In vivo human head MRI at 10.5T: A radiofrequency safety study and preliminary imaging results

Purpose The purpose of this study is to safely acquire the first human head images at 10.5T. Methods To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 84; H. 1; S. 484 - 496
Hauptverfasser: Sadeghi‐Tarakameh, Alireza, DelaBarre, Lance, Lagore, Russell L., Torrado‐Carvajal, Angel, Wu, Xiaoping, Grant, Andrea, Adriany, Gregor, Metzger, Gregory J., Van de Moortele, Pierre‐Francois, Ugurbil, Kamil, Atalar, Ergin, Eryaman, Yigitcan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.07.2020
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose The purpose of this study is to safely acquire the first human head images at 10.5T. Methods To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole‐body 10.5T scanner in the Center for Magnetic Resonance Research. Results Quantitative agreement between the simulated and experimental results was obtained including S‐parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2‐ and T2∗‐weighted images of human subjects at 10.5T. Conclusions In this study, we acquired the first in vivo human head images at 10.5T using an 8‐channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8‐channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.
AbstractList PurposeThe purpose of this study is to safely acquire the first human head images at 10.5T.MethodsTo ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole‐body 10.5T scanner in the Center for Magnetic Resonance Research.ResultsQuantitative agreement between the simulated and experimental results was obtained including S‐parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2‐ and T2∗‐weighted images of human subjects at 10.5T.ConclusionsIn this study, we acquired the first in vivo human head images at 10.5T using an 8‐channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8‐channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.
The purpose of this study is to safely acquire the first human head images at 10.5T.PURPOSEThe purpose of this study is to safely acquire the first human head images at 10.5T.To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole-body 10.5T scanner in the Center for Magnetic Resonance Research.METHODSTo ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole-body 10.5T scanner in the Center for Magnetic Resonance Research.Quantitative agreement between the simulated and experimental results was obtained including S-parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2 - and T2∗ -weighted images of human subjects at 10.5T.RESULTSQuantitative agreement between the simulated and experimental results was obtained including S-parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2 - and T2∗ -weighted images of human subjects at 10.5T.In this study, we acquired the first in vivo human head images at 10.5T using an 8-channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8-channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.CONCLUSIONSIn this study, we acquired the first in vivo human head images at 10.5T using an 8-channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8-channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.
The purpose of this study is to safely acquire the first human head images at 10.5T. To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole-body 10.5T scanner in the Center for Magnetic Resonance Research. Quantitative agreement between the simulated and experimental results was obtained including S-parameters, maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T - and -weighted images of human subjects at 10.5T. In this study, we acquired the first in vivo human head images at 10.5T using an 8-channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8-channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.
Purpose The purpose of this study is to safely acquire the first human head images at 10.5T. Methods To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole‐body 10.5T scanner in the Center for Magnetic Resonance Research. Results Quantitative agreement between the simulated and experimental results was obtained including S‐parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2‐ and T2∗‐weighted images of human subjects at 10.5T. Conclusions In this study, we acquired the first in vivo human head images at 10.5T using an 8‐channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8‐channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.
Author Adriany, Gregor
Lagore, Russell L.
Van de Moortele, Pierre‐Francois
Atalar, Ergin
Metzger, Gregory J.
Eryaman, Yigitcan
Torrado‐Carvajal, Angel
Grant, Andrea
Sadeghi‐Tarakameh, Alireza
Wu, Xiaoping
Ugurbil, Kamil
DelaBarre, Lance
AuthorAffiliation 1 Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
2 National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey
4 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
3 Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
5 Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
AuthorAffiliation_xml – name: 2 National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey
– name: 3 Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
– name: 1 Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
– name: 4 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
– name: 5 Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
Author_xml – sequence: 1
  givenname: Alireza
  orcidid: 0000-0001-5718-6553
  surname: Sadeghi‐Tarakameh
  fullname: Sadeghi‐Tarakameh, Alireza
  email: alireza@ee.bilkent.edu.tr
  organization: University of Minnesota
– sequence: 2
  givenname: Lance
  surname: DelaBarre
  fullname: DelaBarre, Lance
  organization: University of Minnesota
– sequence: 3
  givenname: Russell L.
  surname: Lagore
  fullname: Lagore, Russell L.
  organization: University of Minnesota
– sequence: 4
  givenname: Angel
  orcidid: 0000-0002-1540-2809
  surname: Torrado‐Carvajal
  fullname: Torrado‐Carvajal, Angel
  organization: Universidad Rey Juan Carlos
– sequence: 5
  givenname: Xiaoping
  orcidid: 0000-0001-6021-9088
  surname: Wu
  fullname: Wu, Xiaoping
  organization: University of Minnesota
– sequence: 6
  givenname: Andrea
  surname: Grant
  fullname: Grant, Andrea
  organization: University of Minnesota
– sequence: 7
  givenname: Gregor
  surname: Adriany
  fullname: Adriany, Gregor
  organization: University of Minnesota
– sequence: 8
  givenname: Gregory J.
  surname: Metzger
  fullname: Metzger, Gregory J.
  organization: University of Minnesota
– sequence: 9
  givenname: Pierre‐Francois
  orcidid: 0000-0002-6941-5947
  surname: Van de Moortele
  fullname: Van de Moortele, Pierre‐Francois
  organization: University of Minnesota
– sequence: 10
  givenname: Kamil
  surname: Ugurbil
  fullname: Ugurbil, Kamil
  organization: University of Minnesota
– sequence: 11
  givenname: Ergin
  orcidid: 0000-0002-6874-6103
  surname: Atalar
  fullname: Atalar, Ergin
  organization: National Magnetic Resonance Research Center (UMRAM)
– sequence: 12
  givenname: Yigitcan
  surname: Eryaman
  fullname: Eryaman, Yigitcan
  organization: University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31751499$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFq3DAQhkVJaDZpD32BIuilOTiRLCm2eiiEkLYLWQohvVbI0nhXwZa2kr3Fb19tdxOS0J7mMN98_DNzjA588IDQO0rOKCHleR_7s7Imkr1CMyrKsiiF5AdoRipOCkYlP0LHKd0TQqSs-Gt0xGglKJdyhn7OPd64TcCrsdcer0BbvLidYz3gbBd3n_Aljtq60Eb4NYI3E066hSGXYbQT1t7idYTO9c7rOGHX66XzSxwhjd2Q3qDDVncJ3u7rCfrx5fru6ltx8_3r_OrypjCcM1ZUwkpgpTAcAKQhhNZCN5wJUzZW16S5MLIRVdNKwllb05ZJ2gJwY6VsjLXsBH3eeddj04M14IeoO7WOOU-cVNBOPe94t1LLsFHVhcwHq7Lg414QQ94zDap3yUDXaQ9hTKrcnqzmpZQZ_fACvQ9j9Hm9TFW1kIyLrfD900SPUR5On4HzHWBiSClCq4wb9ODCNqDrFCVq-1yVn6v-PjdPnL6YeJD-i93bf7sOpv-DanG72E38AZzcs-0
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3036598
crossref_primary_10_1109_TMI_2020_3047354
crossref_primary_10_1016_j_mri_2022_07_009
crossref_primary_10_1109_LAWP_2022_3183206
crossref_primary_10_1007_s10334_023_01087_x
crossref_primary_10_1002_mrm_28382
crossref_primary_10_1002_mrm_30108
crossref_primary_10_1007_s10334_023_01067_1
crossref_primary_10_1002_mrm_29318
crossref_primary_10_1371_journal_pone_0280655
crossref_primary_10_1016_j_mri_2020_08_004
crossref_primary_10_1080_02713683_2021_1874021
crossref_primary_10_1097_IJG_0000000000001801
crossref_primary_10_1109_ACCESS_2025_3540885
crossref_primary_10_1109_TBME_2025_3529725
crossref_primary_10_1109_TMI_2023_3261922
crossref_primary_10_1109_TBME_2021_3055777
crossref_primary_10_1002_mrm_29825
crossref_primary_10_1002_mrm_28533
crossref_primary_10_1109_ACCESS_2021_3118290
crossref_primary_10_3390_s24175793
crossref_primary_10_1016_j_jbiomech_2022_111211
crossref_primary_10_1002_jmri_28035
crossref_primary_10_1016_j_cobme_2021_100288
crossref_primary_10_3390_s21217250
crossref_primary_10_1002_mrm_29347
crossref_primary_10_1007_s00723_020_01261_7
crossref_primary_10_1038_s41467_021_25431_8
crossref_primary_10_1080_23746149_2021_1885310
crossref_primary_10_3390_s25061867
crossref_primary_10_1109_JERM_2024_3509589
crossref_primary_10_1007_s10334_023_01081_3
crossref_primary_10_1002_nbm_4874
crossref_primary_10_1002_jor_25401
crossref_primary_10_3390_s24216981
crossref_primary_10_1002_mrm_29096
crossref_primary_10_1002_nbm_4351
crossref_primary_10_3390_s21186000
crossref_primary_10_1016_j_jmr_2024_107796
crossref_primary_10_1002_mrm_28923
crossref_primary_10_1007_s10334_022_01025_3
crossref_primary_10_1002_mrm_29654
crossref_primary_10_1002_mrm_29930
crossref_primary_10_1038_s41598_021_02533_3
crossref_primary_10_1088_1361_6668_ad7d3f
crossref_primary_10_1038_s41578_025_00811_4
crossref_primary_10_1007_s10334_020_00858_0
crossref_primary_10_1002_mrm_28672
crossref_primary_10_1002_mrm_30476
crossref_primary_10_1002_mrm_30477
crossref_primary_10_1016_j_mric_2021_06_013
crossref_primary_10_1002_mrm_30315
crossref_primary_10_1002_nbm_4541
crossref_primary_10_1002_mp_16801
crossref_primary_10_3390_s24072254
crossref_primary_10_1016_j_mri_2020_12_013
crossref_primary_10_1002_mrm_28711
crossref_primary_10_1002_mrm_28799
crossref_primary_10_1016_j_neuroimage_2021_118543
crossref_primary_10_1002_nbm_5118
crossref_primary_10_7498_aps_74_20241759
Cites_doi 10.1002/mrm.24374
10.1002/mrm.26468
10.1002/mrm.20321
10.1161/STROKEAHA.107.508002
10.1002/jmri.10362
10.1002/jmri.20977
10.1002/jmri.20041
10.1016/0022-2364(88)90128-X
10.1007/s10334-016-0559-y
10.1002/mrm.20011
10.1002/mrm.21120
10.1002/nbm.3290
10.1088/0031-9155/57/24/8153
10.1111/j.1552-6569.2007.00179.x
10.1088/0031-9155/55/2/N01
10.1002/mrm.1910390317
10.1002/mrm.26688
10.1002/jmri.23724
10.1002/mrm.25596
10.1002/nbm.3275
10.1002/mrm.1910320209
10.1002/mrm.25504
10.1016/j.jmr.2009.06.005
10.1002/mrm.26672
10.1002/mrm.25367
10.1002/mrm.25840
10.1002/mrm.10353
10.1002/mrm.1910030413
10.1002/mrm.22886
10.1002/mrm.23322
10.1002/mrm.22948
10.1088/0031-9155/47/16/301
10.1002/mrm.24378
10.1002/mrm.26261
10.1002/mrm.21476
10.1073/pnas.0610821104
10.1002/mrm.21073
ContentType Journal Article
Copyright 2019 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine.
2020 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine.
– notice: 2020 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28093
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 496
ExternalDocumentID PMC7695227
31751499
10_1002_mrm_28093
MRM28093
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: P41 EB027061
– fundername: National Institutes of Health
  funderid: P41 RR008079
– fundername: NCRR NIH HHS
  grantid: P41 RR008079
– fundername: NIBIB NIH HHS
  grantid: P41 EB027061
– fundername: NIBIB NIH HHS
  grantid: U01 EB025144
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4433-75d9e325c4eee9c00185ab435c2bda80b6c9b57bf9043f81f391fee4cd99bcdd3
IEDL.DBID DRFUL
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497604000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 14:13:32 EDT 2025
Fri Jul 11 16:50:01 EDT 2025
Sat Nov 29 14:22:56 EST 2025
Mon Jul 21 05:59:26 EDT 2025
Tue Nov 18 22:30:52 EST 2025
Sat Nov 29 02:37:49 EST 2025
Wed Jan 22 16:35:36 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords head imaging
MRI
ultra-high field
radiofrequency safety
10.5T
Language English
License 2019 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-75d9e325c4eee9c00185ab435c2bda80b6c9b57bf9043f81f391fee4cd99bcdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5718-6553
0000-0001-6021-9088
0000-0002-6874-6103
0000-0002-1540-2809
0000-0002-6941-5947
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.28093
PMID 31751499
PQID 2378593457
PQPubID 1016391
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7695227
proquest_miscellaneous_2317584299
proquest_journals_2378593457
pubmed_primary_31751499
crossref_citationtrail_10_1002_mrm_28093
crossref_primary_10_1002_mrm_28093
wiley_primary_10_1002_mrm_28093_MRM28093
PublicationCentury 2000
PublicationDate July 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2013; 69
2006; 56
2011
2010
2015; 73
2008; 18
2015; 74
2008; 39
2009
2008; 59
2016; 75
1988; 78
2003; 18
2012; 36
2012; 57
2007; 57
2009; 55
2002; 47
1998; 39
2014; 4
2004; 51
2004; 19
1986; 3
2017; 77
2017; 78
2019
2005; 53
2011; 66
2018
2009; 200
2017
2003; 49
2016
2015
2016; 29
2012; 68
2007; 26
1994; 32
1990; 5
2018; 79
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_15_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
Wu X (e_1_2_5_38_1) 2014; 4
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
Raaijmakers AJE (e_1_2_5_10_1) 2019
e_1_2_5_31_1
Clarke FH (e_1_2_5_40_1) 1990; 5
e_1_2_5_50_1
References_xml – year: 2011
– volume: 56
  start-page: 1274
  year: 2006
  end-page: 1282
  article-title: 9.4 T human MRI: preliminary results
  publication-title: Magn Reson Med
– year: 2009
– volume: 39
  start-page: 1604
  year: 2008
  end-page: 1606
  article-title: Observation of the lenticulostriate arteries in the human brain in vivo using 7.0 T MR angiography
  publication-title: Stroke
– volume: 78
  start-page: 1217
  year: 2017
  end-page: 1223
  article-title: Probabilistic analysis of the specific absorption rate intersubject variability safety factor in parallel transmission MRI
  publication-title: Magn Reson Med
– volume: 32
  start-page: 206
  year: 1994
  end-page: 218
  article-title: High frequency volume coils for clinical NMR imaging and spectroscopy
  publication-title: Magn Reson Med
– volume: 29
  start-page: 641
  year: 2016
  end-page: 656
  article-title: Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 75
  start-page: 1366
  year: 2016
  end-page: 1374
  article-title: The fractionated dipole antenna: a new antenna for body imaging at 7 T esla
  publication-title: Magn Reson Med
– volume: 26
  start-page: 437
  year: 2007
  end-page: 441
  article-title: SAR and temperature: simulations and comparison to regulatory limits for MRI
  publication-title: J Magn Reson Imaging
– volume: 68
  start-page: 1117
  year: 2012
  end-page: 1126
  article-title: Patient‐individual local SAR determination: in vivo measurements and numerical validation
  publication-title: Magn Reson Med
– volume: 57
  start-page: 8153
  year: 2012
  article-title: Improving SAR estimations in MRI using subject‐specific models
  publication-title: Phys Med Biol
– volume: 39
  start-page: 462
  year: 1998
  end-page: 473
  article-title: Ultimate intrinsic signal‐to‐noise ratio in MRI
  publication-title: Magn Reson Med
– volume: 18
  start-page: 125
  year: 2008
  end-page: 129
  article-title: In vivo visualization of senile‐plaque‐like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system
  publication-title: J Neuroimaging
– volume: 200
  start-page: 147
  year: 2009
  end-page: 152
  article-title: Fast MRI coil analysis based on 3‐D electromagnetic and RF circuit co‐simulation
  publication-title: J Magn Reson
– volume: 75
  start-page: 2553
  year: 2016
  end-page: 2565
  article-title: 16‐channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla
  publication-title: Magn Reson Med
– volume: 47
  start-page: 2835
  year: 2002
  article-title: Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz
  publication-title: Phys Med Biol
– volume: 36
  start-page: 847
  year: 2012
  end-page: 857
  article-title: Two‐dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application
  publication-title: J Magn Reson Imaging
– year: 2016
– volume: 79
  start-page: 511
  year: 2018
  end-page: 514
  article-title: Investigating the physiological effects of 10.5T static field exposure on anesthetized swine
  publication-title: Magn Reson Med
– year: 2018
– volume: 66
  start-page: 1767
  year: 2011
  end-page: 1776
  article-title: Toward individualized SAR models and in vivo validation
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1457
  year: 2013
  end-page: 1465
  article-title: Method for in situ characterization of radiofrequency heating in parallel transmit MRI
  publication-title: Magn Reson Med
– year: 2010
– volume: 4
  start-page: 4
  year: 2014
  article-title: Mitigating transmit B1 inhomogeneity in the liver at 7T using multi‐spoke parallel transmit RF pulse design
  publication-title: Quant Imaging Med Surg
– start-page: 1
  year: 2019
  end-page: 10
  article-title: Local SAR assessment for multitransmit systems: a study on the peak local SAR value as a function of magnetic field strength
  publication-title: eMagRes
– volume: 73
  start-page: 2357
  year: 2015
  end-page: 2362
  article-title: Statistical simulation of SAR variability with geometric and tissue property changes by using the unscented transform
  publication-title: Magn Reson Med
– volume: 78
  start-page: 397
  year: 1988
  end-page: 407
  article-title: Multiecho imaging sequences with low refocusing flip angles
  publication-title: J Magn Reson (1969)
– volume: 3
  start-page: 604
  year: 1986
  end-page: 618
  article-title: The intrinsic signal‐to‐noise ratio in NMR imaging
  publication-title: Magn Reson Med
– volume: 77
  start-page: 2040
  year: 2017
  end-page: 2047
  article-title: Improving peak local SAR prediction in parallel transmit using in situ S‐matrix measurements
  publication-title: Magn Reson Med
– volume: 53
  start-page: 434
  year: 2005
  end-page: 445
  article-title: Transmit and receive transmission line arrays for 7 Tesla parallel imaging
  publication-title: Magn Reson Med
– volume: 59
  start-page: 396
  year: 2008
  end-page: 409
  article-title: Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements
  publication-title: Magn Reson Med
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit sense
  publication-title: Magn Reson Med
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 104
  start-page: 11796
  year: 2007
  end-page: 11801
  article-title: High‐field MRI of brain cortical substructure based on signal phase
  publication-title: Proc Natl Acad Sci U S A
– volume: 29
  start-page: 1131
  year: 2016
  end-page: 1144
  article-title: Safety testing and operational procedures for self‐developed radiofrequency coils
  publication-title: NMR Biomed
– volume: 29
  start-page: 1274
  year: 2016
  end-page: 1288
  article-title: Recent applications of UHF‐MRI in the study of human brain function and structure: a review
  publication-title: NMR Biomed
– volume: 79
  start-page: 479
  year: 2018
  end-page: 488
  article-title: Radiofrequency heating studies on anesthetized swine using fractionated dipole antennas at 10.5 T
  publication-title: Magn Reson Med
– year: 2017
– volume: 18
  start-page: 284
  year: 2003
  end-page: 290
  article-title: Enhanced gray and white matter contrast of phase susceptibility‐weighted images in ultra‐high‐field magnetic resonance imaging
  publication-title: J Magn Reson Imaging
– volume: 55
  start-page: N23
  year: 2009
  article-title: The Virtual Family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol
– volume: 5
  start-page: 25
  year: 1990
  end-page: 95
  article-title: Optimization and nonsmooth analysis
  publication-title: Siam
– year: 2019
– volume: 66
  start-page: 1488
  year: 2011
  end-page: 1497
  article-title: Design of a radiative surface coil array element at 7 T: the single‐side adapted dipole antenna
  publication-title: Magn Reson Med
– year: 2015
– volume: 69
  start-page: 1476
  year: 2013
  end-page: 1485
  article-title: Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head
  publication-title: Magn Reson Med
– volume: 74
  start-page: 1423
  year: 2015
  end-page: 1434
  article-title: Comparison between simulated decoupling regimes for specific absorption rate prediction in parallel transmit MRI
  publication-title: Magn Reson Med
– volume: 51
  start-page: 775
  year: 2004
  end-page: 784
  article-title: Parallel excitation with an array of transmit coils
  publication-title: Magn Reson Med
– volume: 19
  start-page: 650
  year: 2004
  end-page: 656
  article-title: Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz
  publication-title: J Magn Reson Imaging
– ident: e_1_2_5_28_1
  doi: 10.1002/mrm.24374
– ident: e_1_2_5_45_1
  doi: 10.1002/mrm.26468
– ident: e_1_2_5_42_1
– ident: e_1_2_5_15_1
  doi: 10.1002/mrm.20321
– ident: e_1_2_5_26_1
– ident: e_1_2_5_34_1
– ident: e_1_2_5_25_1
– ident: e_1_2_5_4_1
  doi: 10.1161/STROKEAHA.107.508002
– ident: e_1_2_5_8_1
  doi: 10.1002/jmri.10362
– ident: e_1_2_5_12_1
  doi: 10.1002/jmri.20977
– ident: e_1_2_5_13_1
  doi: 10.1002/jmri.20041
– ident: e_1_2_5_48_1
  doi: 10.1016/0022-2364(88)90128-X
– ident: e_1_2_5_11_1
  doi: 10.1007/s10334-016-0559-y
– ident: e_1_2_5_49_1
  doi: 10.1002/mrm.20011
– ident: e_1_2_5_39_1
  doi: 10.1002/mrm.21120
– ident: e_1_2_5_21_1
– ident: e_1_2_5_33_1
  doi: 10.1002/nbm.3290
– ident: e_1_2_5_30_1
  doi: 10.1088/0031-9155/57/24/8153
– ident: e_1_2_5_6_1
  doi: 10.1111/j.1552-6569.2007.00179.x
– ident: e_1_2_5_31_1
  doi: 10.1088/0031-9155/55/2/N01
– ident: e_1_2_5_3_1
  doi: 10.1002/mrm.1910390317
– ident: e_1_2_5_35_1
  doi: 10.1002/mrm.26688
– ident: e_1_2_5_18_1
  doi: 10.1002/jmri.23724
– ident: e_1_2_5_20_1
  doi: 10.1002/mrm.25596
– ident: e_1_2_5_9_1
  doi: 10.1002/nbm.3275
– ident: e_1_2_5_23_1
– volume: 5
  start-page: 25
  year: 1990
  ident: e_1_2_5_40_1
  article-title: Optimization and nonsmooth analysis
  publication-title: Siam
– ident: e_1_2_5_17_1
  doi: 10.1002/mrm.1910320209
– ident: e_1_2_5_47_1
  doi: 10.1002/mrm.25504
– ident: e_1_2_5_37_1
  doi: 10.1016/j.jmr.2009.06.005
– ident: e_1_2_5_41_1
  doi: 10.1002/mrm.26672
– ident: e_1_2_5_46_1
  doi: 10.1002/mrm.25367
– ident: e_1_2_5_24_1
  doi: 10.1002/mrm.25840
– ident: e_1_2_5_50_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_5_2_1
  doi: 10.1002/mrm.1910030413
– ident: e_1_2_5_19_1
  doi: 10.1002/mrm.22886
– ident: e_1_2_5_22_1
– ident: e_1_2_5_27_1
  doi: 10.1002/mrm.23322
– ident: e_1_2_5_14_1
– ident: e_1_2_5_44_1
– ident: e_1_2_5_29_1
  doi: 10.1002/mrm.22948
– volume: 4
  start-page: 4
  year: 2014
  ident: e_1_2_5_38_1
  article-title: Mitigating transmit B1 inhomogeneity in the liver at 7T using multi‐spoke parallel transmit RF pulse design
  publication-title: Quant Imaging Med Surg
– start-page: 1
  year: 2019
  ident: e_1_2_5_10_1
  article-title: Local SAR assessment for multitransmit systems: a study on the peak local SAR value as a function of magnetic field strength
  publication-title: eMagRes
– ident: e_1_2_5_32_1
  doi: 10.1088/0031-9155/47/16/301
– ident: e_1_2_5_43_1
  doi: 10.1002/mrm.24378
– ident: e_1_2_5_36_1
  doi: 10.1002/mrm.26261
– ident: e_1_2_5_16_1
  doi: 10.1002/mrm.21476
– ident: e_1_2_5_5_1
  doi: 10.1073/pnas.0610821104
– ident: e_1_2_5_7_1
  doi: 10.1002/mrm.21073
SSID ssj0009974
Score 2.5668225
Snippet Purpose The purpose of this study is to safely acquire the first human head images at 10.5T. Methods To ensure safety of subjects, we validated the...
The purpose of this study is to safely acquire the first human head images at 10.5T. To ensure safety of subjects, we validated the electromagnetic simulation...
PurposeThe purpose of this study is to safely acquire the first human head images at 10.5T.MethodsTo ensure safety of subjects, we validated the...
The purpose of this study is to safely acquire the first human head images at 10.5T.PURPOSEThe purpose of this study is to safely acquire the first human head...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 484
SubjectTerms 10.5T
Computer Simulation
head imaging
Human subjects
Humans
Image acquisition
Image transmission
In vivo methods and tests
Magnetic Resonance Imaging
Mathematical models
MRI
Phantoms, Imaging
Quadratures
Radio frequency
Radio Waves
radiofrequency safety
Safety
ultra‐high field
Workflow
Title In vivo human head MRI at 10.5T: A radiofrequency safety study and preliminary imaging results
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28093
https://www.ncbi.nlm.nih.gov/pubmed/31751499
https://www.proquest.com/docview/2378593457
https://www.proquest.com/docview/2317584299
https://pubmed.ncbi.nlm.nih.gov/PMC7695227
Volume 84
WOSCitedRecordID wos000497604000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHUy88DFgFMZkEA97CWtju463pwmoqLRWqNqgT0T-FJHWdErSSvvvZztpRjWQkHhKorvIJ_vOvrPPvwP4QInEWFMVKSlU5BHmnEkpGXEjWYIT0cehisL3czaZJLMZ_7YFp-u7MDU-RLvh5i0jzNfewIUsj-9AQ-fF_GOcuIB8G3Zip7e0Azufp8PL8zvMXV6DMDPipxpO1sBCvfi4_XlzObrnY95PlfzdhQ1r0PDJf0n_FB43ric6q3XlGWyZfA92x83h-h48DNmgqnwOP0c5WmWrBQoV_JCbrzUaT0dIVD5HiV6coDNUCJ0tbFFnYt-gUlhTuYdHq0Ui1-i6cBLOw21flM1DLSTkQvvlVVW-gMvhl4tPX6OmEEOkCME4YlRzg2OqiDGGK1_IjwrpHC0VSy2SnhwoLimTlvcItknfYt63xhClOZdKa_wSOvkiN68ADXqCUyFipaQlzArJZF9oK1wURAUntgtH6_FIVYNS7otlXKU1vnKcup5LQ8914X3Lel1Dc_yJ6WA9qGljnWUaY-Zh3ghlXXjXkp1d-cMSkZvF0vM4xyrxq3UX9msdaFvxJBdZOgrb0I6WwWN2b1Ly7FfA7mYD7jxe1-5R0I6_C56Op-Pw8vrfWd_Ao9hvB4Rs4gPoVMXSvIUHalVlZXEI22yWHDZG4r5-jCa3VdkW8A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N8fnCx8ZYYYBBPOwlWxvbdYx4mRDTKpoKTQX2tMifWqQ1nZK00v57bCfNqAYSEk-JdBfFsu_sO_v8-wF8oERirKmKlBQq8ghzzqWUjLiRLMGJGODAovBjzCaT5OyMf9uAT6u7MA0-RLfh5j0jzNfewf2G9OENauisnB3EicvI78Bd4gINT9zwczS5gdzlDQYzI36m4WSFK9SPD7tP11ejWyHm7UrJ3yPYsAQdP_m_xj-Fx23oiY4aW3kGG6bYggdpe7i-BfdDNaiqtuF8VKBlvpyjwOCH3HytUXo6QqL2NUp0-hEdoVLofG7LphL7GlXCmto9PFotEoVGV6Vr4izc9kX5LHAhIZfaLy7r6jl8P_4y_XwStUQMkSIE44hRzQ2OqSLGGK48kR8V0gVaKpZaJH05VFxSJi3vE2yTgcV8YI0hSnMuldZ4BzaLeWF2AQ37glMhYqWkJcwKyeRAaCtcFkQFJ7YH-6sByVSLUu7JMi6zBl85zlzPZaHnevC-U71qoDn-pLS3GtWs9c4qizHzMG-Esh6868TOr_xhiSjMfOF1XGCV-NW6By8aI-j-4kUus3QStmYenYLH7F6XFPlFwO5mQ-4iXvff_WAef294lp6m4eXlv6u-hYcn03ScjUeTr6_gUey3BkJl8R5s1uXCvIZ7alnnVfkmeMovbGMXuw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDqa98DE-VhhgEA97CWtju44RLxOjoqKtpmpDeyLyp4i0plWSVuK_x3bSjGogIfGUSHdRLPvOvrPPvx_AO0okxpqqSEmhIo8w51xKyYgbyRKciD4OLArfxmw6Ta6u-PkOfNzchanxIdoNN-8ZYb72Dm6W2p7coIbOi_n7OHEZ-R3YJZ5EpgO7Z7Ph5fgGdJfXKMyM-LmGkw2yUC8-aT_eXo9uBZm3ayV_j2HDIjR88H_Nfwj3m-ATndbW8gh2TH4Ae5PmeP0A7oV6UFU-hu-jHK2z9QIFDj_kZmyNJrMREpWvUqIXH9ApKoTOFraoa7F_olJYU7mHx6tFItdoWbgmzsN9X5TNAxsScsn96roqn8Dl8PPFpy9RQ8UQKUIwjhjV3OCYKmKM4cpT-VEhXailYqlF0pMDxSVl0vIewTbpW8z71hiiNOdSaY2fQidf5OYQ0KAnOBUiVkpawqyQTPaFtsLlQVRwYrtwvBmQVDU45Z4u4zqtEZbj1PVcGnquC29b1WUNzvEnpaPNqKaNf5ZpjJkHeiOUdeFNK3ae5Y9LRG4WK6_jQqvEr9ddeFYbQfsXL3K5pZOwLfNoFTxq97Ykz34E9G424C7mdf89Dubx94ank9kkvDz_d9XXsHd-NkzHo-nXF7Af-72BUFp8BJ2qWJmXcFetq6wsXjWu8gs-CBhk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+human+head+MRI+at+10.5T%3A+A+radiofrequency+safety+study+and+preliminary+imaging+results&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Sadeghi-Tarakameh%2C+Alireza&rft.au=DelaBarre%2C+Lance&rft.au=Lagore%2C+Russell+L&rft.au=Torrado-Carvajal%2C+Angel&rft.date=2020-07-01&rft.eissn=1522-2594&rft.volume=84&rft.issue=1&rft.spage=484&rft_id=info:doi/10.1002%2Fmrm.28093&rft_id=info%3Apmid%2F31751499&rft.externalDocID=31751499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon