname: Achten, Eric organization: Ghent University – sequence: 5 givenname: Jan surname: Sijbers fullname: Sijbers, Jan organization: University of Antwerp – sequence: 6 givenname: Arnold J. surname: den Dekker fullname: den Dekker, Arnold J. organization: University of Antwerp |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32424947$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kk1rFTEYhYNU7G114R-QgBu7mDaTZL42FilqhRbBj3XI5L65puRjmmRaZusvb-q9FS26CuR9zuG8yTlAez54QOhlTY5rQuiJi-6Y9qzmT9CqbiitaDPwPbQiHScVqwe-jw5SuiKEDEPHn6F9RjnlA-9W6OfXeZpCzMZvsAOZ5ggOfE44ROxCBCxvIMoNpFN8Hm5xDvh6lj4bvWAFEcYoLR5tCGusbZm7kDKOYI0c7YKNxw12xs8ZEh4XLGOGaIoiTWVk5VhAv3mOnmppE7zYnYfo-4f3387Oq4vPHz-dvbuoFOeMV0x367aTvGFKDYRy3TSqBt1RNei-VWOnWdfUpGYtdOWajaShPVc9BzkMnGl2iN5ufad5dLBWZc2SXkzROBkXEaQRf0-8-SE24UaUV6Sk7ovBm51BDNczpCycSQqslR7CnATlhLec9R0p6OtH6FWYoy_rFYoOjLd90xbq1Z-Jfkd5-J4CnGwBFUNKEbRQJstswn1AY0VNxH0BRCmA-FWAojh6pHgw_Re7c781Fpb_g-Lyy-VWcQfG28Gb |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2021_117955 crossref_primary_10_1186_s12916_023_02928_1 crossref_primary_10_1002_mrm_29268 crossref_primary_10_1259_bjr_20220034 crossref_primary_10_1007_s12975_021_00983_5 crossref_primary_10_3389_fphys_2024_1437973 crossref_primary_10_1002_mrm_30091 crossref_primary_10_1002_jmri_28758 crossref_primary_10_1016_j_mri_2020_07_010 crossref_primary_10_1016_j_mri_2021_09_012 |
| Cites_doi | 10.1002/(SICI)1522-2594(200005)43:5<739::AID-MRM17>3.0.CO;2-2 10.1002/mrm.22245 10.1016/0022-2364(74)90088-2 10.1002/mrm.20390 10.1002/mrm.26325 10.1002/mrm.20178 10.1016/j.mri.2016.08.021 10.1002/mrm.25083 10.1002/mrm.22465 10.1016/j.neuroimage.2014.02.011 10.1038/jcbfm.1987.102 10.1002/mrm.26513 10.1016/0026-2862(74)90059-4 10.1109/TSMC.1979.4310076 10.1016/j.neuroimage.2012.10.087 10.1002/mrm.26984 10.1002/mrm.25197 10.1002/mrm.22218 10.1177/0271678X17713434 10.1016/0006-8993(81)90619-3 10.1109/TSP.2008.2005752 10.1038/jcbfm.2014.92 10.1177/0271678X15605856 10.1016/j.zemedi.2014.07.003 10.1002/mrm.1910230106 10.1002/mrm.26266 10.1002/mrm.21403 10.1002/mrm.24335 10.1016/j.neuroimage.2009.07.068 10.1002/mrm.21790 10.1016/j.media.2014.11.005 10.1002/mrm.1910400308 10.1002/mrm.25875 10.1371/journal.pone.0109230 10.1002/mrm.27580 10.1177/0271678X16636393 10.1002/mrm.10180 10.1007/BF02364653 10.1002/1522-2594(200009)44:3<440::AID-MRM15>3.0.CO;2-6 10.1002/jmri.24246 10.1002/mrm.23104 10.1002/nbm.1693 10.1002/jmri.23822 10.1002/mrm.21442 10.1002/mrm.21039 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine – notice: 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.28314 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | BLADT et al |
| EISSN | 1522-2594 |
| EndPage | 2536 |
| ExternalDocumentID | PMC7402018 32424947 10_1002_mrm_28314 MRM28314 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Space Agency (ESA) and BELSPO Prodex through the BrainDTI project – fundername: Dutch Heart Foundation and the Netherlands Organisation for Scientific Research (NWO) funderid: Project: Brain@Risk – fundername: Research Foundation Flanders (FWO) funderid: 1S69918N – fundername: EU funderid: Horizon2020, CDS‐QUAMRI, Project number 634541 – fundername: Netherlands Organisation for Scientific Research (NWO) funderid: VICI‐project; nr.016.160.351 – fundername: Dutch Heart Foundation and the Netherlands Organisation for Scientific Research (NWO) grantid: Project: Brain@Risk – fundername: EU grantid: Horizon2020, CDS‐QUAMRI, Project number 634541 – fundername: Research Foundation Flanders (FWO) grantid: 1S69918N – fundername: Netherlands Organisation for Scientific Research (NWO) grantid: VICI‐project; nr.016.160.351 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4434-3f7d67a453cc9024f55c1ef72c9f86cb7f37510136e7ef73b05284c84ea9943f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533695700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Nov 04 02:01:09 EST 2025 Fri Jul 11 09:20:13 EDT 2025 Sat Nov 29 14:51:40 EST 2025 Wed Feb 19 02:29:43 EST 2025 Tue Nov 18 22:49:39 EST 2025 Sat Nov 29 06:34:29 EST 2025 Wed Jan 22 16:34:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | labeling efficiency cerebral blood flow absolute quantification pseudo-continuous arterial spin labeling longitudinal relaxation time of blood |
| Language | English |
| License | Attribution-NonCommercial 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4434-3f7d67a453cc9024f55c1ef72c9f86cb7f37510136e7ef73b05284c84ea9943f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5148-4178 0000-0001-7034-8959 0000-0002-1294-9948 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28314 |
| PMID | 32424947 |
| PQID | 2429346856 |
| PQPubID | 1016391 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7402018 proquest_miscellaneous_2404643870 proquest_journals_2429346856 pubmed_primary_32424947 crossref_citationtrail_10_1002_mrm_28314 crossref_primary_10_1002_mrm_28314 wiley_primary_10_1002_mrm_28314_MRM28314 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 1974; 15 2014; 92 2013; 69 2013; 66 2006; 56 2015; 73 2010; 18 2000; 43 2000; 44 1987; 7 2016; 76 2008; 59 1981; 208 2007 1981; 9 1998; 40 2011; 19 1974; 8 2016; 36 2010; 63 2007; 58 2016; 77 2004; 52 2015; 25 2009; 57 2002; 48 2010; 64 2010; 49 2013; 37 2019; 81 2017; 77 2015; 20 2017; 35 2017; 78 2019 2005; 53 2011; 24 2014; 39 2014; 9 2014; 72 2012; 67 2008; 60 1992; 23 2014; 34 2018; 38 1979; 9 2018; 79 e_1_2_7_5_1 Bladt P (e_1_2_7_31_1) 2019 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 Gunther M (e_1_2_7_20_1) 2007 e_1_2_7_37_1 e_1_2_7_39_1 Günther M (e_1_2_7_17_1) 2019 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 38 start-page: 1461 year: 2018 end-page: 1480 article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow publication-title: J Cerebral Blood Flow Metabolism – volume: 7 start-page: 527 year: 1987 end-page: 542 article-title: Positron emission tomographic measurement of cerebral blood flow and permeability‐surface area product of water using [ O]water and [ C]butanol publication-title: J Cereb Blood Flow Metab – volume: 77 start-page: 1841 year: 2017 end-page: 1852 article-title: Measuring the labeling efficiency of pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 72 start-page: 1712 year: 2014 end-page: 1722 article-title: Time‐encoded pseudocontinuous arterial spin labeling: basic properties and timing strategies for human applications publication-title: Magn Reson Med – volume: 36 start-page: 842 year: 2016 end-page: 861 article-title: Comparison of cerebral blood flow measurement with [15O]‐water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review publication-title: J Cereb Blood Flow Metab – volume: 23 start-page: 37 year: 1992 end-page: 45 article-title: Perfusion imaging publication-title: Magn Reson Med – volume: 36 start-page: 370 year: 2016 end-page: 374 article-title: A general model to calculate the spin‐lattice ( ) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength publication-title: J Cereb Blood Flow Metab – volume: 52 start-page: 679 year: 2004 end-page: 682 article-title: Determining the longitudinal relaxation time ( ) of blood at 3.0 Tesla publication-title: Magn Reson Med – year: 2019 article-title: The costs and benefits of estimating of tissue alongside cerebral blood flow and arterial transit time in pseudo‐continuous arterial spin labeling publication-title: NMR Biomed – volume: 76 start-page: 270 year: 2016 end-page: 281 article-title: Quantitative theory for the longitudinal relaxation time of blood water publication-title: Magn Reson Med – volume: 208 start-page: 35 year: 1981 end-page: 58 article-title: Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study publication-title: Brain Res – volume: 44 start-page: 440 year: 2000 end-page: 449 article-title: Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation publication-title: Magn Reson Med – volume: 63 start-page: 374 year: 2010 end-page: 384 article-title: Arterial transit time effects in pulsed arterial spin labeling CBF mapping: insight from a PET and MR study in normal human subjects publication-title: Magn Reson Med – volume: 92 start-page: 182 year: 2014 end-page: 192 article-title: Accuracy and precision of pseudo‐continuous arterial spin labeling perfusion during baseline and hypercapnia: a head‐to‐head comparison with O H O positron emission tomography publication-title: NeuroImage – volume: 34 start-page: 1373 year: 2014 end-page: 1380 article-title: Comparison of cerebral blood flow acquired by simultaneous [ O]water positron emission tomography and arterial spin labeling magnetic resonance imaging publication-title: J Cereb Blood Flow Metab. – volume: 77 start-page: 2296 year: 2016 end-page: 2302 article-title: Fast measurement of blood in the human carotid artery at 3T: accuracy, precision, and reproducibility publication-title: Magn Reson Med – volume: 15 start-page: 344 year: 1974 end-page: 353 article-title: Magnetic‐field‐dependent water proton spin‐lattice relaxation rates of hemoglobin solutions and whole blood publication-title: J Magn Reson (1969) – volume: 69 start-page: 1014 year: 2013 end-page: 1022 article-title: Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling publication-title: Magn Reson Med – year: 2019 – volume: 79 start-page: 3249 year: 2018 end-page: 3255 article-title: Fisher information and Cramér‐Rao lower bound for experimental design in parallel imaging publication-title: Magn Reson Med – volume: 39 start-page: 931 year: 2014 end-page: 939 article-title: Reliability of two‐dimensional and three‐dimensional pseudo‐continuous arterial spin labeling perfusion MRI in elderly populations: comparison with O‐water positron emission tomography publication-title: J Magn Reson Imaging – volume: 24 start-page: 1313 year: 2011 end-page: 1325 article-title: Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent publication-title: NMR Biomed – volume: 56 start-page: 891 year: 2006 end-page: 906 article-title: Bayesian inference of hemodynamic changes in functional arterial spin labeling data publication-title: Magn Reson Med – volume: 64 start-page: 799 year: 2010 end-page: 810 article-title: Multiphase pseudocontinuous arterial spin labeling (MP‐PCASL) for robust quantification of cerebral blood flow publication-title: Magn Reson Med – volume: 18 start-page: 1736 year: 2010 – year: 2007 – volume: 8 start-page: 1 year: 1974 end-page: 13 article-title: On‐line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat publication-title: Microvascular Res – volume: 78 start-page: 1342 year: 2017 end-page: 1351 article-title: Improving the robustness of pseudo‐continuous arterial spin labeling to off‐resonance and pulsatile flow velocity publication-title: Magn Reson Med – volume: 25 start-page: 221 year: 2015 end-page: 229 article-title: Improving perfusion quantification in arterial spin labeling for delayed arrival times using optimized acquisition schemes publication-title: Z Med Phys – volume: 49 start-page: 104 year: 2010 end-page: 113 article-title: The QUASAR reproducibility study, part II: results from a multi‐center arterial spin labeling test‐retest study publication-title: NeuroImage – volume: 43 start-page: 739 year: 2000 end-page: 746 article-title: Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling publication-title: Magn Reson Med – volume: 19 start-page: 300 year: 2011 – volume: 48 start-page: 27 year: 2002 end-page: 41 article-title: Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: Accounting for capillary water permeability publication-title: Magn Reson Med – volume: 53 start-page: 511 year: 2005 end-page: 518 article-title: Four‐phase single‐capillary stepwise model for kinetics in arterial spin labeling MRI publication-title: Magn Reson Med – volume: 63 start-page: 765 year: 2010 end-page: 771 article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 66 start-page: 662 year: 2013 end-page: 671 article-title: Comparison of 2D and 3D single‐shot ASL perfusion fMRI sequences publication-title: NeuroImage – volume: 58 start-page: 1020 year: 2007 end-page: 1027 article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 20 start-page: 184 year: 2015 end-page: 197 article-title: Spatially variant noise estimation in MRI: a homomorphic approach publication-title: Med Image Anal – volume: 73 start-page: 102 year: 2015 end-page: 116 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med. – volume: 40 start-page: 383 year: 1998 end-page: 396 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling publication-title: Magn Reson Med – volume: 9 start-page: 303 year: 1981 end-page: 321 article-title: Microcirculatory model relating geometrical variation to changes in pressure and flow rate publication-title: Ann Biomed Eng – volume: 57 start-page: 223 year: 2009 end-page: 236 article-title: Variational bayesian inference for a nonlinear forward model publication-title: IEEE Trans Signal Process – volume: 35 start-page: 69 year: 2017 end-page: 80 article-title: What are normal relaxation times of tissues at 3 T? publication-title: Magn Reson Imaging – volume: 60 start-page: 1488 year: 2008 end-page: 1497 article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn Reson Med – volume: 9 start-page: 62 year: 1979 end-page: 66 article-title: A threshold selection method from gray‐level histograms publication-title: IEEE Trans Syst, Man, Cybernet – volume: 37 start-page: 332 year: 2013 end-page: 342 article-title: ‐based arterial spin labeling measurements of blood to tissue water transfer in human brain publication-title: J Magn Reson Imaging – volume: 9 start-page: 1 year: 2014 end-page: 11 article-title: Blood tracer kinetics in the arterial tree publication-title: PLOS ONE – volume: 81 start-page: 2474 year: 2019 end-page: 2488 article-title: A general framework for optimizing arterial spin labeling MRI experiments publication-title: Magn Reson Med – volume: 59 start-page: 316 year: 2008 end-page: 325 article-title: Modeling and optimization of look‐locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume publication-title: Magn Reson Med – volume: 67 start-page: 1275 year: 2012 end-page: 1284 article-title: A two‐stage approach for measuring vascular water exchange and arterial transit time by diffusion‐weighted perfusion MRI publication-title: Magn Reson Med – ident: e_1_2_7_18_1 doi: 10.1002/(SICI)1522-2594(200005)43:5<739::AID-MRM17>3.0.CO;2-2 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.22245 – ident: e_1_2_7_10_1 doi: 10.1016/0022-2364(74)90088-2 – ident: e_1_2_7_48_1 doi: 10.1002/mrm.20390 – volume-title: ISMRM Workshop on Cerebral Perfusion and Brain Function: Novel Techniques and Applications, Salvador da Bahia, Brazil year: 2007 ident: e_1_2_7_20_1 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.26325 – ident: e_1_2_7_7_1 doi: 10.1002/mrm.20178 – ident: e_1_2_7_30_1 doi: 10.1016/j.mri.2016.08.021 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.25083 – ident: e_1_2_7_40_1 doi: 10.1002/mrm.22465 – ident: e_1_2_7_4_1 doi: 10.1016/j.neuroimage.2014.02.011 – ident: e_1_2_7_44_1 doi: 10.1038/jcbfm.1987.102 – ident: e_1_2_7_41_1 doi: 10.1002/mrm.26513 – ident: e_1_2_7_50_1 doi: 10.1016/0026-2862(74)90059-4 – ident: e_1_2_7_32_1 doi: 10.1109/TSMC.1979.4310076 – ident: e_1_2_7_27_1 doi: 10.1016/j.neuroimage.2012.10.087 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.26984 – ident: e_1_2_7_2_1 doi: 10.1002/mrm.25197 – ident: e_1_2_7_13_1 doi: 10.1002/mrm.22218 – ident: e_1_2_7_6_1 doi: 10.1177/0271678X17713434 – ident: e_1_2_7_49_1 doi: 10.1016/0006-8993(81)90619-3 – ident: e_1_2_7_35_1 doi: 10.1109/TSP.2008.2005752 – ident: e_1_2_7_3_1 doi: 10.1038/jcbfm.2014.92 – ident: e_1_2_7_8_1 doi: 10.1177/0271678X15605856 – ident: e_1_2_7_19_1 doi: 10.1016/j.zemedi.2014.07.003 – ident: e_1_2_7_37_1 doi: 10.1002/mrm.1910230106 – ident: e_1_2_7_29_1 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.26266 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.21403 – ident: e_1_2_7_22_1 – ident: e_1_2_7_39_1 doi: 10.1002/mrm.24335 – start-page: e4182 year: 2019 ident: e_1_2_7_31_1 article-title: The costs and benefits of estimating T 1 of tissue alongside cerebral blood flow and arterial transit time in pseudo‐continuous arterial spin labeling publication-title: NMR Biomed – ident: e_1_2_7_14_1 doi: 10.1016/j.neuroimage.2009.07.068 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.21790 – volume-title: University of Michigan International Workshop on Arterial Spin Labeling MRI: Technical Updates and Clinical Experience, Ann Arbor, Michigan, USA year: 2019 ident: e_1_2_7_17_1 – ident: e_1_2_7_26_1 doi: 10.1016/j.media.2014.11.005 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.1910400308 – ident: e_1_2_7_42_1 doi: 10.1002/mrm.25875 – ident: e_1_2_7_23_1 doi: 10.1371/journal.pone.0109230 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.27580 – ident: e_1_2_7_33_1 doi: 10.1177/0271678X16636393 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.10180 – ident: e_1_2_7_51_1 doi: 10.1007/BF02364653 – ident: e_1_2_7_24_1 doi: 10.1002/1522-2594(200009)44:3<440::AID-MRM15>3.0.CO;2-6 – ident: e_1_2_7_5_1 doi: 10.1002/jmri.24246 – ident: e_1_2_7_43_1 doi: 10.1002/mrm.23104 – ident: e_1_2_7_47_1 doi: 10.1002/nbm.1693 – ident: e_1_2_7_45_1 doi: 10.1002/jmri.23822 – ident: e_1_2_7_46_1 doi: 10.1002/mrm.21442 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.21039 |
| SSID | ssj0009974 |
| Score | 2.39577 |
| Snippet | Purpose
To determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency... To determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood... PurposeTo determine whether sacrificing part of the scan time of pseudo‐continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2523 |
| SubjectTerms | absolute quantification Arteries Blood flow Brain - diagnostic imaging Cerebral blood flow Cerebrovascular Circulation Data acquisition Efficiency Full Papers—Imaging Methodology Ground truth Humans Labeling labeling efficiency longitudinal relaxation time of blood Magnetic Resonance Angiography Population (statistical) Population distribution Population statistics pseudo‐continuous arterial spin labeling Reproducibility of Results Spin labeling Spin Labels Variability |
| Title | Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28314 https://www.ncbi.nlm.nih.gov/pubmed/32424947 https://www.proquest.com/docview/2429346856 https://www.proquest.com/docview/2404643870 https://pubmed.ncbi.nlm.nih.gov/PMC7402018 |
| Volume | 84 |
| WOSCitedRecordID | wos000533695700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-aNkC7MBgfCxuTQRy4hCWxE9vigBBQDWmtpomJ3qLEtaFSk4yk3dQrfznPTppSDSQkLlGS96I49vuK_fx7AK8wgogDlSg_Zyb2mUiEn8cq9IVgNNJxYrKJG-kzPhqJ8Vieb8Hb1V6YFh-in3CzmuHstVXwLG9O1qChRV28Qd9oi1jvhCEVtm5DxM7XiLuyhWDmzBoayVawQkF00j-66YxuRZi3EyV_D2CdBxrs_VfbH8D9LvAk71tJeQhbutyHe8NuaX0f7rpcUNU8gp-20mdl0QW-kWI9hdiQqiY2LZdkKP5ohpp35LS6IfOK_FhkNudoSZSu7UL0jLh8eGJmSC-qZk5qbHCWz5ZkWpKYFNNygSEuyZfEpZSiDpDmCkkokm5__GO4HHz68uHU70o1-Ioxynxq-CThGYupUhLdvolxwLXhkZJGJCrnhnKr_TTRHG_TPIjRLyrBdCYlo4Y-ge2yKvUBEBZqZhLKJ4qjvORoUKSiVGseTGgU5MyD16sxS1WHY27LaczSFoE5SrF3U9e7HrzsWa9a8I4_MR2tBj7t9LdJMXCRlCUiTjx40ZNR8-xySlbqamF57LIwRYPnwdNWTvq32DCVScY94BsS1DNYVO9NSjn97tC9uf2jDwV-ppOgvzc8HV4M3cmzf2c9hN3IThi4zZRHsD2vF_o53FHX82lTHzsFwiMfi2PY-XgxuDzDq6-fR78AKekjBw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N42O88DFgBAYYxAMv2dLYiWMJCSHE1Im2QmiIvUWJa0OlJhlJC-orfzl3TppSDSQk3qLcRXF8n7HPvwN4gRlEFOhY-7mwkS-SOPHzSA_8JBE8NFFss6mT9EhOJsn5ufqwA6_WZ2FafIh-wY0sw_lrMnBakD7eoIYWdXGEwZG6WF8RmGhQ44bPp5MN5K5qMZilIE-jxBpXKAiP-0e3o9GlFPNypeTvGawLQSe3_m_wt-Fml3qyN62u3IEdU-7D9XG3ub4P11w1qG7uwk_q9VkRvsAXVmwWERtW1YwKc1mGBoCOqHnNhtUPtqjYt2VGVUcrpk1NW9Fz5irimZ0jvaiaBatxxFk-X7FZySJWzMolJrksXzFXVIpWwJoLJKFSuhPy9-DTybuzt0O_a9bgayG48LmV01hmIuJaKwz8NkKRGytDrWwS61xaLsn-eWwk3uZ5EGFk1IkwmVKCW34fdsuqNA-AiYERNuZyqiVqTI4uRWnOjZHBlIdBLjx4uRZaqjskc2qoMU9bDOYwxdlN3ex68LxnvWjhO_7EdLiWfNpZcJNi6qK4iJMo9uBZT0bbow2VrDTVknhoY5ijy_PgoFWU_i2UqAolpAdyS4V6BsL13qaUs68O31vSP_0gwc90KvT3gafjj2N38fDfWZ_C3vBsPEpHp5P3j-BGSMsH7mjlIewu6qV5DFf198WsqZ84a_oFWIEjyA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NHUy88DG-AgMM4oGXsDS241hCQohRDdFW08SkvUWJY0OlJilJC-orfzlnJ02pBhISb1F8URzfZ3zn3wG8xAiCBypSfsYM91kcxX7G1dCPY0ZDzSOT5o7TYzGdxpeX8mwP3mzOwrT4EP2Gm9UMZ6-tgutFbo63qKFFXbxG52i7WO8z20RmAPsn56OL8RZ0V7YozIJZWyPZBlkoCI_7h3f90ZUg82qt5O8xrHNCo1v_N_3bcLMLPsm7VlruwJ4uD-Fg0qXXD-G6qwdVzV34abt9VhZh4AspttuIDalqYktzSYoqgKaoeUtOqx9kWZFvq9TWHa2J0rVNRs-Jq4knZo7jRdUsSY0zTrP5msxKwkkxK1cY5pJsTVxZKeoBaRY4hGLpzsjfg4vRh8_vT_2uXYOvGKPMp0bkkUgZp0pJdP2GI9O1EaGSJo5UJgwV1gLQSAu8TbOAo29UMdOplIwaeh8GZVXqh0DYUDMTUZErgTKToVGRilKtRZDTMMiYB682TEtUh2VuW2rMkxaFOUxwdRO3uh686EkXLYDHn4iONpxPOh1uEgxeJGVRzCMPnvfDqH02pZKWulpZGpsapmj0PHjQCkr_FhuqMsmEB2JHhHoCi-y9O1LOvjqEb2H_6ocxfqYTob9PPJmcT9zFo38nfQYHZyejZPxx-ukx3Ajt_oE7W3kEg2W90k_gmvq-nDX1006dfgFF0CRx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supporting+measurements+or+more+averages%3F+How+to+quantify+cerebral+blood+flow+most+reliably+in+5+minutes+by+arterial+spin+labeling&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bladt%2C+Piet&rft.au=van+Osch%2C+Matthias+J.+P.&rft.au=Clement%2C+Patricia&rft.au=Achten%2C+Eric&rft.date=2020-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=84&rft.issue=5&rft.spage=2523&rft.epage=2536&rft_id=info:doi/10.1002%2Fmrm.28314&rft_id=info%3Apmid%2F32424947&rft.externalDocID=PMC7402018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |