Risk of SARS‐CoV‐2 in a car cabin assessed through 3D CFD simulations
In this study, the risk of infection from SARS‐CoV‐2 Delta variant of passengers sharing a car cabin with an infected subject for a 30‐min journey is estimated through an integrated approach combining a recently developed predictive emission‐to‐risk approach and a validated CFD numerical model numer...
Uloženo v:
| Vydáno v: | Indoor air Ročník 32; číslo 3; s. e13012 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
John Wiley & Sons, Inc
01.03.2022
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0905-6947, 1600-0668, 1600-0668 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this study, the risk of infection from SARS‐CoV‐2 Delta variant of passengers sharing a car cabin with an infected subject for a 30‐min journey is estimated through an integrated approach combining a recently developed predictive emission‐to‐risk approach and a validated CFD numerical model numerically solved using the open‐source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero‐dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment. |
|---|---|
| AbstractList | In this study, the risk of infection from SARS‐CoV‐2 Delta variant of passengers sharing a car cabin with an infected subject for a 30‐min journey is estimated through an integrated approach combining a recently developed predictive emission‐to‐risk approach and a validated CFD numerical model numerically solved using the open‐source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero‐dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment. In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated through an integrated approach combining a recently developed predictive emission-to-risk approach and a validated CFD numerical model numerically solved using the open-source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero-dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment.In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated through an integrated approach combining a recently developed predictive emission-to-risk approach and a validated CFD numerical model numerically solved using the open-source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero-dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment. |
| Author | Morawska, Lidia Arpino, Fausto Cortellessa, Gino Grossi, Giorgio Buonanno, Giorgio Stabile, Luca Mikszewski, Alex |
| AuthorAffiliation | 1 Department of Civil and Mechanical Engineering University of Cassino and Southern Lazio Cassino FR Italy 2 International Laboratory for Air Quality and Health Queensland University of Technology Brisbane Queensland Australia |
| AuthorAffiliation_xml | – name: 2 International Laboratory for Air Quality and Health Queensland University of Technology Brisbane Queensland Australia – name: 1 Department of Civil and Mechanical Engineering University of Cassino and Southern Lazio Cassino FR Italy |
| Author_xml | – sequence: 1 givenname: Fausto surname: Arpino fullname: Arpino, Fausto organization: University of Cassino and Southern Lazio – sequence: 2 givenname: Giorgio surname: Grossi fullname: Grossi, Giorgio organization: University of Cassino and Southern Lazio – sequence: 3 givenname: Gino surname: Cortellessa fullname: Cortellessa, Gino organization: University of Cassino and Southern Lazio – sequence: 4 givenname: Alex orcidid: 0000-0003-4126-4590 surname: Mikszewski fullname: Mikszewski, Alex organization: Queensland University of Technology – sequence: 5 givenname: Lidia orcidid: 0000-0002-0594-9683 surname: Morawska fullname: Morawska, Lidia organization: Queensland University of Technology – sequence: 6 givenname: Giorgio surname: Buonanno fullname: Buonanno, Giorgio organization: Queensland University of Technology – sequence: 7 givenname: Luca orcidid: 0000-0003-2454-0389 surname: Stabile fullname: Stabile, Luca email: l.stabile@unicas.it organization: University of Cassino and Southern Lazio |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35347787$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kctOGzEUhq0KBAG66AtUlrppFwO-O95UikKhkRBI3LaWx_EQ04lN7RkQuz5Cn5EnqUkCKgh8t_ydX7_P2QJrIQYHwCeMdnFpez6YXUwRJh_AAAuEKiTEcA0MkEK8EorJTbCV8zVCWFJFN8Am5ZRJOZQDMDn1-ReMDTwbnZ49_Pk7jpdlJdAHaKA1qcz68ZyzK2MKu1mK_dUM0n04PtiH2c_71nQ-hrwD1hvTZvdxtW-Di4Mf5-Of1dHJ4WQ8OqosY5RUHHFjHMc1J6K2teHMSGvIlBBVS-SULZ0IzJm02JWrs42TzbARjDhBbE23wfel7k1fz93UutAl0-qb5Ocm3etovH75EvxMX8VbrUqqiKJF4OtKIMXfvcudnvtsXdua4GKfNRGMKcaYRAX98gq9jn0K5XsLijDOuSrU5_8dPVt5ynIB9paATTHn5BptfbfIWjHoW42RfqyjLnXUizqWiG-vIp5E32JX6ne-dffvg3pyPFpG_AOJ5KxS |
| CitedBy_id | crossref_primary_10_3389_fpubh_2022_1087087 crossref_primary_10_3390_atmos15111316 crossref_primary_10_3390_atmos16020116 crossref_primary_10_1177_11786302221148274 crossref_primary_10_1177_01436244231204450 crossref_primary_10_3390_atmos13030389 crossref_primary_10_1016_j_buildenv_2023_110257 crossref_primary_10_1016_j_enbuild_2023_113033 crossref_primary_10_1016_j_seppur_2024_128028 crossref_primary_10_1016_j_buildenv_2023_110099 crossref_primary_10_1016_j_buildenv_2023_110074 crossref_primary_10_1016_j_buildenv_2023_111065 crossref_primary_10_1016_j_scitotenv_2023_166099 crossref_primary_10_1016_j_psep_2025_107619 crossref_primary_10_1111_ina_13123 crossref_primary_10_1016_j_buildenv_2025_113153 crossref_primary_10_1016_j_jth_2024_101829 crossref_primary_10_1155_2024_6685891 crossref_primary_10_1088_1742_6596_2509_1_012024 crossref_primary_10_1073_pnas_2220882120 crossref_primary_10_1016_j_jaerosci_2023_106285 crossref_primary_10_1016_j_apr_2024_102155 crossref_primary_10_1177_1420326X241267888 crossref_primary_10_1016_j_buildenv_2023_110222 crossref_primary_10_1615_ComputThermalScien_2025058350 crossref_primary_10_1007_s11357_024_01379_7 |
| Cites_doi | 10.1016/j.scitotenv.2021.148749 10.5094/APR.2015.039 10.1186/s12931-021-01637-8 10.1001/jamainternmed.2020.5225 10.1016/j.gsf.2022.101398 10.1073/pnas.2012156117 10.1016/j.envint.2020.105730 10.1111/j.1539-6924.2010.01427.x 10.1038/s41598-020-69286-3 10.1073/pnas.2019324117 10.1371/journal.pone.0235943 10.3201/eid2612.203910 10.3201/eid1003.030683 10.1016/j.envint.2019.03.023 10.1056/NEJMoa2019375 10.1007/978-3-030-25253-3_44 10.1128/mBio.02527-21 10.1016/j.envint.2020.105794 10.1063/5.0061219 10.1126/sciadv.abe0166 10.1016/S0140-6736(21)00869-2 10.1016/j.scitotenv.2021.151499 10.1111/ina.12720 10.1016/j.buildenv.2021.108648 10.4271/2008-01-0732 10.1016/j.ijrefrig.2019.11.006 10.1016/S2213-2600(20)30323-4 10.1056/NEJMc2004973 10.1016/j.jinf.2021.08.027 10.1002/0470014164 10.1111/ina.12751 10.1016/j.buildenv.2021.108042 10.1016/j.envint.2020.106112 10.1038/s42004-021-00548-5 10.1016/j.energy.2020.119751 10.1093/jtm/taab161 10.1016/j.ijid.2021.04.063 10.1016/j.energy.2021.121685 10.1016/j.ijid.2020.09.025 10.1371/journal.pone.0021481 10.1007/s10973-019-09001-1 10.3390/su13126799 10.1016/j.culher.2019.02.017 10.2807/1560-7917.ES.2021.26.50.2101147 10.1016/j.mran.2021.100198 10.1016/j.envint.2020.105832 10.1016/j.envint.2020.106326 10.1016/j.jaerosci.2008.11.002 10.7554/eLife.63537 10.1101/2021.04.27.441510 10.1007/BF03181954 10.1016/j.mran.2020.100140 10.1016/j.gsf.2021.101285 10.1111/j.1600-0668.2007.00469.x 10.1101/2021.10.14.21264988 10.1093/ofid/ofaa430 10.1016/S1473-3099(20)30833-1 10.1017/S0950268811000835 10.1186/s12879-021-06884-0 10.1093/cid/ciaa1675 10.1111/ina.12187 10.1136/thoraxjnl-2020-215091 10.1016/j.ijmultiphaseflow.2020.103439 10.5603/MH.2020.0003 10.1016/j.jaerosci.2011.07.009 10.1016/j.camwa.2020.03.007 10.1038/s41586-020-2271-3 10.1111/j.1600-0668.2009.00621.x |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Copyright © 2022 John Wiley & Sons A/S |
| Copyright_xml | – notice: 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: Copyright © 2022 John Wiley & Sons A/S |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 8FD C1K FR3 KR7 SOI 7X8 5PM |
| DOI | 10.1111/ina.13012 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Civil Engineering Abstracts MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | ARPINO et al |
| EISSN | 1600-0668 |
| EndPage | n/a |
| ExternalDocumentID | PMC9111293 35347787 10_1111_ina_13012 INA13012 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29I 31~ 33P 36B 3SF 4.4 4P2 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8C1 8UM 930 A01 A03 AAESR AAEVG AAHHS AAJEY AAKAS AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFGKR AFKRA AFPWT AFRAH AFZJQ AHEFC AIACR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOETA ASPBG ATCPS ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 C45 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EDH EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE FUBAC FYUFA FZ0 G-S G.N GODZA H.X H13 HCIFZ HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PATMY PIMPY PQQKQ PYCSY Q.N Q11 QB0 R.K RHX RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI UB1 UKHRP W8V W99 WBKPD WIH WIJ WIK WLBEL WOHZO WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE BANNL CITATION O8X PHGZM PHGZT PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7ST 8FD C1K FR3 KR7 SOI 7X8 5PM |
| ID | FETCH-LOGICAL-c4432-505aae51b526bcba54a7ca2d229b70e9c9c9261547c1ee9cecfe7f8f642e62cb3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773567500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0905-6947 1600-0668 |
| IngestDate | Tue Nov 04 01:46:37 EST 2025 Sun Nov 09 10:47:18 EST 2025 Fri Jul 25 21:00:21 EDT 2025 Mon Jul 21 06:03:47 EDT 2025 Tue Nov 18 22:43:22 EST 2025 Sat Nov 29 03:40:14 EST 2025 Wed Jan 22 16:25:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | risk of infection SARS-CoV-2 CFD analysis respiratory particles car cabin virus transmission |
| Language | English |
| License | 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4432-505aae51b526bcba54a7ca2d229b70e9c9c9261547c1ee9cecfe7f8f642e62cb3 |
| Notes | Funding information This research received no specific grant from any funding agency in the public, commercial, or not‐for‐profit sectors ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-0594-9683 0000-0003-4126-4590 0000-0003-2454-0389 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9111293 |
| PMID | 35347787 |
| PQID | 2644245559 |
| PQPubID | 105551 |
| PageCount | 20 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9111293 proquest_miscellaneous_2644944470 proquest_journals_2644245559 pubmed_primary_35347787 crossref_citationtrail_10_1111_ina_13012 crossref_primary_10_1111_ina_13012 wiley_primary_10_1111_ina_13012_INA13012 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Malden – name: Hoboken |
| PublicationTitle | Indoor air |
| PublicationTitleAlternate | Indoor Air |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2021; 209 2021; 26 2021; 21 2009; 40 2021; 22 2021; 202 2021; 28 2020; 16 2019; 127 2020; 15 1994; 24 2020; 10 2008; 1 2021; 73 1994; 2012 2009; 12 2020; 8 2020; 7 2010; 20 2021; 31 2020; 52 2021; 794 2020; 132 2007; Method 2020; 139 2021; 397 2021; 83 2010; 30 2007; 17 2012; 140 2021; 7 2015; 6 2021; 4 2020; 383 2020; 140 2012 2020; 382 2020; 141 2020; 142 2020; 582 2021; 147 2020; 180 2021; 108 2020; 80 2019; 39 2020; 100 2020; 145 2004 1993 2021; 220 2022; 238 2011; 6 2004; 10 2021; 13 2021; 816 2015; 25 2021; 10 2021; 12 2021; 11 2020; 75 2021 2020; 110 2020; 71 2018; 156 2011; 42 2020; 26 2020; 117 2009; 6 e_1_2_8_28_1 Pasaoglu Kilanc G (e_1_2_8_48_1) 2012 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_68_1 International Commission on Radiological Protection (e_1_2_8_71_1) 1994; 24 Te Lindert BHW (e_1_2_8_52_1) 2018 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Yang N (e_1_2_8_9_1) 2020; 52 e_1_2_8_70_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Hudda N (e_1_2_8_36_1) 1994; 2012 e_1_2_8_2_1 e_1_2_8_4_1 Versteeg HK (e_1_2_8_49_1) 2007 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Noakes CJ (e_1_2_8_32_1) 2009; 6 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_73_1 e_1_2_8_50_1 |
| References_xml | – volume: 127 start-page: 773 year: 2019 end-page: 784 article-title: Exploring the effects of ventilation practices in mitigating in‐vehicle exposure to traffic‐related air pollutants in China publication-title: Environ Int – volume: 202 start-page: 108042 year: 2021 article-title: Ventilation procedures to minimize the airborne transmission of viruses in classrooms publication-title: Build Environ – volume: 397 start-page: 1603 year: 2021 end-page: 1605 article-title: Ten scientific reasons in support of airborne transmission of SARS‐CoV‐2 publication-title: Lancet – year: 2021 – volume: 110 start-page: 248 year: 2020 end-page: 261 article-title: Improvement of the wet steam ejector performance in a refrigeration cycle via changing the ejector geometry by a novel EEC (Entropy generation, Entrainment ratio, and Coefficient of performance) method publication-title: Int J Refrig – start-page: 100198 year: 2021 article-title: Using thermodynamic equilibrium models to predict the effect of antiviral agents on infectivity: theoretical application to SARS‐CoV‐2 and other viruses publication-title: Microb Risk Anal – volume: 26 start-page: 2101147 year: 2021 article-title: Outbreak caused by the SARS‐CoV‐2 Omicron variant in Norway, November to December 2021 publication-title: Eurosurveillance – volume: 75 start-page: 693 year: 2020 article-title: COVID‐19: in the footsteps of Ernest Shackleton publication-title: Thorax – volume: 8 start-page: 914 year: 2020 end-page: 924 article-title: Particle sizes of infectious aerosols: implications for infection control publication-title: Lancet Respir. Med – volume: 180 start-page: 1665 year: 2020 end-page: 1671 article-title: Community outbreak investigation of SARS‐CoV‐2 transmission among bus riders in Eastern China publication-title: JAMA Intern Med – start-page: 101285 year: 2021 article-title: The airborne contagiousness of respiratory viruses: a comparative analysis and implications for mitigation publication-title: Geosci Front – volume: 26 start-page: 2872 year: 2020 article-title: Flight‐associated transmission of severe acute respiratory syndrome coronavirus 2 corroborated by whole‐genome sequencing publication-title: Emerging Infectious Disease Journal – volume: 209 start-page: 108648 year: 2021 article-title: A Eulerian‐Lagrangian approach for the non‐isothermal and transient CFD analysis of the aerosol airborne dispersion in a car cabin publication-title: Build Environ – volume: 816 start-page: 151499 year: 2021 article-title: Increased close proximity airborne transmission of the SARS‐CoV‐2 Delta variant publication-title: Sci Total Environ – volume: 83 start-page: e1 year: 2021 end-page: e3 article-title: The Delta SARS‐CoV‐2 variant has a higher viral load than the Beta and the historical variants in nasopharyngeal samples from newly diagnosed COVID‐19 patients publication-title: J Infect – volume: 21 start-page: 1193 year: 2021 article-title: The vaccination threshold for SARS‐CoV‐2 depends on the indoor setting and room ventilation publication-title: BMC Infect Dis – volume: 4 start-page: 110 year: 2021 article-title: Spatial and temporal scales of variability for indoor air constituents publication-title: Communications Chemistry – volume: 140 start-page: 2421 year: 2020 end-page: 2433 article-title: Optimization volumetric heating in condensing steam flow by a novel method publication-title: J Therm Anal Calorim – volume: 794 start-page: 148749 year: 2021 article-title: Close proximity risk assessment for SARS‐CoV‐2 infection publication-title: Sci Total Environ – volume: 52 start-page: 891 year: 2020 end-page: 901 article-title: In‐flight transmission cluster of COVID‐19: a retrospective case series publication-title: Null – volume: 7 start-page: ofaa430 year: 2020 article-title: Transmission of SARS‐CoV‐2 in public transportation vehicles: a case study in hunan province, China publication-title: Open Forum Infect Dis – volume: 25 start-page: 683 year: 2015 end-page: 693 article-title: Effectiveness of a personalized ventilation system in reducing personal exposure against directly released simulated cough droplets publication-title: Indoor Air – volume: 21 start-page: 333 year: 2021 end-page: 343 article-title: SARS‐CoV‐2 seroprevalence and transmission risk factors among high‐risk close contacts: a retrospective cohort study publication-title: Lancet Infect Dis – volume: 28 issue: 8 year: 2021 article-title: A SARS‐CoV‐2 Delta variant outbreak on airplane: vaccinated air passengers are more protected than unvaccinated publication-title: Journal of Travel Medicine – volume: 6 year: 2011 article-title: Dynamics of airborne influenza a viruses indoors and dependence on humidity publication-title: PLoS One – year: 2004 – volume: 12 start-page: 119 year: 2009 end-page: 130 article-title: Measurement of airflow of air‐conditioning in a car with PIV publication-title: J vis – volume: 117 start-page: 25237 year: 2020 end-page: 25245 article-title: Speech can produce jet‐like transport relevant to asymptomatic spreading of virus publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 211 year: 2007 end-page: 225 article-title: How far droplets can move in indoor environments? revisiting the Wells evaporation? falling curve publication-title: Indoor Air – volume: 30 start-page: 1129 year: 2010 end-page: 1138 article-title: Development of a dose‐response model for SARS coronavirus publication-title: Risk Anal – volume: 22 start-page: 73 year: 2021 article-title: Characterization of hospital airborne SARS‐CoV‐2 publication-title: Respir Res – volume: 382 start-page: 1564 year: 2020 end-page: 1567 article-title: Aerosol and surface stability of SARS‐CoV‐2 as compared with SARS‐CoV‐1 publication-title: N Engl J Med – volume: 141 start-page: 105794 year: 2020 article-title: Estimation of airborne viral emission: Quanta emission rate of SARS‐CoV‐2 for infection risk assessment publication-title: Environ Int – volume: 16 start-page: 100140 year: 2020 article-title: Thermodynamic equilibrium dose‐response models for MERS‐CoV infection reveal a potential protective role of human lung mucus but not for SARS‐CoV‐2 publication-title: Microb Risk Anal – volume: 10 start-page: 12732 year: 2020 article-title: Aerosol and surface contamination of SARS‐CoV‐2 observed in quarantine and isolation care publication-title: Sci Rep – volume: 140 start-page: 474 year: 2012 end-page: 478 article-title: The risk of airborne influenza transmission in passenger cars publication-title: Epidemiol Infect – year: 1993 – volume: 147 start-page: 106326 year: 2021 article-title: Tracing surface and airborne SARS‐CoV‐2 RNA inside public buses and subway trains publication-title: Environ Int – volume: 71 start-page: 5 year: 2020 end-page: 8 article-title: Coronavirus (Covid‐19) outbreak on the cruise ship diamond princess publication-title: Int Marit Health – volume: 31 start-page: 314 issue: 2 year: 2021 end-page: 323 article-title: Transmission of SARS‐CoV‐2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event publication-title: Indoor Air – volume: 39 start-page: 221 year: 2019 end-page: 228 article-title: Assessment of the impact of particulate dry deposition on soiling of indoor cultural heritage objects found in churches and museums/libraries publication-title: Journal of Cultural Heritage – volume: 15 year: 2020 article-title: Air and surface measurements of SARS‐CoV‐2 inside a bus during normal operation publication-title: PLoS One – volume: 145 start-page: 106112 year: 2020 article-title: Quantitative assessment of the risk of airborne transmission of SARS‐CoV‐2 infection: prospective and retrospective applications publication-title: Environ Int – volume: 1 start-page: 631 year: 2008 end-page: 639 article-title: Ventilation characteristics of modeled compact car part 1 airflow velocity measurement with PIV publication-title: SAE Int J Passeng Cars – Mech Syst – volume: 100 start-page: 476 year: 2020 end-page: 482 article-title: Viable SARS‐CoV‐2 in the air of a hospital room with COVID‐19 patients publication-title: Int J Infect Dis – volume: 220 start-page: 119751 year: 2021 article-title: A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades publication-title: Energy – volume: 6 start-page: S791 issue: Suppl 6 year: 2009 end-page: 800 article-title: Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards publication-title: J R Soc Interface – volume: 156 start-page: 353 year: 2018 end-page: 365 – volume: 73 start-page: e241 year: 2021 end-page: e245 article-title: Dose‐response relation deduced for coronaviruses from coronavirus disease 2019, severe acute respiratory syndrome, and middle east respiratory syndrome: meta‐analysis results and its application for infection risk assessment of aerosol transmission publication-title: Clin Infect Dis – volume: 10 year: 2021 article-title: Viral load and contact heterogeneity predict SARS‐CoV‐2 transmission and super‐spreading events publication-title: Elife – volume: 11 year: 2021 article-title: On the utility of a well‐mixed model for predicting disease transmission on an urban bus publication-title: AIP Adv – volume: 2012 start-page: 578 issue: 59 year: 1994 end-page: 586 article-title: Linking in‐vehicle ultrafine particle exposures to on‐road concentrations publication-title: Atmos Environ – volume: 80 start-page: 140 year: 2020 end-page: 160 article-title: Numerical simulation and passive control of condensing flow through turbine blade by NVD Method Using Eulerian‐Lagrangian Model publication-title: Comput Math Appl – volume: 7 year: 2021 article-title: Airflows inside passenger cars and implications for airborne disease transmission publication-title: Sci Adv – volume: 6 start-page: 351 year: 2015 end-page: 364 article-title: Detached eddy simulation of turbulent flow in isolated street canyons of different aspect ratios publication-title: Atmospheric Pollution Research – volume: 582 start-page: 557 year: 2020 end-page: 560 article-title: Aerodynamic analysis of SARS‐CoV‐2 in two Wuhan hospitals publication-title: Nature – volume: 142 start-page: 105832 year: 2020 article-title: How can airborne transmission of COVID‐19 indoors be minimised? publication-title: Environ Int – volume: 20 start-page: 2 year: 2010 end-page: 16 article-title: Review and comparison between the Wells‐Riley and dose‐response approaches to risk assessment of infectious respiratory diseases publication-title: Indoor Air – year: 2012 – volume: 42 start-page: 839 year: 2011 end-page: 851 article-title: Modality of human expired aerosol size distributions publication-title: J Aerosol Sci – volume: 132 start-page: 103439 year: 2020 article-title: Host‐to‐host airborne transmission as a multiphase flow problem for science‐based social distance guidelines publication-title: Int J Multiph Flow – volume: 10 start-page: 413 year: 2004 end-page: 418 article-title: Coronaviridae and SARS‐associated coronavirus strain HSR1 publication-title: Emerg Infect Dis – volume: 24 start-page: 1 year: 1994 end-page: 482 article-title: Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection publication-title: Annals of the ICRP – volume: 117 start-page: 32038 year: 2020 article-title: Event‐specific interventions to minimize COVID‐19 transmission publication-title: Proc Natl Acad Sci USA – volume: 142 start-page: 457 year: 2020 end-page: 467 – volume: 383 start-page: 2417 year: 2020 end-page: 2426 article-title: An outbreak of Covid‐19 on an aircraft carrier publication-title: N Engl J Med – volume: 139 start-page: 105730 year: 2020 article-title: Airborne transmission of SARS‐CoV‐2: the world should face the reality publication-title: Environ Int – volume: 12 issue: 5 year: 2021 article-title: Infectious SARS‐CoV‐2 is emitted in aerosol particles publication-title: MBio – volume: Method year: 2007 – volume: 40 start-page: 256 year: 2009 end-page: 269 article-title: Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities publication-title: J Aerosol Sci – volume: 238 start-page: 121685 year: 2022 article-title: A modified model of the suction technique of wetness reducing in wet steam flow considering power‐saving publication-title: Energy – volume: 13 start-page: 6799 year: 2021 article-title: CFD Investigation of Vehicle’s ventilation systems and analysis of ACH in typical airplanes, cars, and buses publication-title: Sustainability – volume: 108 start-page: 212 year: 2021 end-page: 216 article-title: Isolation of SARS‐CoV‐2 from the air in a car driven by a COVID patient with mild illness publication-title: Int J Infect Dis – volume: 31 start-page: 99 year: 2021 end-page: 111 article-title: Could the ductless personalized ventilation be an alternative to the regular ducted personalized ventilation? publication-title: Indoor Air – ident: e_1_2_8_26_1 doi: 10.1016/j.scitotenv.2021.148749 – ident: e_1_2_8_70_1 – ident: e_1_2_8_38_1 doi: 10.5094/APR.2015.039 – ident: e_1_2_8_14_1 doi: 10.1186/s12931-021-01637-8 – ident: e_1_2_8_3_1 doi: 10.1001/jamainternmed.2020.5225 – ident: e_1_2_8_47_1 doi: 10.1016/j.gsf.2022.101398 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.2012156117 – ident: e_1_2_8_12_1 doi: 10.1016/j.envint.2020.105730 – ident: e_1_2_8_61_1 doi: 10.1111/j.1539-6924.2010.01427.x – ident: e_1_2_8_13_1 doi: 10.1038/s41598-020-69286-3 – ident: e_1_2_8_74_1 doi: 10.1073/pnas.2019324117 – ident: e_1_2_8_18_1 doi: 10.1371/journal.pone.0235943 – ident: e_1_2_8_8_1 doi: 10.3201/eid2612.203910 – ident: e_1_2_8_64_1 doi: 10.3201/eid1003.030683 – ident: e_1_2_8_75_1 doi: 10.1016/j.envint.2019.03.023 – ident: e_1_2_8_5_1 doi: 10.1056/NEJMoa2019375 – ident: e_1_2_8_51_1 doi: 10.1007/978-3-030-25253-3_44 – ident: e_1_2_8_66_1 doi: 10.1128/mBio.02527-21 – ident: e_1_2_8_46_1 doi: 10.1016/j.envint.2020.105794 – ident: e_1_2_8_31_1 doi: 10.1063/5.0061219 – ident: e_1_2_8_34_1 doi: 10.1126/sciadv.abe0166 – ident: e_1_2_8_10_1 doi: 10.1016/S0140-6736(21)00869-2 – ident: e_1_2_8_29_1 doi: 10.1016/j.scitotenv.2021.151499 – start-page: 353 volume-title: Handbook of Clinical Neurology year: 2018 ident: e_1_2_8_52_1 – ident: e_1_2_8_76_1 doi: 10.1111/ina.12720 – ident: e_1_2_8_35_1 doi: 10.1016/j.buildenv.2021.108648 – ident: e_1_2_8_45_1 doi: 10.4271/2008-01-0732 – volume-title: Driving and parking patterns of European car drivers? A mobility survey year: 2012 ident: e_1_2_8_48_1 – ident: e_1_2_8_42_1 doi: 10.1016/j.ijrefrig.2019.11.006 – volume: 24 start-page: 1 year: 1994 ident: e_1_2_8_71_1 article-title: Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection publication-title: Annals of the ICRP – volume-title: Introduction to computational fluid dynamics: The finite year: 2007 ident: e_1_2_8_49_1 – ident: e_1_2_8_56_1 doi: 10.1016/S2213-2600(20)30323-4 – ident: e_1_2_8_16_1 doi: 10.1056/NEJMc2004973 – ident: e_1_2_8_60_1 doi: 10.1016/j.jinf.2021.08.027 – ident: e_1_2_8_37_1 doi: 10.1002/0470014164 – ident: e_1_2_8_27_1 doi: 10.1111/ina.12751 – volume: 52 start-page: 891 year: 2020 ident: e_1_2_8_9_1 article-title: In‐flight transmission cluster of COVID‐19: a retrospective case series publication-title: Null – ident: e_1_2_8_23_1 doi: 10.1016/j.buildenv.2021.108042 – ident: e_1_2_8_28_1 doi: 10.1016/j.envint.2020.106112 – ident: e_1_2_8_33_1 doi: 10.1038/s42004-021-00548-5 – ident: e_1_2_8_40_1 doi: 10.1016/j.energy.2020.119751 – ident: e_1_2_8_4_1 doi: 10.1093/jtm/taab161 – ident: e_1_2_8_20_1 doi: 10.1016/j.ijid.2021.04.063 – volume: 2012 start-page: 578 issue: 59 year: 1994 ident: e_1_2_8_36_1 article-title: Linking in‐vehicle ultrafine particle exposures to on‐road concentrations publication-title: Atmos Environ – ident: e_1_2_8_39_1 doi: 10.1016/j.energy.2021.121685 – ident: e_1_2_8_15_1 doi: 10.1016/j.ijid.2020.09.025 – ident: e_1_2_8_68_1 doi: 10.1371/journal.pone.0021481 – ident: e_1_2_8_43_1 doi: 10.1007/s10973-019-09001-1 – ident: e_1_2_8_50_1 doi: 10.3390/su13126799 – ident: e_1_2_8_69_1 doi: 10.1016/j.culher.2019.02.017 – ident: e_1_2_8_72_1 doi: 10.2807/1560-7917.ES.2021.26.50.2101147 – ident: e_1_2_8_63_1 doi: 10.1016/j.mran.2021.100198 – ident: e_1_2_8_11_1 doi: 10.1016/j.envint.2020.105832 – ident: e_1_2_8_19_1 doi: 10.1016/j.envint.2020.106326 – ident: e_1_2_8_55_1 doi: 10.1016/j.jaerosci.2008.11.002 – ident: e_1_2_8_73_1 doi: 10.7554/eLife.63537 – volume: 6 start-page: S791 issue: 6 year: 2009 ident: e_1_2_8_32_1 article-title: Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards publication-title: J R Soc Interface – ident: e_1_2_8_57_1 doi: 10.1101/2021.04.27.441510 – ident: e_1_2_8_44_1 doi: 10.1007/BF03181954 – ident: e_1_2_8_62_1 doi: 10.1016/j.mran.2020.100140 – ident: e_1_2_8_21_1 doi: 10.1016/j.gsf.2021.101285 – ident: e_1_2_8_59_1 doi: 10.1111/j.1600-0668.2007.00469.x – ident: e_1_2_8_67_1 doi: 10.1101/2021.10.14.21264988 – ident: e_1_2_8_2_1 doi: 10.1093/ofid/ofaa430 – ident: e_1_2_8_24_1 doi: 10.1016/S1473-3099(20)30833-1 – ident: e_1_2_8_25_1 doi: 10.1017/S0950268811000835 – ident: e_1_2_8_22_1 doi: 10.1186/s12879-021-06884-0 – ident: e_1_2_8_65_1 doi: 10.1093/cid/ciaa1675 – ident: e_1_2_8_77_1 doi: 10.1111/ina.12187 – ident: e_1_2_8_7_1 doi: 10.1136/thoraxjnl-2020-215091 – ident: e_1_2_8_58_1 doi: 10.1016/j.ijmultiphaseflow.2020.103439 – ident: e_1_2_8_6_1 doi: 10.5603/MH.2020.0003 – ident: e_1_2_8_54_1 doi: 10.1016/j.jaerosci.2011.07.009 – ident: e_1_2_8_41_1 doi: 10.1016/j.camwa.2020.03.007 – ident: e_1_2_8_17_1 doi: 10.1038/s41586-020-2271-3 – ident: e_1_2_8_30_1 doi: 10.1111/j.1600-0668.2009.00621.x |
| SSID | ssj0017393 |
| Score | 2.4831343 |
| SecondaryResourceType | review_article |
| Snippet | In this study, the risk of infection from SARS‐CoV‐2 Delta variant of passengers sharing a car cabin with an infected subject for a 30‐min journey is estimated... In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e13012 |
| SubjectTerms | Air flow Automobiles car cabin CFD analysis Computational fluid dynamics Computer Simulation Confined spaces COVID-19 - etiology Evaluation Flow distribution Flow pattern Flow rates Flow velocity Fluid dynamics Health risks Humans HVAC HVAC equipment Hydrodynamics Indoor environments Infections Mathematical models Numerical models respiratory particles Review Risk risk of infection SARS-CoV-2 Seats Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Ventilation virus transmission |
| Title | Risk of SARS‐CoV‐2 in a car cabin assessed through 3D CFD simulations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fina.13012 https://www.ncbi.nlm.nih.gov/pubmed/35347787 https://www.proquest.com/docview/2644245559 https://www.proquest.com/docview/2644944470 https://pubmed.ncbi.nlm.nih.gov/PMC9111293 |
| Volume | 32 |
| WOSCitedRecordID | wos000773567500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1600-0668 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017393 issn: 0905-6947 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB6STQ7pof9pnaRBKTnkYvDKkmWT07LbpYGwlM0PezOSLFHT1FvWSc99hD5jnyQj2Wt2SQKBYmxkNLZleUaaz5K-AThWiDqiWJoQ0bIIGTpGYWqlCmWBzrmOCmb9qrTrczGZpLNZ9m0DTpdrYRp-iO6Hm7MM3147A5eqXjFyF7UAG2AXYXiLot7yHmyNpuOr824QwZG9eaq9iIdJxkRLLOQm8nQXr3dHD3zMh1MlV11Y3weNX_1X6V_Dy9b1JINGV97AhqnewosVQsJ3cDYt6x9kbsnFYHrx78_f4fwaj5SUFZFEywXuyqX9SLEpSBvlh8QjMhyPSF3-bKOB1e_havzlcvg1bIMthJqxGAFpxKU0vK84TZRWkjMptKQFpZkSkck0boi2OBO6b_DUaGuETS3iF5NQreJd6FXzynwE0he24FQWeI-UFYnOYhlRmyXURqmUtgjgZFnnuW6ZyF1AjJt8iUiwdnJfOwF87kR_NfQbjwkdLD9c3lpgnTtHjzKOgCmAoy4bbccNiMjKzO8amYwxJqIAPjTfuXtKzGMmsDULQKxpQCfgeLnXc6ryu-fndv0HelH4ml4Dni54fjYZ-MTe80X3YYe6FRh-GtwB9G4Xd-YTbOvft2W9OIRNMUsPW0O4BzHyC4Y |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CEmh7aJM-3bzUkkMvBq8sWTbksux2yZLNEjYPcjOyLFGT1FvWSc_9CfmN-SUdyV6zSxIIBGMjo7EtSzOjGT2-AdjP0OsIQql99JaFz9Aw8mMjM1_maJyrIGfG7Uq7GInxOL68TE5W4GC-F6bGh2gH3KxkOH1tBdwOSC9IuQ1bgBrYhhheY8hGyN9r_cngfNTOIli0N4e1F3A_SphokIXsSp724eX-6IGR-XCt5KIN6zqhwbuXFX8D3jbGJ-nW3LIJK7p8D28WIAk_wHBSVFdkashpd3J6_--uN73AKyVFSSRRcoZnZtNurljnpInzQ8I-6Q36pCp-N_HAqo9wPvh51jv0m3ALvmIsRJc04FJq3sk4jTKVSc6kUJLmlCaZCHSi8EB_izOhOhpvtTJamNigB6MjqrLwE6yW01J_AdIRJudU5viOmOWRSkIZUJNE1ASxlCb34Me80lPVYJHbkBjX6dwnwdpJXe148L0l_VMDcDxGtD1vubSRwSq1ph5lHF0mD7612Sg9dkpElnp6W9MkjDERePC5buj2KyEPmUB95oFYYoGWwCJzL-eUxS-H0G17ELSj8DcdCzxd8HQ47rrE1-eT7sGrw7PjUToajo-24DW1-zHcorhtWL2Z3eodWFd_b4pqttvIw3_cRw6O |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datswFD6UtIz1Yuu6tfPWburYxW4MjixFNuwmJDMNC6Gka-mdkfVDTTenxO2u9wh7xj3JjmTHJHSDwTA2MjqyZUlHOseSvg_gfYFeRxRLE6K3LEKGhlGYWFmEUqNxriLNrN-VdjkVs1lydZWebcHH1V6YBh-i--HmNMP3107Bza22a1ruaAuwB3YUw9vMkcj0YHs8zy6m3SyCQ3vzWHsRDwcpEy2ykFvJ0yXeHI8eGJkP10qu27B-EMqe_l_29-BJa3ySYdNansGWqfZhdw2S8DlM5mV9QxaWnA_n579-_BwtLvFKSVkRSZRc4lm4sJ8rNpq0PD8kHpNRNiZ1-a3lA6tfwEX26cvoNGzpFkLFWIwuacSlNLxfcDooVCE5k0JJqilNCxGZVOGB_hZnQvUN3hpljbCJRQ_GDKgq4gPoVYvKvATSF1ZzKjU-I2F6oNJYRtRiFdkokdLqAD6sCj1XLRa5o8T4mq98Eiyd3JdOAO860dsGgONPQkermstbHaxzZ-pRxtFlCuCki0btcVMisjKL-0YmZYyJKIDDpqK7t8Q8ZgL7swDERhPoBBwy92ZMVV57hG43gqAdhZ_pm8DfM55PZkMfePXvom_h0dk4y6eT2efX8Ji67Rh-TdwR9O6W9-YYdtT3u7JevmnV4TdT8w4J |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+of+SARS-CoV-2+in+a+car+cabin+assessed+through+3D+CFD+simulations&rft.jtitle=Indoor+air&rft.au=Arpino%2C+Fausto&rft.au=Grossi%2C+Giorgio&rft.au=Cortellessa%2C+Gino&rft.au=Mikszewski%2C+Alex&rft.date=2022-03-01&rft.issn=1600-0668&rft.eissn=1600-0668&rft.volume=32&rft.issue=3&rft.spage=e13012&rft_id=info:doi/10.1111%2Fina.13012&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-6947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-6947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-6947&client=summon |