Predicting sex, age, general cognition and mental health with machine learning on brain structural connectomes

There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how mu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Human brain mapping Ročník 44; číslo 5; s. 1913 - 1933
Hlavní autoři: Yeung, Hon Wah, Stolicyn, Aleks, Buchanan, Colin R., Tucker‐Drob, Elliot M., Bastin, Mark E., Luz, Saturnino, McIntosh, Andrew M., Whalley, Heather C., Cox, Simon R., Smith, Keith
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.04.2023
Témata:
ISSN:1065-9471, 1097-0193, 1097-0193
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. We explore how multiple aspects of brain structural connectivity can predict general cognitive function and general psychopathology. To do this, we modelled six different structural network weightings obtained from diffusion MRI and tested different machine learning (ML) algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. DL did not improve on prediction accuracies from simpler linear models, indicating that most of the variation between phenotypes in weighted structural connectomes is linear rather than non‐linear in nature. This may have implied that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
AbstractList There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. We explore how multiple aspects of brain structural connectivity can predict general cognitive function and general psychopathology. To do this, we modelled six different structural network weightings obtained from diffusion MRI and tested different machine learning (ML) algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. DL did not improve on prediction accuracies from simpler linear models, indicating that most of the variation between phenotypes in weighted structural connectomes is linear rather than non‐linear in nature. This may have implied that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N  = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. We explore how multiple aspects of brain structural connectivity can predict general cognitive function and general psychopathology. To do this, we modelled six different structural network weightings obtained from diffusion MRI and tested different machine learning (ML) algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. DL did not improve on prediction accuracies from simpler linear models, indicating that most of the variation between phenotypes in weighted structural connectomes is linear rather than non‐linear in nature. This may have implied that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
Author Yeung, Hon Wah
Tucker‐Drob, Elliot M.
Bastin, Mark E.
McIntosh, Andrew M.
Whalley, Heather C.
Stolicyn, Aleks
Buchanan, Colin R.
Cox, Simon R.
Smith, Keith
Luz, Saturnino
AuthorAffiliation 1 Department of Psychiatry University of Edinburgh Edinburgh UK
2 Department of Psychology University of Edinburgh Edinburgh UK
9 Centre for Genomic and Experimental Medicine Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh UK
4 Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE) Edinburgh UK
5 Department of Psychology University of Texas Austin Texas USA
3 Lothian Birth Cohorts, University of Edinburgh Edinburgh UK
6 Population Research Center and Center on Aging and Population Sciences University of Texas at Austin Austin Texas USA
8 Edinburgh Medical School Usher Institute, The University of Edinburgh Edinburgh UK
10 Department of Physics and Mathematics Nottingham Trent University Nottingham UK
7 Centre for Clinical Brain Science University of Edinburgh Edinburgh UK
AuthorAffiliation_xml – name: 4 Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE) Edinburgh UK
– name: 1 Department of Psychiatry University of Edinburgh Edinburgh UK
– name: 7 Centre for Clinical Brain Science University of Edinburgh Edinburgh UK
– name: 3 Lothian Birth Cohorts, University of Edinburgh Edinburgh UK
– name: 6 Population Research Center and Center on Aging and Population Sciences University of Texas at Austin Austin Texas USA
– name: 2 Department of Psychology University of Edinburgh Edinburgh UK
– name: 8 Edinburgh Medical School Usher Institute, The University of Edinburgh Edinburgh UK
– name: 9 Centre for Genomic and Experimental Medicine Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh UK
– name: 5 Department of Psychology University of Texas Austin Texas USA
– name: 10 Department of Physics and Mathematics Nottingham Trent University Nottingham UK
Author_xml – sequence: 1
  givenname: Hon Wah
  orcidid: 0000-0002-4993-9014
  surname: Yeung
  fullname: Yeung, Hon Wah
  email: s1884975@ed.ac.uk
  organization: University of Edinburgh
– sequence: 2
  givenname: Aleks
  orcidid: 0000-0002-1147-7539
  surname: Stolicyn
  fullname: Stolicyn, Aleks
  organization: University of Edinburgh
– sequence: 3
  givenname: Colin R.
  orcidid: 0000-0001-6501-628X
  surname: Buchanan
  fullname: Buchanan, Colin R.
  organization: Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE)
– sequence: 4
  givenname: Elliot M.
  orcidid: 0000-0001-5599-6237
  surname: Tucker‐Drob
  fullname: Tucker‐Drob, Elliot M.
  organization: University of Texas at Austin
– sequence: 5
  givenname: Mark E.
  orcidid: 0000-0002-0490-0845
  surname: Bastin
  fullname: Bastin, Mark E.
  organization: University of Edinburgh
– sequence: 6
  givenname: Saturnino
  orcidid: 0000-0001-8430-7875
  surname: Luz
  fullname: Luz, Saturnino
  organization: Usher Institute, The University of Edinburgh
– sequence: 7
  givenname: Andrew M.
  orcidid: 0000-0002-0198-4588
  surname: McIntosh
  fullname: McIntosh, Andrew M.
  organization: Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 8
  givenname: Heather C.
  orcidid: 0000-0002-4505-8869
  surname: Whalley
  fullname: Whalley, Heather C.
  organization: University of Edinburgh
– sequence: 9
  givenname: Simon R.
  orcidid: 0000-0003-4036-3642
  surname: Cox
  fullname: Cox, Simon R.
  organization: Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE)
– sequence: 10
  givenname: Keith
  orcidid: 0000-0002-4615-9020
  surname: Smith
  fullname: Smith, Keith
  organization: Nottingham Trent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36541441$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1v1iAYhomZcR964B8wJJ5osm48lNJyYqKLuiUzeqDHhNKnLUsLE1rn_r28vu-MLvMECFzPlbu9D8meDx4JeQ7sBBjjp2M7n3AJDX9EDoCpumCgyr3NWVaFEjXsk8OUrhgDqBg8IfulrAQIAQfEf4nYObs4P9CEP4-pGfCYDugxmonaMHi3uOCp8R2d0S_5ckQzLSO9cXmZjR2dRzqhiX7jyGgbjfM0LXG1y7q1eI92CTOmp-Rxb6aEz3b7Efn24f3Xs_Pi8vPHi7O3l4UVouSFMFWNXV121hoJljXCAut7KVGgAGwsgoCK864tmUFeW6Mks10me1QtYHlE3my912s7Y2dz8pxEX0c3m3irg3H63xfvRj2EH1qphjWqyYJXO0EM31dMi55dsjhNxmNYk-Z1JWXNFJMZfXkPvQpr9PnzMtUAb3jJeKZe_J3oT5S7KjJwugVsDClF7LV1i9n8_BzQTRqY3pStc9n6d9l54vW9iTvpQ-zOfuMmvP0_qM_ffdpO_AJPibq4
CitedBy_id crossref_primary_10_1093_cercor_bhaf199
crossref_primary_10_1007_s11357_023_00831_4
crossref_primary_10_1162_imag_a_00416
crossref_primary_10_1038_s41398_025_03565_3
crossref_primary_10_1097_WNR_0000000000001976
crossref_primary_10_1016_j_media_2025_103476
crossref_primary_10_1016_j_mri_2024_110251
crossref_primary_10_1016_j_neuroimage_2024_120909
crossref_primary_10_1162_imag_a_00064
crossref_primary_10_1016_j_media_2024_103120
crossref_primary_10_1016_j_media_2025_103761
crossref_primary_10_1007_s00521_023_09031_9
crossref_primary_10_1002_hbm_70314
crossref_primary_10_1038_s41380_023_02252_3
crossref_primary_10_1007_s11357_023_00934_y
crossref_primary_10_1007_s10462_025_11146_5
Cites_doi 10.1016/j.biopsych.2014.08.009
10.1016/j.neuroimage.2019.116038
10.1002/hbm.10062
10.1176/appi.ajp.2018.17121383
10.1016/j.neubiorev.2017.10.001
10.1126/sciadv.aat7854
10.1145/130385.130401
10.1038/nprot.2016.178
10.1016/j.neuroimage.2017.07.059
10.1016/j.jaac.2020.08.440
10.1016/j.nurt.2007.05.011
10.1093/cercor/bht064
10.1159/000516837
10.1002/hbm.22286
10.1016/j.neuroimage.2013.04.056
10.1109/ACCESS.2017.2762703
10.1016/j.biopsych.2020.06.010
10.1001/jamapsychiatry.2014.2206
10.1016/j.neuroimage.2019.116276
10.1109/EMBC44109.2020.9175596
10.1007/s00247-020-04743-9
10.1098/rstb.2017.0284
10.1016/j.jmr.2011.09.022
10.1093/ije/dyq190
10.1016/S0160-2896(03)00062-X
10.1038/npp.2013.251
10.1037/a0028355
10.1371/journal.pcbi.1005583
10.1007/s00330-020-06674-3
10.1016/j.jneumeth.2015.06.016
10.1016/j.intell.2019.101376
10.1016/S1361-8415(01)00036-6
10.1016/j.jad.2016.06.066
10.1001/jamanetworkopen.2020.3221
10.1038/s41380-021-01027-y
10.1080/1047840X.2020.1853476
10.1056/NEJMoa1204471
10.1016/j.neuroimage.2012.03.072
10.1109/CVPR.2016.90
10.1038/s41562-020-00936-2
10.1016/j.neuroimage.2017.06.072
10.1001/jamapsychiatry.2018.3658
10.1093/cercor/bhaa390
10.1038/456175a
10.1016/j.neuroimage.2006.01.021
10.1016/j.biopsych.2014.02.018
10.1038/nn.4393
10.1038/nn.4497
10.18637/jss.v070.i01
10.1016/j.pnpbp.2021.110329
10.1038/nrn2575
10.1016/j.neuroimage.2016.09.046
10.1002/hbm.23501
10.1016/j.neuroimage.2019.116443
10.1016/j.intell.2007.06.001
10.1371/journal.pone.0231627
10.1002/hbm.25116
10.1038/s41398-018-0217-4
10.1016/j.neulet.2018.11.025
10.1007/978-3-030-31901-4_16
10.1089/brain.2018.0658
10.1038/s41588-022-01057-4
10.1093/cercor/bhaa407
10.1038/nn.4135
10.1002/hbm.24392
10.1037/h0040957
10.1503/jpn.170214
10.1093/cercor/bhz134
10.1371/journal.pbio.0060159
10.1016/j.media.2021.102233
10.1177/2167702618820018
10.1016/j.neubiorev.2017.01.002
10.1093/cercor/bhy109
10.1038/s41467-020-18037-z
10.3389/fnagi.2020.00028
10.1016/j.intell.2006.09.004
10.3390/biom10111534
10.1016/j.neuroimage.2012.06.081
10.1016/j.jpsychires.2019.02.008
10.1016/j.neuroimage.2010.01.019
10.1371/journal.pone.0154222
10.1111/jcpp.13113
10.1002/hbm.22952
10.1177/0959354317737185
10.1038/s41467-022-33724-9
10.1093/schbul/sbz111
10.1038/s41380-021-01031-2
10.1109/EMBC44109.2020.9176610
10.1016/j.neuroimage.2017.10.034
10.1038/s41467-020-20655-6
10.1177/2167702613497473
10.1093/eurheartj/ehz100
10.1037/abn0000258
10.1073/pnas.1521083113
10.1038/s41562-019-0659-6
10.1016/j.jaac.2019.05.006
10.1093/aje/kwx246
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.26182
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Yeung et al
EISSN 1097-0193
EndPage 1933
ExternalDocumentID PMC9980898
36541441
10_1002_hbm_26182
HBM26182
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P2CHD042849; P30AG066614; R01AG054628
– fundername: Wellcome Trust
  funderid: 104036/Z/14/Z; 220857/Z/20/Z; 221890/Z/20/Z
– fundername: Medical Research Council
  funderid: MR/R024065/1
– fundername: UK Research and Innovation
  funderid: MC_PC_17209
– fundername: Wellcome Trust
  grantid: 221890/Z/20/Z
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 220857/Z/20/Z
– fundername: NIA NIH HHS
  grantid: P30 AG066614
– fundername: Wellcome Trust
  grantid: 104036/Z/14/Z
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_PC_17209
– fundername: NIA NIH HHS
  grantid: R01 AG054628
– fundername: Medical Research Council
  grantid: MR/S004122/1
– fundername: Medical Research Council
  grantid: MR/R024065/1
– fundername: ;
  grantid: P2CHD042849; P30AG066614; R01AG054628
– fundername: ;
  grantid: 104036/Z/14/Z; 220857/Z/20/Z; 221890/Z/20/Z
– fundername: ;
  grantid: MC_PC_17209
– fundername: ;
  grantid: MR/R024065/1
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAFWJ
AAMMB
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AFFHD
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
O8X
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4432-4a57ed73dcca61c084c10ff66e4e41e8ce141522db30ae27ca960cd1c0fe9b1e3
IEDL.DBID 24P
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900710100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Nov 04 02:06:58 EST 2025
Thu Sep 04 19:41:46 EDT 2025
Sat Nov 29 14:27:19 EST 2025
Mon Jul 21 06:08:14 EDT 2025
Sat Nov 29 02:24:58 EST 2025
Tue Nov 18 21:29:54 EST 2025
Wed Jan 22 16:14:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
diffusion tensor imaging
cognition
structural connectomes
general psychopathology
Language English
License Attribution
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4432-4a57ed73dcca61c084c10ff66e4e41e8ce141522db30ae27ca960cd1c0fe9b1e3
Notes Funding information
Heather C. Whalley, Simon R. Cox and Keith Smith contributed equally to senior authorship.
Medical Research Council, Grant/Award Number: MR/R024065/1; National Institutes of Health, Grant/Award Numbers: P2CHD042849, P30AG066614, R01AG054628; UK Research and Innovation, Grant/Award Number: MC_PC_17209; Wellcome Trust, Grant/Award Numbers: 104036/Z/14/Z, 220857/Z/20/Z, 221890/Z/20/Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Medical Research Council, Grant/Award Number: MR/R024065/1; National Institutes of Health, Grant/Award Numbers: P2CHD042849, P30AG066614, R01AG054628; UK Research and Innovation, Grant/Award Number: MC_PC_17209; Wellcome Trust, Grant/Award Numbers: 104036/Z/14/Z, 220857/Z/20/Z, 221890/Z/20/Z
ORCID 0000-0003-4036-3642
0000-0001-6501-628X
0000-0002-0490-0845
0000-0002-4993-9014
0000-0001-5599-6237
0000-0002-1147-7539
0000-0001-8430-7875
0000-0002-0198-4588
0000-0002-4615-9020
0000-0002-4505-8869
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26182
PMID 36541441
PQID 2781282302
PQPubID 996345
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9980898
proquest_miscellaneous_2756670906
proquest_journals_2781282302
pubmed_primary_36541441
crossref_citationtrail_10_1002_hbm_26182
crossref_primary_10_1002_hbm_26182
wiley_primary_10_1002_hbm_26182_HBM26182
PublicationCentury 2000
PublicationDate April 1, 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 83
2002; 17
2018; 166
2012; 121
2006; 31
2015; 72
2013; 368
2015; 77
2008; 36
2020; 15
2019; 201
2020; 206
2014; 24
2020; 12
2020; 11
2020; 10
2012; 13
2018; 43
2017; 158
1997; 9
2022; 27
2018; 175
2004; 32
13
2018; 8
2017; 74
2009; 10
2015; 253
2007; 4
2020; 211
2017; 163
2019; 7
2019; 9
2018; 28
2019; 3
27
2016; 19
2019; 5
2020; 41
1997
2016; 205
1992
31
2016; 11
2019; 40
2020; 31
2020; 30
2013; 73
2013; 80
2014; 35
2014; 39
2017; 146
2019; 694
2010; 50
2012; 61
2017; 5
2015; 36
2019; 11791
2020; 61
2020; 60
2020; 59
2008; 6
2016; 70
2020; 54
2007; 35
2018; 373
2020; 3
2021; 31
2014; 2
2020; 50
2017; 38
2016; 113
2020; 46
2021; 110
1955; 52
2017; 126
2019; 111
2011; 213
2017; 20
2021; 7
2021; 5
2021; 89
2015; 18
2012
2019; 76
2017; 27
2011; 40
2007
74
2021; 12
2001; 5
2020
2017; 13
2017; 12
2016
2008; 456
2017; 186
2014
2013
2014; 76
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
Ho C.‐H. (e_1_2_7_48_1) 2012; 13
Murphy K. P. (e_1_2_7_69_1) 2012
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_29_1
Andersson J. L. (e_1_2_7_7_1) 2007
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
Drucker H. (e_1_2_7_30_1) 1997; 9
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
Vapnik V. (e_1_2_7_93_1) 1997
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 52
  start-page: 281
  issue: 4
  year: 1955
  end-page: 302
  article-title: Construct validity in psychological tests
  publication-title: Psychological Bulletin
– volume: 60
  start-page: 902
  issue: 7
  year: 2020
  end-page: 912.e5
  article-title: The p factor consistently predicts long‐term psychiatric and functional outcomes in anxiety‐disordered youth
  publication-title: Journal of the American Academy of Child and Adolescent Psychiatry
– volume: 31
  start-page: 3006
  issue: 6
  year: 2021
  end-page: 3020
  article-title: Connectome‐based predictive modeling of individual anxiety
  publication-title: Cerebral Cortex
– volume: 206
  year: 2020
  article-title: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics
  publication-title: NeuroImage
– volume: 30
  start-page: 888
  issue: 3
  year: 2020
  end-page: 900
  article-title: Gender differences in connectome‐based predictions of individualized intelligence quotient and sub‐domain scores
  publication-title: Cerebral Cortex
– volume: 368
  start-page: 1388
  issue: 15
  year: 2013
  end-page: 1397
  article-title: An fMRI‐based neurologic signature of physical pain
  publication-title: New England Journal of Medicine
– volume: 50
  start-page: 910
  issue: 3
  year: 2010
  end-page: 919
  article-title: Identifying population differences in whole‐brain structural networks: A machine learning approach
  publication-title: NeuroImage
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapping
– volume: 15
  issue: 4
  year: 2020
  article-title: Reliability and validity of the UK biobank cognitive tests
  publication-title: PLoS One
– volume: 36
  start-page: 4819
  issue: 12
  year: 2015
  end-page: 4830
  article-title: A network of amygdala connections predict individual differences in trait anxiety
  publication-title: Human Brain Mapping
– volume: 9
  start-page: 209
  issue: 2
  year: 2019
  end-page: 220
  article-title: White matter connectome edge density in children with autism spectrum disorders: Potential imaging biomarkers using machine‐learning models
  publication-title: Brain Connectivity
– year: 2014
– volume: 3
  start-page: 988
  issue: 9
  year: 2019
  end-page: 998
  article-title: Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders
  publication-title: Nature Human Behaviour
– volume: 6
  issue: 7
  year: 2008
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biology
– volume: 61
  start-page: 1000
  issue: 4
  year: 2012
  end-page: 1016
  article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: NeuroImage
– volume: 35
  start-page: 401
  issue: 5
  year: 2007
  end-page: 426
  article-title: Intelligence and socioeconomic success: A meta‐analytic review of longitudinal research
  publication-title: Intelligence
– volume: 7
  start-page: 430
  issue: 3
  year: 2019
  end-page: 444
  article-title: Genetic and environmental links between general factors of psychopathology and cognitive ability in early childhood
  publication-title: Clinical Psychological Science
– volume: 201
  year: 2019
  article-title: Combining multiple connectomes improves predictive modeling of phenotypic measures
  publication-title: NeuroImage
– volume: 13
  article-title: Transcriptome‐wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits
  publication-title: Nature Communications
– volume: 24
  start-page: 2258
  issue: 9
  year: 2014
  end-page: 2267
  article-title: Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex
  publication-title: Cerebral Cortex
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 27
  start-page: 759
  issue: 6
  year: 2017
  end-page: 773
  article-title: What is the p‐factor of psychopathology? Some risks of general factor modeling
  publication-title: Theory & Psychology
– volume: 3
  issue: 4
  year: 2020
  article-title: Longitudinal assessment of mental health disorders and comorbidities across 4 decades among participants in the Dunedin birth cohort study
  publication-title: JAMA Network Open
– volume: 36
  start-page: 81
  issue: 1
  year: 2008
  end-page: 95
  article-title: Still just 1 g: Consistent results from five test batteries
  publication-title: Intelligence
– volume: 5
  issue: 1
  year: 2019
  article-title: Inversion of a large‐scale circuit model reveals a cortical hierarchy in the dynamic resting human brain
  publication-title: Science Advances
– volume: 73
  start-page: 239
  year: 2013
  end-page: 254
  article-title: White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI
  publication-title: NeuroImage
– volume: 175
  start-page: 831
  issue: 9
  year: 2018
  end-page: 844
  article-title: All for one and one for all: Mental disorders in one dimension
  publication-title: American Journal of Psychiatry
– volume: 35
  start-page: 1710
  issue: 4
  year: 2014
  end-page: 1722
  article-title: Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS
  publication-title: Human Brain Mapping
– volume: 253
  start-page: 170
  year: 2015
  end-page: 182
  article-title: The influence of construction methodology on structural brain network measures: A review
  publication-title: Journal of Neuroscience Methods
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  end-page: 198
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
– volume: 74
  article-title: BrainGNN: Interpretable brain graph neural network for fMRI analysis
  publication-title: Medical Image Analysis
– volume: 31
  start-page: 310
  issue: 4
  year: 2020
  end-page: 320
  article-title: Building theories on top of, and not independent of, statistical models: The case of the p‐factor
  publication-title: Psychological Inquiry
– volume: 32
  start-page: 95
  issue: 1
  year: 2004
  end-page: 107
  article-title: Just one g: Consistent results from three test batteries
  publication-title: Intelligence
– year: 2007
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 17
  article-title: Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
  publication-title: Nature Communications
– volume: 59
  start-page: 749
  issue: 6
  year: 2020
  end-page: 758
  article-title: Genetic associations between executive functions and a general factor of psychopathology
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry
– volume: 27
  article-title: Genetic variation, brain, and intelligence differences
  publication-title: Molecular Psychiatry
– volume: 28
  start-page: 2959
  issue: 8
  year: 2018
  end-page: 2975
  article-title: Sex differences in the adult human brain: Evidence from 5216 UK biobank participants
  publication-title: Cerebral Cortex
– year: 1992
– volume: 30
  start-page: 3924
  issue: 7
  year: 2020
  end-page: 3933
  article-title: Cerebello‐cerebral connectivity in idiopathic generalized epilepsy
  publication-title: European Radiology
– volume: 373
  issue: 1756
  year: 2018
  article-title: A distributed brain network predicts general intelligence from resting‐state human neuroimaging data
  publication-title: Philosophical Transactions of the Royal Society, B: Biological Sciences
– volume: 89
  start-page: 795
  issue: 8
  year: 2021
  end-page: 806
  article-title: Aging‐sensitive networks within the human structural connectome are implicated in late‐life cognitive declines
  publication-title: Biological Psychiatry
– volume: 166
  start-page: 400
  year: 2018
  end-page: 424
  article-title: Image processing and quality control for the first 10,000 brain imaging datasets from UK biobank
  publication-title: NeuroImage
– volume: 211
  year: 2020
  article-title: The effect of network thresholding and weighting on structural brain networks in the UK biobank
  publication-title: NeuroImage
– volume: 186
  start-page: 1026
  issue: 9
  year: 2017
  end-page: 1034
  article-title: Comparison of sociodemographic and health‐related characteristics of UK biobank participants with those of the general population
  publication-title: American Journal of Epidemiology
– volume: 5
  start-page: 23626
  year: 2017
  end-page: 23636
  article-title: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI
  publication-title: IEEE Access
– volume: 213
  start-page: 560
  issue: 2
  year: 2011
  end-page: 570
  article-title: Microstructural and physiological features of tissues elucidated by quantitative‐diffusion‐tensor MRI
  publication-title: Journal of Magnetic Resonance
– volume: 113
  start-page: E4367
  issue: 30
  year: 2016
  end-page: E4376
  article-title: Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  start-page: 49
  issue: 1
  year: 2021
  end-page: 58
  article-title: A general dimension of genetic sharing across diverse cognitive traits inferred from molecular data
  publication-title: Nature Human Behaviour
– volume: 80
  start-page: 515
  year: 2013
  end-page: 526
  article-title: Structural connectomics in brain diseases
  publication-title: NeuroImage
– start-page: 281
  year: 1997
  end-page: 287
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
– volume: 50
  start-page: 1594
  issue: 11
  year: 2020
  end-page: 1601
  article-title: Connectome mapping with edge density imaging differentiates pediatric mild traumatic brain injury from typically developing controls: Proof of concept
  publication-title: Pediatric Radiology
– year: 2013
– volume: 11
  start-page: 4238
  issue: 1
  year: 2020
  article-title: Different scaling of linear models and deep learning in UK Biobank brain images versus machine‐learning datasets
  publication-title: Nature Communications
– volume: 40
  start-page: 2290
  issue: 28
  year: 2019
  end-page: 2300
  article-title: Associations between vascular risk factors and brain MRI indices in UK biobank
  publication-title: European Heart Journal
– volume: 11791
  start-page: 133
  year: 2019
  end-page: 142
– volume: 110
  year: 2021
  article-title: The functional and structural connectomes associated with geriatric depression and anxiety symptoms in mild cognitive impairment: Cross‐syndrome overlap and generalization
  publication-title: Progress in Neuro‐Psychopharmacology and Biological Psychiatry
– start-page: 770
  year: 2016
  end-page: 778
– volume: 61
  start-page: 30
  issue: 1
  year: 2020
  end-page: 39
  article-title: The p factor: Genetic analyses support a general dimension of psychopathology in childhood and adolescence
  publication-title: Journal of Child Psychology and Psychiatry
– volume: 7
  start-page: 11
  issue: 1–2
  year: 2021
  end-page: 15
  article-title: The validity of brief phenotyping in population biobanks for psychiatric genome‐wide association studies on the biobank scale
  publication-title: Complex psychiatry
– volume: 76
  year: 2019
  article-title: Structural brain imaging correlates of general intelligence in UK biobank
  publication-title: Intelligence
– volume: 20
  start-page: 340
  issue: 3
  year: 2017
  end-page: 352
  article-title: Dynamic models of large‐scale brain activity
  publication-title: Nature Neuroscience
– start-page: 1742
  year: 2020
  end-page: 1745
– volume: 54
  start-page: 548
  issue: 5
  year: 2020
  end-page: 559
  article-title: Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic, and molecular genetic levels of analysis
  publication-title: Nature Genetics
– volume: 19
  start-page: 1523
  issue: 11
  year: 2016
  end-page: 1536
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nature Neuroscience
– volume: 146
  start-page: 1038
  year: 2017
  end-page: 1049
  article-title: BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: NeuroImage
– volume: 456
  start-page: 175
  issue: 7219
  year: 2008
  end-page: 176
  article-title: Why do intelligent people live longer?
  publication-title: Nature
– volume: 10
  start-page: 1534
  issue: 11
  year: 2020
  article-title: Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates
  publication-title: Biomolecules
– volume: 694
  start-page: 34
  year: 2019
  end-page: 40
  article-title: Structural networks analysis for depression combined with graph theory and the properties of fiber tracts via diffusion tensor imaging
  publication-title: Neuroscience Letters
– volume: 2
  start-page: 119
  issue: 2
  year: 2014
  end-page: 137
  article-title: The p factor: One general psychopathology factor in the structure of psychiatric disorders?
  publication-title: Clinical Psychological Science
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  end-page: 1671
  article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity
  publication-title: Nature Neuroscience
– volume: 126
  start-page: 454
  issue: 4
  year: 2017
  end-page: 477
  article-title: The hierarchical taxonomy of psychopathology (hitop): A dimensional alternative to traditional nosologies
  publication-title: Journal of Abnormal Psychology
– volume: 74
  start-page: 58
  year: 2017
  end-page: 75
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 111
  start-page: 186
  year: 2019
  end-page: 192
  article-title: Hippocampal subfield‐specific connectivity findings in major depressive disorder: A 7 tesla diffusion MRI study
  publication-title: Journal of Psychiatric Research
– volume: 70
  start-page: 1
  issue: 1
  year: 2016
  end-page: 31
  article-title: missMDA: A package for handling missing values in multivariate data analysis
  publication-title: Journal of Statistical Software
– volume: 46
  start-page: 699
  issue: 3
  year: 2020
  end-page: 712
  article-title: Transdiagnostic dysfunctions in brain modules across patients with schizophrenia, bipolar disorder, and major depressive disorder: A connectome‐based study
  publication-title: Schizophrenia Bulletin
– volume: 13
  start-page: 3323
  issue: 1
  year: 2012
  end-page: 3348
  article-title: Large‐scale linear support vector regression
  publication-title: The Journal of Machine Learning Research
– volume: 72
  start-page: 305
  issue: 4
  year: 2015
  end-page: 315
  article-title: Identification of a common neurobiological substrate for mental illness
  publication-title: JAMA Psychiatry
– volume: 40
  start-page: 626
  issue: 3
  year: 2011
  end-page: 644
  article-title: Intelligence in youth and all‐cause‐mortality: Systematic review with meta‐analysis
  publication-title: International Journal of Epidemiology
– volume: 158
  start-page: 145
  year: 2017
  end-page: 154
  article-title: Joint prediction of multiple scores captures better individual traits from brain images
  publication-title: NeuroImage
– volume: 77
  start-page: 223
  issue: 3
  year: 2015
  end-page: 235
  article-title: Depression, neuroimaging and connectomics: A selective overview
  publication-title: Biological Psychiatry
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 9
  article-title: A polygenic p factor for major psychiatric disorders
  publication-title: Translational Psychiatry
– volume: 27
  start-page: 38
  issue: 1
  year: 2022
  end-page: 48
  article-title: The p‐factor and its genomic and neural equivalents: An integrated perspective
  publication-title: Molecular Psychiatry
– volume: 43
  start-page: 416
  issue: 6
  year: 2018
  end-page: 427
  article-title: Psychoradiological patterns of small‐world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders
  publication-title: Journal of Psychiatry & Neuroscience
– volume: 41
  start-page: 4173
  issue: 15
  year: 2020
  end-page: 4186
  article-title: Differences in directed functional brain connectivity related to age, sex and mental health
  publication-title: Human Brain Mapping
– volume: 121
  start-page: 971
  issue: 4
  year: 2012
  end-page: 977
  article-title: Is there a general factor of prevalent psychopathology during adulthood?
  publication-title: Journal of Abnormal Psychology
– volume: 31
  article-title: Boost in test–retest reliability in resting state fMRI with predictive modeling
  publication-title: Cerebral Cortex
– volume: 9
  start-page: 155
  year: 1997
  end-page: 161
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 39
  start-page: 681
  issue: 3
  year: 2014
  end-page: 687
  article-title: Quantitative prediction of individual psychopathology in trauma survivors using resting‐state FMRI
  publication-title: Neuropsychopharmacology
– year: 2012
– volume: 40
  start-page: 529
  issue: 2
  year: 2019
  end-page: 537
  article-title: White matter connectivity reductions in the pre‐clinical continuum of psychosis: A connectome study
  publication-title: Human Brain Mapping
– volume: 4
  start-page: 316
  issue: 3
  year: 2007
  end-page: 329
  article-title: Diffusion tensor imaging of the brain
  publication-title: Neurotherapeutics
– volume: 205
  start-page: 103
  year: 2016
  end-page: 111
  article-title: Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses
  publication-title: Journal of Affective Disorders
– volume: 76
  start-page: 567
  issue: 7
  year: 2014
  end-page: 574
  article-title: Abnormal structural networks characterize major depressive disorder: A connectome analysis
  publication-title: Biological Psychiatry
– volume: 11
  issue: 4
  year: 2016
  article-title: Cognitive test scores in UK biobank: Data reduction in 480,416 participants and longitudinal stability in 20,346 participants
  publication-title: PLoS One
– volume: 13
  issue: 6
  year: 2017
  article-title: Linking structure and activity in nonlinear spiking networks
  publication-title: PLoS Computational Biology
– volume: 83
  start-page: 97
  year: 2017
  end-page: 108
  article-title: On the transdiagnostic nature of peripheral biomarkers in major psychiatric disorders: A systematic review
  publication-title: Neuroscience & Biobehavioral Reviews
– start-page: 1692
  year: 2020
  end-page: 1695
– volume: 76
  start-page: 259
  issue: 3
  year: 2019
  end-page: 270
  article-title: Exploring comorbidity within mental disorders among a danish national population
  publication-title: JAMA Psychiatry
– volume: 12
  start-page: 506
  issue: 3
  year: 2017
  end-page: 518
  article-title: Using connectome‐based predictive modeling to predict individual behavior from brain connectivity
  publication-title: Nature Protocols
– volume: 5
  start-page: 143
  issue: 2
  year: 2001
  end-page: 156
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Medical Image Analysis
– volume: 38
  start-page: 2008
  issue: 4
  year: 2017
  end-page: 2025
  article-title: Modular‐level alterations of structure–function coupling in schizophrenia connectome
  publication-title: Human Brain Mapping
– volume: 12
  start-page: 28
  year: 2020
  article-title: Feature selection and combination of information in the functional brain connectome for discrimination of mild cognitive impairment and analyses of altered brain patterns
  publication-title: Frontiers in Aging Neuroscience
– ident: e_1_2_7_36_1
  doi: 10.1016/j.biopsych.2014.08.009
– ident: e_1_2_7_35_1
  doi: 10.1016/j.neuroimage.2019.116038
– ident: e_1_2_7_86_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_7_16_1
  doi: 10.1176/appi.ajp.2018.17121383
– ident: e_1_2_7_73_1
  doi: 10.1016/j.neubiorev.2017.10.001
– ident: e_1_2_7_96_1
  doi: 10.1126/sciadv.aat7854
– ident: e_1_2_7_9_1
  doi: 10.1145/130385.130401
– ident: e_1_2_7_83_1
  doi: 10.1038/nprot.2016.178
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2017.07.059
– volume: 9
  start-page: 155
  year: 1997
  ident: e_1_2_7_30_1
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jaac.2020.08.440
– ident: e_1_2_7_4_1
  doi: 10.1016/j.nurt.2007.05.011
– ident: e_1_2_7_21_1
  doi: 10.1093/cercor/bht064
– ident: e_1_2_7_20_1
  doi: 10.1159/000516837
– ident: e_1_2_7_3_1
  doi: 10.1002/hbm.22286
– ident: e_1_2_7_40_1
  doi: 10.1016/j.neuroimage.2013.04.056
– ident: e_1_2_7_105_1
  doi: 10.1109/ACCESS.2017.2762703
– ident: e_1_2_7_66_1
  doi: 10.1016/j.biopsych.2020.06.010
– ident: e_1_2_7_38_1
  doi: 10.1001/jamapsychiatry.2014.2206
– ident: e_1_2_7_47_1
  doi: 10.1016/j.neuroimage.2019.116276
– ident: e_1_2_7_101_1
  doi: 10.1109/EMBC44109.2020.9175596
– ident: e_1_2_7_77_1
  doi: 10.1007/s00247-020-04743-9
– volume-title: Machine learning: A probabilistic perspective
  year: 2012
  ident: e_1_2_7_69_1
– ident: e_1_2_7_31_1
  doi: 10.1098/rstb.2017.0284
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jmr.2011.09.022
– ident: e_1_2_7_13_1
  doi: 10.1093/ije/dyq190
– ident: e_1_2_7_53_1
  doi: 10.1016/S0160-2896(03)00062-X
– ident: e_1_2_7_37_1
  doi: 10.1038/npp.2013.251
– ident: e_1_2_7_61_1
  doi: 10.1037/a0028355
– ident: e_1_2_7_70_1
  doi: 10.1371/journal.pcbi.1005583
– ident: e_1_2_7_52_1
  doi: 10.1007/s00330-020-06674-3
– ident: e_1_2_7_58_1
– ident: e_1_2_7_75_1
  doi: 10.1016/j.jneumeth.2015.06.016
– ident: e_1_2_7_23_1
  doi: 10.1016/j.intell.2019.101376
– ident: e_1_2_7_50_1
  doi: 10.1016/S1361-8415(01)00036-6
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jad.2016.06.066
– ident: e_1_2_7_14_1
  doi: 10.1001/jamanetworkopen.2020.3221
– ident: e_1_2_7_28_1
  doi: 10.1038/s41380-021-01027-y
– ident: e_1_2_7_98_1
  doi: 10.1080/1047840X.2020.1853476
– ident: e_1_2_7_95_1
  doi: 10.1056/NEJMoa1204471
– ident: e_1_2_7_103_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_7_46_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_25_1
  doi: 10.1038/s41562-020-00936-2
– ident: e_1_2_7_76_1
  doi: 10.1016/j.neuroimage.2017.06.072
– ident: e_1_2_7_74_1
  doi: 10.1001/jamapsychiatry.2018.3658
– ident: e_1_2_7_91_1
  doi: 10.1093/cercor/bhaa390
– ident: e_1_2_7_27_1
  doi: 10.1038/456175a
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_7_59_1
  doi: 10.1016/j.biopsych.2014.02.018
– ident: e_1_2_7_68_1
  doi: 10.1038/nn.4393
– ident: e_1_2_7_10_1
  doi: 10.1038/nn.4497
– ident: e_1_2_7_56_1
  doi: 10.18637/jss.v070.i01
– ident: e_1_2_7_102_1
  doi: 10.1016/j.pnpbp.2021.110329
– ident: e_1_2_7_12_1
  doi: 10.1038/nrn2575
– ident: e_1_2_7_57_1
  doi: 10.1016/j.neuroimage.2016.09.046
– ident: e_1_2_7_89_1
  doi: 10.1002/hbm.23501
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2019.116443
– ident: e_1_2_7_54_1
  doi: 10.1016/j.intell.2007.06.001
– ident: e_1_2_7_32_1
  doi: 10.1371/journal.pone.0231627
– volume: 13
  start-page: 3323
  issue: 1
  year: 2012
  ident: e_1_2_7_48_1
  article-title: Large‐scale linear support vector regression
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_7_63_1
  doi: 10.1002/hbm.25116
– ident: e_1_2_7_82_1
  doi: 10.1038/s41398-018-0217-4
– ident: e_1_2_7_104_1
  doi: 10.1016/j.neulet.2018.11.025
– ident: e_1_2_7_67_1
  doi: 10.1007/978-3-030-31901-4_16
– ident: e_1_2_7_72_1
  doi: 10.1089/brain.2018.0658
– ident: e_1_2_7_42_1
  doi: 10.1038/s41588-022-01057-4
– ident: e_1_2_7_97_1
  doi: 10.1093/cercor/bhaa407
– ident: e_1_2_7_33_1
  doi: 10.1038/nn.4135
– ident: e_1_2_7_71_1
  doi: 10.1002/hbm.24392
– ident: e_1_2_7_24_1
  doi: 10.1037/h0040957
– ident: e_1_2_7_90_1
  doi: 10.1503/jpn.170214
– volume-title: Non‐linear registration aka spatial normalisation FMRIB Technical report TR07JA2
  year: 2007
  ident: e_1_2_7_7_1
– ident: e_1_2_7_51_1
  doi: 10.1093/cercor/bhz134
– ident: e_1_2_7_44_1
  doi: 10.1371/journal.pbio.0060159
– ident: e_1_2_7_62_1
  doi: 10.1016/j.media.2021.102233
– ident: e_1_2_7_41_1
  doi: 10.1177/2167702618820018
– start-page: 281
  volume-title: Advances in Neural Information Processing Systems 9
  year: 1997
  ident: e_1_2_7_93_1
– ident: e_1_2_7_94_1
  doi: 10.1016/j.neubiorev.2017.01.002
– ident: e_1_2_7_78_1
  doi: 10.1093/cercor/bhy109
– ident: e_1_2_7_81_1
  doi: 10.1038/s41467-020-18037-z
– ident: e_1_2_7_85_1
– ident: e_1_2_7_99_1
  doi: 10.3389/fnagi.2020.00028
– ident: e_1_2_7_88_1
  doi: 10.1016/j.intell.2006.09.004
– ident: e_1_2_7_100_1
  doi: 10.3390/biom10111534
– ident: e_1_2_7_55_1
  doi: 10.1016/j.neuroimage.2012.06.081
– ident: e_1_2_7_80_1
  doi: 10.1016/j.jpsychires.2019.02.008
– ident: e_1_2_7_79_1
  doi: 10.1016/j.neuroimage.2010.01.019
– ident: e_1_2_7_64_1
  doi: 10.1371/journal.pone.0154222
– ident: e_1_2_7_6_1
  doi: 10.1111/jcpp.13113
– ident: e_1_2_7_39_1
  doi: 10.1002/hbm.22952
– ident: e_1_2_7_92_1
  doi: 10.1177/0959354317737185
– ident: e_1_2_7_43_1
  doi: 10.1038/s41467-022-33724-9
– ident: e_1_2_7_65_1
  doi: 10.1093/schbul/sbz111
– ident: e_1_2_7_87_1
  doi: 10.1038/s41380-021-01031-2
– ident: e_1_2_7_49_1
  doi: 10.1109/EMBC44109.2020.9176610
– ident: e_1_2_7_5_1
  doi: 10.1016/j.neuroimage.2017.10.034
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-020-20655-6
– ident: e_1_2_7_15_1
  doi: 10.1177/2167702613497473
– ident: e_1_2_7_22_1
  doi: 10.1093/eurheartj/ehz100
– ident: e_1_2_7_60_1
  doi: 10.1037/abn0000258
– ident: e_1_2_7_84_1
  doi: 10.1073/pnas.1521083113
– ident: e_1_2_7_26_1
  doi: 10.1038/s41562-019-0659-6
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jaac.2019.05.006
– ident: e_1_2_7_34_1
  doi: 10.1093/aje/kwx246
SSID ssj0011501
Score 2.5280702
Snippet There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide...
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1913
SubjectTerms Accuracy
Algorithms
Brain
Brain - diagnostic imaging
Brain - pathology
Cognition
Cognitive ability
Complexity
Connectome - methods
Decision making
Deep learning
diffusion tensor imaging
general psychopathology
Humans
Learning algorithms
Machine Learning
Magnetic resonance imaging
Mathematical models
Medical imaging
Mental disorders
Mental Health
Neural networks
Neuroimaging
Phenotypes
Predictions
Psychopathology
Sex
Statistical methods
structural connectomes
Title Predicting sex, age, general cognition and mental health with machine learning on brain structural connectomes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26182
https://www.ncbi.nlm.nih.gov/pubmed/36541441
https://www.proquest.com/docview/2781282302
https://www.proquest.com/docview/2756670906
https://pubmed.ncbi.nlm.nih.gov/PMC9980898
Volume 44
WOSCitedRecordID wos000900710100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: PIMPY
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NG0K88LHxURiVQQjxsLDYceJYPG1o0_bQKkIgylMUO9dtEnXRwhD895ztNFANJCReokS-pK59d_7ZPv8O4IWVvullm6DkJpFo2qQ0OSYtn3PBUVuR25BsQk2n5Wymqw14szoLE_khhgU3bxnBX3sDb0y3_4s09NwsXhP8L8n_bnGeKa_SQlbDFgIhnTDbojE20eSCV7RCqdgfXl0fjK4hzOuBkr8D2DACHd_5r7rfhds98GQHUVPuwQa6bdg5cDTpXvxgL1kIBQ1r7Ntwc9LvuO-Aqy79vQ-OZh1-32Pkf_bYWSSrZn3w0dKxxrUs5glg8Wgl8yu8bBFiNZH1ySnOGIkan5WCReLaq_gVcvaW6oHdffhwfPT-7UnS52hIrJSZSGSTK2xV1pImFNympbQ8nc-LAiX1PpYWuYcIojVZ2qBQtqEpk21Jco7acMwewKZbOnwErDCaZ8ZkAv1JaWkabTJdNhbbHHVu0hG8WnVWbXsCc59H43MdqZdFTc1ah2YdwfNB9Etk7fiT0O6qx-vecLtaKEI8fvORip8NxWRyfh-lcbi88jKEgVWq02IED6OCDL-Shbzqko9AranOIODpvNdL3MV5oPWmiW9a6pL-ZlCdv1e8PjmchJvH_y76BG4Jgmcx5mgXNqmP8SncsN--XnSX42A5dFUzFa7lGLYOj6bVu3FYo6Cn6nRSfaKnj6fTn79VJTM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8QJMqLIl-eoFZjjA8sbLvdjya-oJEckbvcAya8bbbtHJB4PcOJ0f-eabu3eEETEt-adHa3285Mf22nvwF4a6TvemkTlFwnErVNKp1jYvmYC47KiNyEZBPlcFidnanREnyY34WJ_BDdhpu3jOCvvYH7DemDW9bQCz3ZJ_xfkQN-IGmW8fkLhBx1ZwgEdcJyiybZRJEPnvMKpeKge3RxNroDMe9GSv6JYMMUdPTk_xq_Bo9b6MkOo648hSV067Bx6GjZPfnN3rEQDBp22dfh4aA9c98AN7ryZR8ezWb4a4-RB9pj55GumrXhR1PHGmdZzBTA4uVK5vd42SREayJr01OcMxLVPi8Fi9S11_Et5O4NtQNnm_D16PPpp37SZmlIjJSZSGSTl2jLzJIuFNyklTQ8HY-LAiWNP1YGuQcJwuosbVCUpqFFk7EkOUalOWZbsOymDp8BK7TimdaZQH9XWupG6UxVjUGbo8p12oP389GqTUth7jNpfKsj-bKoqVvr0K09eNOJfo-8HX8T2p0Ped2a7qwWJWEef_xI1a-7ajI6f5LSOJxeexlCwWWq0qIH21FDuq9kIbO65D0oF3SnE_CE3os17vIiEHvT0jetVEW_GXTn3w2v-x8HofD8_qKv4FH_dHBSnxwPv-zAqiCwFiOQdmGZxhtfwIr5-eNydvUymNENZ3oh9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8QJMQXFfDjBLEaY3xgZdvtfjTxhQ8vGOVyD5rwttm2s0DC9QgHRv97pu3e6gVNTHxr0tndbjsz_bWd_gbgjZG-66VNUHKdSNQ2qXSOieUtFxyVEbkJySbK0ag6OVHjJfgwvwsT-SH6DTdvGcFfewPHS9vu_mINPdOT94T_K3LA92ROPtbzOstxf4ZAUCcst2iSTRT54DmvUCp2-0cXZ6M7EPNupOTvCDZMQcOH_9f4R_Cgg55sL-rKGiyhW4eNPUfL7slP9paFYNCwy74Oq8fdmfsGuPGVL_vwaDbDHzuMPNAOO4101awLP5o61jjLYqYAFi9XMr_HyyYhWhNZl57ilJGo9nkpWKSuvYlvIXdvqB04ewzfhh-_HhwlXZaGxEiZiUQ2eYm2zCzpQsFNWknD07YtCpQ0_lgZ5B4kCKuztEFRmoYWTcaSZItKc8yewLKbOnwGrNCKZ1pnAv1daakbpTNVNQZtjirX6QDezUerNh2Fuc-kcVFH8mVRU7fWoVsH8LoXvYy8HX8S2poPed2Z7qwWJWEef_xI1a_6ajI6f5LSOJzeeBlCwWWq0mIAT6OG9F_JQmZ1yQdQLuhOL-AJvRdr3PlZIPampW9aqYp-M-jO3xteH-0fh8Lzfxd9Cavjw2H95dPo8ybcF4TVYgDSFizTcOMLWDHfr89nV9vBim4B4K8heg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+sex%2C+age%2C+general+cognition+and+mental+health+with+machine+learning+on+brain+structural+connectomes&rft.jtitle=Human+brain+mapping&rft.au=Yeung%2C+Hon+Wah&rft.au=Stolicyn%2C+Aleks&rft.au=Buchanan%2C+Colin+R.&rft.au=Tucker%E2%80%90Drob%2C+Elliot+M.&rft.date=2023-04-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=44&rft.issue=5&rft.spage=1913&rft.epage=1933&rft_id=info:doi/10.1002%2Fhbm.26182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_26182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon