Bag of little bootstraps for massive and distributed longitudinal data

Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method in...

Full description

Saved in:
Bibliographic Details
Published in:Statistical analysis and data mining Vol. 15; no. 3; pp. 314 - 321
Main Authors: Zhou, Xinkai, Zhou, Jin J., Zhou, Hua
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2022
Wiley Subscription Services, Inc
Subjects:
ISSN:1932-1864, 1932-1872
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little bootstraps method for independent data to longitudinal data and develop a highly efficient Julia package MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the favorable statistical performance and computational advantages of our method compared to the traditional bootstrap method. For the statistical inference of variance components, it achieves 200 times speedup on the scale of 1 million subjects (20 million total observations), and is the only currently available tool that can handle more than 10 million subjects (200 million total observations) using desktop computers.
AbstractList Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little bootstraps method for independent data to longitudinal data and develop a highly efficient Julia package MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the favorable statistical performance and computational advantages of our method compared to the traditional bootstrap method. For the statistical inference of variance components, it achieves 200 times speedup on the scale of 1 million subjects (20 million total observations), and is the only currently available tool that can handle more than 10 million subjects (200 million total observations) using desktop computers.
Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little bootstraps method for independent data to longitudinal data and develop a highly efficient Julia package MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the favorable statistical performance and computational advantages of our method compared to the traditional bootstrap method. For the statistical inference of variance components, it achieves 200 times speedup on the scale of 1 million subjects (20 million total observations), and is the only currently available tool that can handle more than 10 million subjects (200 million total observations) using desktop computers.
Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little bootstraps method for independent data to longitudinal data and develop a highly efficient Julia package MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the favorable statistical performance and computational advantages of our method compared to the traditional bootstrap method. For the statistical inference of variance components, it achieves 200 times speedup on the scale of 1 million subjects (20 million total observations), and is the only currently available tool that can handle more than 10 million subjects (200 million total observations) using desktop computers.
Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little bootstraps method for independent data to longitudinal data and develop a highly efficient Julia package MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the favorable statistical performance and computational advantages of our method compared to the traditional bootstrap method. For the statistical inference of variance components, it achieves 200 times speedup on the scale of 1 million subjects (20 million total observations), and is the only currently available tool that can handle more than 10 million subjects (200 million total observations) using desktop computers.Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little bootstraps method for independent data to longitudinal data and develop a highly efficient Julia package MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the favorable statistical performance and computational advantages of our method compared to the traditional bootstrap method. For the statistical inference of variance components, it achieves 200 times speedup on the scale of 1 million subjects (20 million total observations), and is the only currently available tool that can handle more than 10 million subjects (200 million total observations) using desktop computers.
Author Zhou, Xinkai
Zhou, Jin J.
Zhou, Hua
AuthorAffiliation 2 Department of Medicine, University of California, Los Angeles, California, USA
3 Department of Computational Medicine, University of California, Los Angeles, California, USA
1 Department of Biostatistics, University of California, Los Angeles, California, USA
AuthorAffiliation_xml – name: 3 Department of Computational Medicine, University of California, Los Angeles, California, USA
– name: 1 Department of Biostatistics, University of California, Los Angeles, California, USA
– name: 2 Department of Medicine, University of California, Los Angeles, California, USA
Author_xml – sequence: 1
  givenname: Xinkai
  surname: Zhou
  fullname: Zhou, Xinkai
  organization: University of California
– sequence: 2
  givenname: Jin J.
  surname: Zhou
  fullname: Zhou, Jin J.
  organization: University of California
– sequence: 3
  givenname: Hua
  orcidid: 0000-0003-1320-7118
  surname: Zhou
  fullname: Zhou, Hua
  email: huazhou@ucla.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35656342$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYMoPqoL_4AE3Oiimsck42yEKlYFxYW6Dpk8aiQzqZOM4r83tbWooKsE7ncP59yzBVbb0BoAdjE6wgiR4yibI4wZpytgE1eUDPFJSVaXf15sgK0YnxFiHOFiHWxQxjNdkE0wPpMTGCz0LiVvYB1CiqmT0wht6GAjY3SvBspWQ-3ywNV9Mhr60E5c6rVrpYdaJrkN1qz00ews3gF4HF88nF8Nb-4ur89HN0NVFJQOtSpRVfIKWyyVsQUlhNfMlBwTxalVNa9VyQmSVJ8oy7mtkNXUcKaRKuoa0wE4netO-7oxWpk2m_Vi2rlGdu8iSCd-Tlr3JCbhVVSYVSx7GICDhUAXXnoTk2hcVMZ72ZrQR0F4SSljFeUZ3f-FPoe-y4lnFMspCOUzR3vfHS2tfJ04A4dzQHUhxs7YJYKRmNUncn3is77MHv9ilUsyuTAL4_x_G2_Om_e_pcX96Ha-8QH_N6vq
CitedBy_id crossref_primary_10_1016_j_envpol_2025_126106
Cites_doi 10.18637/jss.v059.i09
10.1007/s10107-004-0559-y
10.2337/dc15-0598
10.18637/jss.v067.i01
10.1046/j.1365-2869.2003.00337.x
10.1007/978-0-387-76721-5_1
10.1214/aos/1176344552
10.1080/01621459.1987.10478472
10.1111/rssb.12050
10.1007/978-1-4612-1554-7
10.1111/j.1467‐9868.2004.00438.x
10.1016/S0140-6736(10)60576-4
10.1007/978-1-4757-2545-2
10.1007/0-387-30065-1_4
10.1111/biom.13506
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/sam.11563
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1932-1872
EndPage 321
ExternalDocumentID PMC9159544
35656342
10_1002_sam_11563
SAM11563
Genre article
Journal Article
GrantInformation_xml – fundername: Division of Mathematical Sciences
  funderid: DMS‐2054253
– fundername: National Human Genome Research Institute
  funderid: HG006139
– fundername: National Institute of General Medical Sciences
  funderid: GM141798
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: DK106116
– fundername: National Heart, Lung, and Blood Institute
  funderid: HL150374
GroupedDBID 05W
0R~
123
1L6
1OC
31~
33P
3SF
4.4
52U
5DZ
66C
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
ESX
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
IX1
J9A
JPC
L8X
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
NNB
O66
O9-
OIG
P2P
P2W
P4E
Q.N
QB0
ROL
RWI
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XBAML
XV2
ZZTAW
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c4433-dc7097691f1acef43226b5e7612c63fcb6bc7620a3d8cf66f90fd3e65d0c4bb13
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720891000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-1864
IngestDate Tue Nov 04 01:35:14 EST 2025
Fri Jul 11 07:03:28 EDT 2025
Sat Sep 06 22:31:51 EDT 2025
Thu Apr 03 07:08:58 EDT 2025
Sat Nov 29 04:26:14 EST 2025
Tue Nov 18 22:23:48 EST 2025
Wed Jan 22 16:26:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords parallel and distributed computing
EMR
linear mixed models
big data
bags of little bootstraps
longitudinal data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-dc7097691f1acef43226b5e7612c63fcb6bc7620a3d8cf66f90fd3e65d0c4bb13
Notes Funding information
Division of Mathematical Sciences, DMS‐2054253; National Heart, Lung, and Blood Institute, HL150374; National Human Genome Research Institute, HG006139; National Institute of Diabetes and Digestive and Kidney Diseases, DK106116; National Institute of General Medical Sciences, GM141798
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1320-7118
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9159544
PMID 35656342
PQID 2657692361
PQPubID 1046345
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9159544
proquest_miscellaneous_2673355936
proquest_journals_2657692361
pubmed_primary_35656342
crossref_primary_10_1002_sam_11563
crossref_citationtrail_10_1002_sam_11563
wiley_primary_10_1002_sam_11563_SAM11563
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: Columbus
PublicationTitle Statistical analysis and data mining
PublicationTitleAlternate Stat Anal Data Min
PublicationYear 2022
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References 2008; 192
2015; 67
2004; 66
2015; 38
1987; 82
2021
2000; 3
2010; 376
2014; 59
1996
2006
2006; 106
1997; 7
2014; 76
2003; 12
1979; 7
1999
e_1_2_11_10_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_9_1
e_1_2_11_12_1
e_1_2_11_8_1
e_1_2_11_11_1
e_1_2_11_7_1
Van der Vaart A. W. (e_1_2_11_18_1) 2000
e_1_2_11_6_1
e_1_2_11_17_1
e_1_2_11_5_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_19_1
Bickel P. J. (e_1_2_11_4_1) 1997; 7
References_xml – year: 2021
  article-title: WiSER: Robust and scalable estimation and inference of within‐subject variances from intensive longitudinal data
  publication-title: Biometrics
– volume: 3
  year: 2000
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: J Stat Softw
– volume: 66
  start-page: 165
  issue: 1
  year: 2004
  end-page: 185
  article-title: Likelihood ratio tests in linear mixed models with one variance component
  publication-title: J. R. Stat. Soc. Ser. B Stat Methodol.
– volume: 59
  start-page: 1
  issue: 9
  year: 2014
  end-page: 30
  article-title: A Kenward‐Roger approximation and parametric bootstrap methods for tests in linear mixed models–the R package pbkrtest
  publication-title: J. Stat. Softw.
– volume: 376
  start-page: 419
  issue: 9739
  year: 2010
  end-page: 430
  article-title: Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial
  publication-title: Lancet
– volume: 38
  start-page: 2000
  issue: 11
  year: 2015
  end-page: 2008
  article-title: Insulin dose and cardiovascular mortality in the accord trial
  publication-title: Diabetes Care
– year: 1996
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  end-page: 57
  article-title: On the implementation of an interior‐point filter line‐search algorithm for large‐scale nonlinear programming
  publication-title: Math. Program.
– volume: 7
  start-page: 1
  issue: 1
  year: 1979
  end-page: 26
  article-title: Bootstrap methods: Another look at the jackknife
  publication-title: Ann. Stat.
– start-page: 35
  year: 2006
  end-page: 59
– volume: 76
  start-page: 795
  year: 2014
  end-page: 816
  article-title: A scalable bootstrap for massive data
  publication-title: J R Stat Soc: Ser B: Stat Methodol
– volume: 82
  start-page: 605
  issue: 398
  year: 1987
  end-page: 610
  article-title: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
  publication-title: J. Am. Stat. Assoc.
– volume: 7
  start-page: 1
  issue: 1
  year: 1997
  end-page: 31
  article-title: Resampling fewer than n observations: Gains, losses, and remedies for losses
  publication-title: Stat. Sin.
– volume: 192
  year: 2008
– volume: 12
  start-page: 1
  issue: 1
  year: 2003
  end-page: 12
  article-title: Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: A sleep dose‐response study
  publication-title: J. Sleep Res.
– year: 1999
– volume: 7
  start-page: 1
  issue: 1
  year: 1997
  ident: e_1_2_11_4_1
  article-title: Resampling fewer than n observations: Gains, losses, and remedies for losses
  publication-title: Stat. Sin.
– ident: e_1_2_11_10_1
  doi: 10.18637/jss.v059.i09
– ident: e_1_2_11_19_1
  doi: 10.1007/s10107-004-0559-y
– ident: e_1_2_11_16_1
  doi: 10.2337/dc15-0598
– ident: e_1_2_11_2_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_11_3_1
  doi: 10.1046/j.1365-2869.2003.00337.x
– ident: e_1_2_11_6_1
  doi: 10.1007/978-0-387-76721-5_1
– ident: e_1_2_11_8_1
  doi: 10.1214/aos/1176344552
– ident: e_1_2_11_15_1
  doi: 10.1080/01621459.1987.10478472
– ident: e_1_2_11_13_1
  doi: 10.1111/rssb.12050
– ident: e_1_2_11_14_1
  doi: 10.1007/978-1-4612-1554-7
– ident: e_1_2_11_7_1
  doi: 10.1111/j.1467‐9868.2004.00438.x
– volume-title: Asymptotic statistics
  year: 2000
  ident: e_1_2_11_18_1
– ident: e_1_2_11_11_1
  doi: 10.1016/S0140-6736(10)60576-4
– ident: e_1_2_11_12_1
– ident: e_1_2_11_17_1
  doi: 10.1007/978-1-4757-2545-2
– ident: e_1_2_11_5_1
  doi: 10.1007/0-387-30065-1_4
– ident: e_1_2_11_9_1
  doi: 10.1111/biom.13506
SSID ssj0056014
Score 2.2464137
Snippet Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 314
SubjectTerms bags of little bootstraps
big data
Data analysis
Datasets
EMR
linear mixed models
longitudinal data
parallel and distributed computing
Personal computers
Statistical analysis
Statistical inference
Statistical methods
Variance
Title Bag of little bootstraps for massive and distributed longitudinal data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsam.11563
https://www.ncbi.nlm.nih.gov/pubmed/35656342
https://www.proquest.com/docview/2657692361
https://www.proquest.com/docview/2673355936
https://pubmed.ncbi.nlm.nih.gov/PMC9159544
Volume 15
WOSCitedRecordID wos000720891000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1932-1872
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056014
  issn: 1932-1864
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH6CoYdeytItLSC36qGXCMd2nFg9UWDEgSJEizS3yGuLBBlEZvr7-5yNjmilSr1F8stmv-_58_Y9gA_OZ8LkyNykRrgJI0xqBC9SxdA7SuZUMF2yieL8vJzN1MUafBrOwnT6EOOEW0RGG68jwLVpDh5EQxt9i3jPJV-HDYZ-m09g4_hyenU2BOI41ugXlVmalVIMwkKUHYw3r3ZHjzjm462Sv1PYtg-abv7X12_Bs556ksPOV7Zhzdc7sDmkdSA9yp_D9LP-TuaBIEFHRyJIwxdxPuSuIUhwyS2ybYyQRNeOuKi6GxNmeUdu5jHz0dLFLFsk7jt9AVfTk29Hp2mfbiG1QnCeOltQJCcqC5m2PgiEujS5L5ADWcmDNdJYDJ1Uc1faIGVQNDjuZe6oFcZk_CVM6nntXwPxtFRU4UMKpAAmM0aVPFCDY1VDtZRlAh-HWq9sr0UeU2LcVJ2KMquwfqq2fhJ4P5redQIcfzLaHZqu6jHYVEziWEpFcZkE3o3FiJ64JKJrP19Gm4Ij41JcJvCqa-nxLTxyXS5YAsWKD4wGUZl7taS-_tEqdCskibkQ-JutD_z9w6uvh1_aizf_bvoWnrJ4BqOdCtqFyeJ-6ffgif25uG7u92G9mJX7PRR-Ade6DDs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFD5BMJEXAW-MAlbjgy8TOtNOZ5r4gsIGw7IxCglvk-lNSWCWsLv-fs-Zm26QxMS3SXrm1p6v_XrafgfgnfOJNBkyN1Uh3KSRJjZS5LFO0TuK1Olg2mQT-WRSXFzoLyvwoT8L0-pDDAE3QkbTXxPAKSC9_1s1dFZdI-AzJR7AmkQ3Qv9eO_w6Oh_3PTFNNrpV5TROCiV7ZSGe7g83L49Hd0jm3b2Sf3LYZhAabfzf52_C4458soPWW7ZgxddPYKNP7MA6nD-F0cfqO5sGhhQdXYkhEZ9TRORmxpDismvk29hHsqp2zJHuLqXM8o5dTSn30cJRni1GO0-fwfno6OzTcdwlXIitlELEzuYc6YlOQlJZHySCXZnM58iCrBLBGmUsdp68Eq6wQamgeXDCq8xxK41JxHNYrae13wbmeaG5xofkSAJMYowuROAGZ6uGV0oVEbzvq720nRo5JcW4Klsd5bTE-imb-ong7WB600pw_M1op2-7skPhrEwVzqY0yctE8GYoRvzQokhV--mCbHKBnEsLFcGLtqmHtwhiu0KmEeRLTjAYkDb3ckl9-aPR6NZIEzMp8TcbJ7j_w8tvB6fNxct_N30Nj47PTsfl-PPk5BWsp3QiowkM7cDq_Hbhd-Gh_Tm_nN3udYj4BYejD0M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLUJcaHkUQlswiAOXqE7sOLHEpVAiEGVVAZV6i-IXVGqzq-4uv5-ZvOiqICFxi-TJy55v_Pn1DcAr5xNpMmRuqka4SSNNbKTIY52idxSp08F0ySby6bQ4O9MnG_BmOAvT6UOME26EjDZeE8D93IWD36qhi_oSAZ8pcQs2JSWRmcDm0Zfy9HiIxDTY6FeV0zgplByUhXh6MN683h_dIJk390pe57BtJ1Ru_d_nb8O9nnyyw85b7sOGbx7A1pDYgfU4fwjl2_o7mwWGFB1diSERX9KMyHzBkOKyS-TbGCNZ3TjmSHeXUmZ5xy5mlPto5SjPFqOdp4_gtHz_7d2HuE-4EFsphYidzTnSE52EpLY-SAS7MpnPkQVZJYI1ylgMnrwWrrBBqaB5cMKrzHErjUnEDkyaWeOfAPO80FzjQ3IkASYxRhcicIOjVcNrpYoIXg_VXtlejZySYlxUnY5yWmH9VG39RPByNJ13Ehx_Mtob2q7qUbioUoWjKU3yMhG8GIsRP7QoUjd-tiKbXCDn0kJF8Lhr6vEtgtiukGkE-ZoTjAakzb1e0pz_aDW6NdLETEr8zdYJ_v7h1dfDz-3F0383fQ53To7K6vjj9NMu3E3pQEY7L7QHk-XVyu_Dbftzeb64etYD4hf-PA6-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bag+of+little+bootstraps+for+massive+and+distributed+longitudinal+data&rft.jtitle=Statistical+analysis+and+data+mining&rft.au=Zhou%2C+Xinkai&rft.au=Zhou%2C+Jin+J&rft.au=Zhou%2C+Hua&rft.date=2022-06-01&rft.issn=1932-1864&rft.volume=15&rft.issue=3&rft.spage=314&rft_id=info:doi/10.1002%2Fsam.11563&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1864&client=summon