Predicting sex, age, general cognition and mental health with machine learning on brain structural connectomes
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how mu...
Uloženo v:
| Vydáno v: | Human brain mapping Ročník 44; číslo 5; s. 1913 - 1933 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2023
|
| Témata: | |
| ISSN: | 1065-9471, 1097-0193, 1097-0193 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
We explore how multiple aspects of brain structural connectivity can predict general cognitive function and general psychopathology. To do this, we modelled six different structural network weightings obtained from diffusion MRI and tested different machine learning (ML) algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. DL did not improve on prediction accuracies from simpler linear models, indicating that most of the variation between phenotypes in weighted structural connectomes is linear rather than non‐linear in nature. This may have implied that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. |
|---|---|
| AbstractList | There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
We explore how multiple aspects of brain structural connectivity can predict general cognitive function and general psychopathology. To do this, we modelled six different structural network weightings obtained from diffusion MRI and tested different machine learning (ML) algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. DL did not improve on prediction accuracies from simpler linear models, indicating that most of the variation between phenotypes in weighted structural connectomes is linear rather than non‐linear in nature. This may have implied that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. We explore how multiple aspects of brain structural connectivity can predict general cognitive function and general psychopathology. To do this, we modelled six different structural network weightings obtained from diffusion MRI and tested different machine learning (ML) algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. DL did not improve on prediction accuracies from simpler linear models, indicating that most of the variation between phenotypes in weighted structural connectomes is linear rather than non‐linear in nature. This may have implied that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size. |
| Author | Yeung, Hon Wah Tucker‐Drob, Elliot M. Bastin, Mark E. McIntosh, Andrew M. Whalley, Heather C. Stolicyn, Aleks Buchanan, Colin R. Cox, Simon R. Smith, Keith Luz, Saturnino |
| AuthorAffiliation | 1 Department of Psychiatry University of Edinburgh Edinburgh UK 2 Department of Psychology University of Edinburgh Edinburgh UK 9 Centre for Genomic and Experimental Medicine Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh UK 4 Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE) Edinburgh UK 5 Department of Psychology University of Texas Austin Texas USA 3 Lothian Birth Cohorts, University of Edinburgh Edinburgh UK 6 Population Research Center and Center on Aging and Population Sciences University of Texas at Austin Austin Texas USA 8 Edinburgh Medical School Usher Institute, The University of Edinburgh Edinburgh UK 10 Department of Physics and Mathematics Nottingham Trent University Nottingham UK 7 Centre for Clinical Brain Science University of Edinburgh Edinburgh UK |
| AuthorAffiliation_xml | – name: 4 Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE) Edinburgh UK – name: 1 Department of Psychiatry University of Edinburgh Edinburgh UK – name: 7 Centre for Clinical Brain Science University of Edinburgh Edinburgh UK – name: 3 Lothian Birth Cohorts, University of Edinburgh Edinburgh UK – name: 6 Population Research Center and Center on Aging and Population Sciences University of Texas at Austin Austin Texas USA – name: 2 Department of Psychology University of Edinburgh Edinburgh UK – name: 8 Edinburgh Medical School Usher Institute, The University of Edinburgh Edinburgh UK – name: 9 Centre for Genomic and Experimental Medicine Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh UK – name: 5 Department of Psychology University of Texas Austin Texas USA – name: 10 Department of Physics and Mathematics Nottingham Trent University Nottingham UK |
| Author_xml | – sequence: 1 givenname: Hon Wah orcidid: 0000-0002-4993-9014 surname: Yeung fullname: Yeung, Hon Wah email: s1884975@ed.ac.uk organization: University of Edinburgh – sequence: 2 givenname: Aleks orcidid: 0000-0002-1147-7539 surname: Stolicyn fullname: Stolicyn, Aleks organization: University of Edinburgh – sequence: 3 givenname: Colin R. orcidid: 0000-0001-6501-628X surname: Buchanan fullname: Buchanan, Colin R. organization: Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE) – sequence: 4 givenname: Elliot M. orcidid: 0000-0001-5599-6237 surname: Tucker‐Drob fullname: Tucker‐Drob, Elliot M. organization: University of Texas at Austin – sequence: 5 givenname: Mark E. orcidid: 0000-0002-0490-0845 surname: Bastin fullname: Bastin, Mark E. organization: University of Edinburgh – sequence: 6 givenname: Saturnino orcidid: 0000-0001-8430-7875 surname: Luz fullname: Luz, Saturnino organization: Usher Institute, The University of Edinburgh – sequence: 7 givenname: Andrew M. orcidid: 0000-0002-0198-4588 surname: McIntosh fullname: McIntosh, Andrew M. organization: Institute of Genetics and Molecular Medicine, University of Edinburgh – sequence: 8 givenname: Heather C. orcidid: 0000-0002-4505-8869 surname: Whalley fullname: Whalley, Heather C. organization: University of Edinburgh – sequence: 9 givenname: Simon R. orcidid: 0000-0003-4036-3642 surname: Cox fullname: Cox, Simon R. organization: Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE) – sequence: 10 givenname: Keith orcidid: 0000-0002-4615-9020 surname: Smith fullname: Smith, Keith organization: Nottingham Trent University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36541441$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kV1v1iAYhomZcR964B8wJJ5osm48lNJyYqKLuiUzeqDHhNKnLUsLE1rn_r28vu-MLvMECFzPlbu9D8meDx4JeQ7sBBjjp2M7n3AJDX9EDoCpumCgyr3NWVaFEjXsk8OUrhgDqBg8IfulrAQIAQfEf4nYObs4P9CEP4-pGfCYDugxmonaMHi3uOCp8R2d0S_5ckQzLSO9cXmZjR2dRzqhiX7jyGgbjfM0LXG1y7q1eI92CTOmp-Rxb6aEz3b7Efn24f3Xs_Pi8vPHi7O3l4UVouSFMFWNXV121hoJljXCAut7KVGgAGwsgoCK864tmUFeW6Mks10me1QtYHlE3my912s7Y2dz8pxEX0c3m3irg3H63xfvRj2EH1qphjWqyYJXO0EM31dMi55dsjhNxmNYk-Z1JWXNFJMZfXkPvQpr9PnzMtUAb3jJeKZe_J3oT5S7KjJwugVsDClF7LV1i9n8_BzQTRqY3pStc9n6d9l54vW9iTvpQ-zOfuMmvP0_qM_ffdpO_AJPibq4 |
| CitedBy_id | crossref_primary_10_1093_cercor_bhaf199 crossref_primary_10_1007_s11357_023_00831_4 crossref_primary_10_1162_imag_a_00416 crossref_primary_10_1038_s41398_025_03565_3 crossref_primary_10_1097_WNR_0000000000001976 crossref_primary_10_1016_j_media_2025_103476 crossref_primary_10_1016_j_mri_2024_110251 crossref_primary_10_1016_j_neuroimage_2024_120909 crossref_primary_10_1162_imag_a_00064 crossref_primary_10_1016_j_media_2024_103120 crossref_primary_10_1016_j_media_2025_103761 crossref_primary_10_1007_s00521_023_09031_9 crossref_primary_10_1002_hbm_70314 crossref_primary_10_1038_s41380_023_02252_3 crossref_primary_10_1007_s11357_023_00934_y crossref_primary_10_1007_s10462_025_11146_5 |
| Cites_doi | 10.1016/j.biopsych.2014.08.009 10.1016/j.neuroimage.2019.116038 10.1002/hbm.10062 10.1176/appi.ajp.2018.17121383 10.1016/j.neubiorev.2017.10.001 10.1126/sciadv.aat7854 10.1145/130385.130401 10.1038/nprot.2016.178 10.1016/j.neuroimage.2017.07.059 10.1016/j.jaac.2020.08.440 10.1016/j.nurt.2007.05.011 10.1093/cercor/bht064 10.1159/000516837 10.1002/hbm.22286 10.1016/j.neuroimage.2013.04.056 10.1109/ACCESS.2017.2762703 10.1016/j.biopsych.2020.06.010 10.1001/jamapsychiatry.2014.2206 10.1016/j.neuroimage.2019.116276 10.1109/EMBC44109.2020.9175596 10.1007/s00247-020-04743-9 10.1098/rstb.2017.0284 10.1016/j.jmr.2011.09.022 10.1093/ije/dyq190 10.1016/S0160-2896(03)00062-X 10.1038/npp.2013.251 10.1037/a0028355 10.1371/journal.pcbi.1005583 10.1007/s00330-020-06674-3 10.1016/j.jneumeth.2015.06.016 10.1016/j.intell.2019.101376 10.1016/S1361-8415(01)00036-6 10.1016/j.jad.2016.06.066 10.1001/jamanetworkopen.2020.3221 10.1038/s41380-021-01027-y 10.1080/1047840X.2020.1853476 10.1056/NEJMoa1204471 10.1016/j.neuroimage.2012.03.072 10.1109/CVPR.2016.90 10.1038/s41562-020-00936-2 10.1016/j.neuroimage.2017.06.072 10.1001/jamapsychiatry.2018.3658 10.1093/cercor/bhaa390 10.1038/456175a 10.1016/j.neuroimage.2006.01.021 10.1016/j.biopsych.2014.02.018 10.1038/nn.4393 10.1038/nn.4497 10.18637/jss.v070.i01 10.1016/j.pnpbp.2021.110329 10.1038/nrn2575 10.1016/j.neuroimage.2016.09.046 10.1002/hbm.23501 10.1016/j.neuroimage.2019.116443 10.1016/j.intell.2007.06.001 10.1371/journal.pone.0231627 10.1002/hbm.25116 10.1038/s41398-018-0217-4 10.1016/j.neulet.2018.11.025 10.1007/978-3-030-31901-4_16 10.1089/brain.2018.0658 10.1038/s41588-022-01057-4 10.1093/cercor/bhaa407 10.1038/nn.4135 10.1002/hbm.24392 10.1037/h0040957 10.1503/jpn.170214 10.1093/cercor/bhz134 10.1371/journal.pbio.0060159 10.1016/j.media.2021.102233 10.1177/2167702618820018 10.1016/j.neubiorev.2017.01.002 10.1093/cercor/bhy109 10.1038/s41467-020-18037-z 10.3389/fnagi.2020.00028 10.1016/j.intell.2006.09.004 10.3390/biom10111534 10.1016/j.neuroimage.2012.06.081 10.1016/j.jpsychires.2019.02.008 10.1016/j.neuroimage.2010.01.019 10.1371/journal.pone.0154222 10.1111/jcpp.13113 10.1002/hbm.22952 10.1177/0959354317737185 10.1038/s41467-022-33724-9 10.1093/schbul/sbz111 10.1038/s41380-021-01031-2 10.1109/EMBC44109.2020.9176610 10.1016/j.neuroimage.2017.10.034 10.1038/s41467-020-20655-6 10.1177/2167702613497473 10.1093/eurheartj/ehz100 10.1037/abn0000258 10.1073/pnas.1521083113 10.1038/s41562-019-0659-6 10.1016/j.jaac.2019.05.006 10.1093/aje/kwx246 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| DOI | 10.1002/hbm.26182 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Technology Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Yeung et al |
| EISSN | 1097-0193 |
| EndPage | 1933 |
| ExternalDocumentID | PMC9980898 36541441 10_1002_hbm_26182 HBM26182 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health funderid: P2CHD042849; P30AG066614; R01AG054628 – fundername: Wellcome Trust funderid: 104036/Z/14/Z; 220857/Z/20/Z; 221890/Z/20/Z – fundername: Medical Research Council funderid: MR/R024065/1 – fundername: UK Research and Innovation funderid: MC_PC_17209 – fundername: Wellcome Trust grantid: 221890/Z/20/Z – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 220857/Z/20/Z – fundername: NIA NIH HHS grantid: P30 AG066614 – fundername: Wellcome Trust grantid: 104036/Z/14/Z – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: Medical Research Council grantid: MC_PC_17209 – fundername: NIA NIH HHS grantid: R01 AG054628 – fundername: Medical Research Council grantid: MR/S004122/1 – fundername: Medical Research Council grantid: MR/R024065/1 – fundername: ; grantid: P2CHD042849; P30AG066614; R01AG054628 – fundername: ; grantid: 104036/Z/14/Z; 220857/Z/20/Z; 221890/Z/20/Z – fundername: ; grantid: MC_PC_17209 – fundername: ; grantid: MR/R024065/1 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ AAFWJ AAMMB AANHP AAYXX ABEML ABJNI ACBWZ ACRPL ACSCC ACYXJ ADNMO AEFGJ AFFHD AFPKN AGQPQ AGXDD AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN BFHJK CITATION EJD FEDTE GAKWD HF~ HVGLF LW6 M6M O8X PHGZM PHGZT RIWAO RJQFR SAMSI WXSBR CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c4432-4a57ed73dcca61c084c10ff66e4e41e8ce141522db30ae27ca960cd1c0fe9b1e3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900710100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Tue Nov 04 02:06:58 EST 2025 Thu Sep 04 19:41:46 EDT 2025 Sat Nov 29 14:27:19 EST 2025 Mon Jul 21 06:08:14 EDT 2025 Sat Nov 29 02:24:58 EST 2025 Tue Nov 18 21:29:54 EST 2025 Wed Jan 22 16:14:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | deep learning diffusion tensor imaging cognition structural connectomes general psychopathology |
| Language | English |
| License | Attribution 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4432-4a57ed73dcca61c084c10ff66e4e41e8ce141522db30ae27ca960cd1c0fe9b1e3 |
| Notes | Funding information Heather C. Whalley, Simon R. Cox and Keith Smith contributed equally to senior authorship. Medical Research Council, Grant/Award Number: MR/R024065/1; National Institutes of Health, Grant/Award Numbers: P2CHD042849, P30AG066614, R01AG054628; UK Research and Innovation, Grant/Award Number: MC_PC_17209; Wellcome Trust, Grant/Award Numbers: 104036/Z/14/Z, 220857/Z/20/Z, 221890/Z/20/Z ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Medical Research Council, Grant/Award Number: MR/R024065/1; National Institutes of Health, Grant/Award Numbers: P2CHD042849, P30AG066614, R01AG054628; UK Research and Innovation, Grant/Award Number: MC_PC_17209; Wellcome Trust, Grant/Award Numbers: 104036/Z/14/Z, 220857/Z/20/Z, 221890/Z/20/Z |
| ORCID | 0000-0003-4036-3642 0000-0001-6501-628X 0000-0002-0490-0845 0000-0002-4993-9014 0000-0001-5599-6237 0000-0002-1147-7539 0000-0001-8430-7875 0000-0002-0198-4588 0000-0002-4615-9020 0000-0002-4505-8869 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26182 |
| PMID | 36541441 |
| PQID | 2781282302 |
| PQPubID | 996345 |
| PageCount | 21 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9980898 proquest_miscellaneous_2756670906 proquest_journals_2781282302 pubmed_primary_36541441 crossref_citationtrail_10_1002_hbm_26182 crossref_primary_10_1002_hbm_26182 wiley_primary_10_1002_hbm_26182_HBM26182 |
| PublicationCentury | 2000 |
| PublicationDate | April 1, 2023 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 1, 2023 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 83 2002; 17 2018; 166 2012; 121 2006; 31 2015; 72 2013; 368 2015; 77 2008; 36 2020; 15 2019; 201 2020; 206 2014; 24 2020; 12 2020; 11 2020; 10 2012; 13 2018; 43 2017; 158 1997; 9 2022; 27 2018; 175 2004; 32 13 2018; 8 2017; 74 2009; 10 2015; 253 2007; 4 2020; 211 2017; 163 2019; 7 2019; 9 2018; 28 2019; 3 27 2016; 19 2019; 5 2020; 41 1997 2016; 205 1992 31 2016; 11 2019; 40 2020; 31 2020; 30 2013; 73 2013; 80 2014; 35 2014; 39 2017; 146 2019; 694 2010; 50 2012; 61 2017; 5 2015; 36 2019; 11791 2020; 61 2020; 60 2020; 59 2008; 6 2016; 70 2020; 54 2007; 35 2018; 373 2020; 3 2021; 31 2014; 2 2020; 50 2017; 38 2016; 113 2020; 46 2021; 110 1955; 52 2017; 126 2019; 111 2011; 213 2017; 20 2021; 7 2021; 5 2021; 89 2015; 18 2012 2019; 76 2017; 27 2011; 40 2007 74 2021; 12 2001; 5 2020 2017; 13 2017; 12 2016 2008; 456 2017; 186 2014 2013 2014; 76 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 Ho C.‐H. (e_1_2_7_48_1) 2012; 13 Murphy K. P. (e_1_2_7_69_1) 2012 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_29_1 Andersson J. L. (e_1_2_7_7_1) 2007 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 Drucker H. (e_1_2_7_30_1) 1997; 9 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 Vapnik V. (e_1_2_7_93_1) 1997 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
| References_xml | – volume: 52 start-page: 281 issue: 4 year: 1955 end-page: 302 article-title: Construct validity in psychological tests publication-title: Psychological Bulletin – volume: 60 start-page: 902 issue: 7 year: 2020 end-page: 912.e5 article-title: The p factor consistently predicts long‐term psychiatric and functional outcomes in anxiety‐disordered youth publication-title: Journal of the American Academy of Child and Adolescent Psychiatry – volume: 31 start-page: 3006 issue: 6 year: 2021 end-page: 3020 article-title: Connectome‐based predictive modeling of individual anxiety publication-title: Cerebral Cortex – volume: 206 year: 2020 article-title: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics publication-title: NeuroImage – volume: 30 start-page: 888 issue: 3 year: 2020 end-page: 900 article-title: Gender differences in connectome‐based predictions of individualized intelligence quotient and sub‐domain scores publication-title: Cerebral Cortex – volume: 368 start-page: 1388 issue: 15 year: 2013 end-page: 1397 article-title: An fMRI‐based neurologic signature of physical pain publication-title: New England Journal of Medicine – volume: 50 start-page: 910 issue: 3 year: 2010 end-page: 919 article-title: Identifying population differences in whole‐brain structural networks: A machine learning approach publication-title: NeuroImage – volume: 17 start-page: 143 issue: 3 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapping – volume: 15 issue: 4 year: 2020 article-title: Reliability and validity of the UK biobank cognitive tests publication-title: PLoS One – volume: 36 start-page: 4819 issue: 12 year: 2015 end-page: 4830 article-title: A network of amygdala connections predict individual differences in trait anxiety publication-title: Human Brain Mapping – volume: 9 start-page: 209 issue: 2 year: 2019 end-page: 220 article-title: White matter connectome edge density in children with autism spectrum disorders: Potential imaging biomarkers using machine‐learning models publication-title: Brain Connectivity – year: 2014 – volume: 3 start-page: 988 issue: 9 year: 2019 end-page: 998 article-title: Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders publication-title: Nature Human Behaviour – volume: 6 issue: 7 year: 2008 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biology – volume: 61 start-page: 1000 issue: 4 year: 2012 end-page: 1016 article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: NeuroImage – volume: 35 start-page: 401 issue: 5 year: 2007 end-page: 426 article-title: Intelligence and socioeconomic success: A meta‐analytic review of longitudinal research publication-title: Intelligence – volume: 7 start-page: 430 issue: 3 year: 2019 end-page: 444 article-title: Genetic and environmental links between general factors of psychopathology and cognitive ability in early childhood publication-title: Clinical Psychological Science – volume: 201 year: 2019 article-title: Combining multiple connectomes improves predictive modeling of phenotypic measures publication-title: NeuroImage – volume: 13 article-title: Transcriptome‐wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits publication-title: Nature Communications – volume: 24 start-page: 2258 issue: 9 year: 2014 end-page: 2267 article-title: Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex publication-title: Cerebral Cortex – volume: 31 start-page: 968 issue: 3 year: 2006 end-page: 980 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage – volume: 27 start-page: 759 issue: 6 year: 2017 end-page: 773 article-title: What is the p‐factor of psychopathology? Some risks of general factor modeling publication-title: Theory & Psychology – volume: 3 issue: 4 year: 2020 article-title: Longitudinal assessment of mental health disorders and comorbidities across 4 decades among participants in the Dunedin birth cohort study publication-title: JAMA Network Open – volume: 36 start-page: 81 issue: 1 year: 2008 end-page: 95 article-title: Still just 1 g: Consistent results from five test batteries publication-title: Intelligence – volume: 5 issue: 1 year: 2019 article-title: Inversion of a large‐scale circuit model reveals a cortical hierarchy in the dynamic resting human brain publication-title: Science Advances – volume: 73 start-page: 239 year: 2013 end-page: 254 article-title: White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI publication-title: NeuroImage – volume: 175 start-page: 831 issue: 9 year: 2018 end-page: 844 article-title: All for one and one for all: Mental disorders in one dimension publication-title: American Journal of Psychiatry – volume: 35 start-page: 1710 issue: 4 year: 2014 end-page: 1722 article-title: Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS publication-title: Human Brain Mapping – volume: 253 start-page: 170 year: 2015 end-page: 182 article-title: The influence of construction methodology on structural brain network measures: A review publication-title: Journal of Neuroscience Methods – volume: 10 start-page: 186 issue: 3 year: 2009 end-page: 198 article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience – volume: 74 article-title: BrainGNN: Interpretable brain graph neural network for fMRI analysis publication-title: Medical Image Analysis – volume: 31 start-page: 310 issue: 4 year: 2020 end-page: 320 article-title: Building theories on top of, and not independent of, statistical models: The case of the p‐factor publication-title: Psychological Inquiry – volume: 32 start-page: 95 issue: 1 year: 2004 end-page: 107 article-title: Just one g: Consistent results from three test batteries publication-title: Intelligence – year: 2007 – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 17 article-title: Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning publication-title: Nature Communications – volume: 59 start-page: 749 issue: 6 year: 2020 end-page: 758 article-title: Genetic associations between executive functions and a general factor of psychopathology publication-title: Journal of the American Academy of Child & Adolescent Psychiatry – volume: 27 article-title: Genetic variation, brain, and intelligence differences publication-title: Molecular Psychiatry – volume: 28 start-page: 2959 issue: 8 year: 2018 end-page: 2975 article-title: Sex differences in the adult human brain: Evidence from 5216 UK biobank participants publication-title: Cerebral Cortex – year: 1992 – volume: 30 start-page: 3924 issue: 7 year: 2020 end-page: 3933 article-title: Cerebello‐cerebral connectivity in idiopathic generalized epilepsy publication-title: European Radiology – volume: 373 issue: 1756 year: 2018 article-title: A distributed brain network predicts general intelligence from resting‐state human neuroimaging data publication-title: Philosophical Transactions of the Royal Society, B: Biological Sciences – volume: 89 start-page: 795 issue: 8 year: 2021 end-page: 806 article-title: Aging‐sensitive networks within the human structural connectome are implicated in late‐life cognitive declines publication-title: Biological Psychiatry – volume: 166 start-page: 400 year: 2018 end-page: 424 article-title: Image processing and quality control for the first 10,000 brain imaging datasets from UK biobank publication-title: NeuroImage – volume: 211 year: 2020 article-title: The effect of network thresholding and weighting on structural brain networks in the UK biobank publication-title: NeuroImage – volume: 186 start-page: 1026 issue: 9 year: 2017 end-page: 1034 article-title: Comparison of sociodemographic and health‐related characteristics of UK biobank participants with those of the general population publication-title: American Journal of Epidemiology – volume: 5 start-page: 23626 year: 2017 end-page: 23636 article-title: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI publication-title: IEEE Access – volume: 213 start-page: 560 issue: 2 year: 2011 end-page: 570 article-title: Microstructural and physiological features of tissues elucidated by quantitative‐diffusion‐tensor MRI publication-title: Journal of Magnetic Resonance – volume: 113 start-page: E4367 issue: 30 year: 2016 end-page: E4376 article-title: Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke publication-title: Proceedings of the National Academy of Sciences – volume: 5 start-page: 49 issue: 1 year: 2021 end-page: 58 article-title: A general dimension of genetic sharing across diverse cognitive traits inferred from molecular data publication-title: Nature Human Behaviour – volume: 80 start-page: 515 year: 2013 end-page: 526 article-title: Structural connectomics in brain diseases publication-title: NeuroImage – start-page: 281 year: 1997 end-page: 287 – volume: 163 start-page: 115 year: 2017 end-page: 124 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage – volume: 50 start-page: 1594 issue: 11 year: 2020 end-page: 1601 article-title: Connectome mapping with edge density imaging differentiates pediatric mild traumatic brain injury from typically developing controls: Proof of concept publication-title: Pediatric Radiology – year: 2013 – volume: 11 start-page: 4238 issue: 1 year: 2020 article-title: Different scaling of linear models and deep learning in UK Biobank brain images versus machine‐learning datasets publication-title: Nature Communications – volume: 40 start-page: 2290 issue: 28 year: 2019 end-page: 2300 article-title: Associations between vascular risk factors and brain MRI indices in UK biobank publication-title: European Heart Journal – volume: 11791 start-page: 133 year: 2019 end-page: 142 – volume: 110 year: 2021 article-title: The functional and structural connectomes associated with geriatric depression and anxiety symptoms in mild cognitive impairment: Cross‐syndrome overlap and generalization publication-title: Progress in Neuro‐Psychopharmacology and Biological Psychiatry – start-page: 770 year: 2016 end-page: 778 – volume: 61 start-page: 30 issue: 1 year: 2020 end-page: 39 article-title: The p factor: Genetic analyses support a general dimension of psychopathology in childhood and adolescence publication-title: Journal of Child Psychology and Psychiatry – volume: 7 start-page: 11 issue: 1–2 year: 2021 end-page: 15 article-title: The validity of brief phenotyping in population biobanks for psychiatric genome‐wide association studies on the biobank scale publication-title: Complex psychiatry – volume: 76 year: 2019 article-title: Structural brain imaging correlates of general intelligence in UK biobank publication-title: Intelligence – volume: 20 start-page: 340 issue: 3 year: 2017 end-page: 352 article-title: Dynamic models of large‐scale brain activity publication-title: Nature Neuroscience – start-page: 1742 year: 2020 end-page: 1745 – volume: 54 start-page: 548 issue: 5 year: 2020 end-page: 559 article-title: Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic, and molecular genetic levels of analysis publication-title: Nature Genetics – volume: 19 start-page: 1523 issue: 11 year: 2016 end-page: 1536 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nature Neuroscience – volume: 146 start-page: 1038 year: 2017 end-page: 1049 article-title: BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: NeuroImage – volume: 456 start-page: 175 issue: 7219 year: 2008 end-page: 176 article-title: Why do intelligent people live longer? publication-title: Nature – volume: 10 start-page: 1534 issue: 11 year: 2020 article-title: Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates publication-title: Biomolecules – volume: 694 start-page: 34 year: 2019 end-page: 40 article-title: Structural networks analysis for depression combined with graph theory and the properties of fiber tracts via diffusion tensor imaging publication-title: Neuroscience Letters – volume: 2 start-page: 119 issue: 2 year: 2014 end-page: 137 article-title: The p factor: One general psychopathology factor in the structure of psychiatric disorders? publication-title: Clinical Psychological Science – volume: 18 start-page: 1664 issue: 11 year: 2015 end-page: 1671 article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity publication-title: Nature Neuroscience – volume: 126 start-page: 454 issue: 4 year: 2017 end-page: 477 article-title: The hierarchical taxonomy of psychopathology (hitop): A dimensional alternative to traditional nosologies publication-title: Journal of Abnormal Psychology – volume: 74 start-page: 58 year: 2017 end-page: 75 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications publication-title: Neuroscience & Biobehavioral Reviews – volume: 111 start-page: 186 year: 2019 end-page: 192 article-title: Hippocampal subfield‐specific connectivity findings in major depressive disorder: A 7 tesla diffusion MRI study publication-title: Journal of Psychiatric Research – volume: 70 start-page: 1 issue: 1 year: 2016 end-page: 31 article-title: missMDA: A package for handling missing values in multivariate data analysis publication-title: Journal of Statistical Software – volume: 46 start-page: 699 issue: 3 year: 2020 end-page: 712 article-title: Transdiagnostic dysfunctions in brain modules across patients with schizophrenia, bipolar disorder, and major depressive disorder: A connectome‐based study publication-title: Schizophrenia Bulletin – volume: 13 start-page: 3323 issue: 1 year: 2012 end-page: 3348 article-title: Large‐scale linear support vector regression publication-title: The Journal of Machine Learning Research – volume: 72 start-page: 305 issue: 4 year: 2015 end-page: 315 article-title: Identification of a common neurobiological substrate for mental illness publication-title: JAMA Psychiatry – volume: 40 start-page: 626 issue: 3 year: 2011 end-page: 644 article-title: Intelligence in youth and all‐cause‐mortality: Systematic review with meta‐analysis publication-title: International Journal of Epidemiology – volume: 158 start-page: 145 year: 2017 end-page: 154 article-title: Joint prediction of multiple scores captures better individual traits from brain images publication-title: NeuroImage – volume: 77 start-page: 223 issue: 3 year: 2015 end-page: 235 article-title: Depression, neuroimaging and connectomics: A selective overview publication-title: Biological Psychiatry – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 9 article-title: A polygenic p factor for major psychiatric disorders publication-title: Translational Psychiatry – volume: 27 start-page: 38 issue: 1 year: 2022 end-page: 48 article-title: The p‐factor and its genomic and neural equivalents: An integrated perspective publication-title: Molecular Psychiatry – volume: 43 start-page: 416 issue: 6 year: 2018 end-page: 427 article-title: Psychoradiological patterns of small‐world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders publication-title: Journal of Psychiatry & Neuroscience – volume: 41 start-page: 4173 issue: 15 year: 2020 end-page: 4186 article-title: Differences in directed functional brain connectivity related to age, sex and mental health publication-title: Human Brain Mapping – volume: 121 start-page: 971 issue: 4 year: 2012 end-page: 977 article-title: Is there a general factor of prevalent psychopathology during adulthood? publication-title: Journal of Abnormal Psychology – volume: 31 article-title: Boost in test–retest reliability in resting state fMRI with predictive modeling publication-title: Cerebral Cortex – volume: 9 start-page: 155 year: 1997 end-page: 161 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – volume: 39 start-page: 681 issue: 3 year: 2014 end-page: 687 article-title: Quantitative prediction of individual psychopathology in trauma survivors using resting‐state FMRI publication-title: Neuropsychopharmacology – year: 2012 – volume: 40 start-page: 529 issue: 2 year: 2019 end-page: 537 article-title: White matter connectivity reductions in the pre‐clinical continuum of psychosis: A connectome study publication-title: Human Brain Mapping – volume: 4 start-page: 316 issue: 3 year: 2007 end-page: 329 article-title: Diffusion tensor imaging of the brain publication-title: Neurotherapeutics – volume: 205 start-page: 103 year: 2016 end-page: 111 article-title: Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses publication-title: Journal of Affective Disorders – volume: 76 start-page: 567 issue: 7 year: 2014 end-page: 574 article-title: Abnormal structural networks characterize major depressive disorder: A connectome analysis publication-title: Biological Psychiatry – volume: 11 issue: 4 year: 2016 article-title: Cognitive test scores in UK biobank: Data reduction in 480,416 participants and longitudinal stability in 20,346 participants publication-title: PLoS One – volume: 13 issue: 6 year: 2017 article-title: Linking structure and activity in nonlinear spiking networks publication-title: PLoS Computational Biology – volume: 83 start-page: 97 year: 2017 end-page: 108 article-title: On the transdiagnostic nature of peripheral biomarkers in major psychiatric disorders: A systematic review publication-title: Neuroscience & Biobehavioral Reviews – start-page: 1692 year: 2020 end-page: 1695 – volume: 76 start-page: 259 issue: 3 year: 2019 end-page: 270 article-title: Exploring comorbidity within mental disorders among a danish national population publication-title: JAMA Psychiatry – volume: 12 start-page: 506 issue: 3 year: 2017 end-page: 518 article-title: Using connectome‐based predictive modeling to predict individual behavior from brain connectivity publication-title: Nature Protocols – volume: 5 start-page: 143 issue: 2 year: 2001 end-page: 156 article-title: A global optimisation method for robust affine registration of brain images publication-title: Medical Image Analysis – volume: 38 start-page: 2008 issue: 4 year: 2017 end-page: 2025 article-title: Modular‐level alterations of structure–function coupling in schizophrenia connectome publication-title: Human Brain Mapping – volume: 12 start-page: 28 year: 2020 article-title: Feature selection and combination of information in the functional brain connectome for discrimination of mild cognitive impairment and analyses of altered brain patterns publication-title: Frontiers in Aging Neuroscience – ident: e_1_2_7_36_1 doi: 10.1016/j.biopsych.2014.08.009 – ident: e_1_2_7_35_1 doi: 10.1016/j.neuroimage.2019.116038 – ident: e_1_2_7_86_1 doi: 10.1002/hbm.10062 – ident: e_1_2_7_16_1 doi: 10.1176/appi.ajp.2018.17121383 – ident: e_1_2_7_73_1 doi: 10.1016/j.neubiorev.2017.10.001 – ident: e_1_2_7_96_1 doi: 10.1126/sciadv.aat7854 – ident: e_1_2_7_9_1 doi: 10.1145/130385.130401 – ident: e_1_2_7_83_1 doi: 10.1038/nprot.2016.178 – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroimage.2017.07.059 – volume: 9 start-page: 155 year: 1997 ident: e_1_2_7_30_1 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_7_17_1 doi: 10.1016/j.jaac.2020.08.440 – ident: e_1_2_7_4_1 doi: 10.1016/j.nurt.2007.05.011 – ident: e_1_2_7_21_1 doi: 10.1093/cercor/bht064 – ident: e_1_2_7_20_1 doi: 10.1159/000516837 – ident: e_1_2_7_3_1 doi: 10.1002/hbm.22286 – ident: e_1_2_7_40_1 doi: 10.1016/j.neuroimage.2013.04.056 – ident: e_1_2_7_105_1 doi: 10.1109/ACCESS.2017.2762703 – ident: e_1_2_7_66_1 doi: 10.1016/j.biopsych.2020.06.010 – ident: e_1_2_7_38_1 doi: 10.1001/jamapsychiatry.2014.2206 – ident: e_1_2_7_47_1 doi: 10.1016/j.neuroimage.2019.116276 – ident: e_1_2_7_101_1 doi: 10.1109/EMBC44109.2020.9175596 – ident: e_1_2_7_77_1 doi: 10.1007/s00247-020-04743-9 – volume-title: Machine learning: A probabilistic perspective year: 2012 ident: e_1_2_7_69_1 – ident: e_1_2_7_31_1 doi: 10.1098/rstb.2017.0284 – ident: e_1_2_7_8_1 doi: 10.1016/j.jmr.2011.09.022 – ident: e_1_2_7_13_1 doi: 10.1093/ije/dyq190 – ident: e_1_2_7_53_1 doi: 10.1016/S0160-2896(03)00062-X – ident: e_1_2_7_37_1 doi: 10.1038/npp.2013.251 – ident: e_1_2_7_61_1 doi: 10.1037/a0028355 – ident: e_1_2_7_70_1 doi: 10.1371/journal.pcbi.1005583 – ident: e_1_2_7_52_1 doi: 10.1007/s00330-020-06674-3 – ident: e_1_2_7_58_1 – ident: e_1_2_7_75_1 doi: 10.1016/j.jneumeth.2015.06.016 – ident: e_1_2_7_23_1 doi: 10.1016/j.intell.2019.101376 – ident: e_1_2_7_50_1 doi: 10.1016/S1361-8415(01)00036-6 – ident: e_1_2_7_18_1 doi: 10.1016/j.jad.2016.06.066 – ident: e_1_2_7_14_1 doi: 10.1001/jamanetworkopen.2020.3221 – ident: e_1_2_7_28_1 doi: 10.1038/s41380-021-01027-y – ident: e_1_2_7_98_1 doi: 10.1080/1047840X.2020.1853476 – ident: e_1_2_7_95_1 doi: 10.1056/NEJMoa1204471 – ident: e_1_2_7_103_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_7_46_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_7_25_1 doi: 10.1038/s41562-020-00936-2 – ident: e_1_2_7_76_1 doi: 10.1016/j.neuroimage.2017.06.072 – ident: e_1_2_7_74_1 doi: 10.1001/jamapsychiatry.2018.3658 – ident: e_1_2_7_91_1 doi: 10.1093/cercor/bhaa390 – ident: e_1_2_7_27_1 doi: 10.1038/456175a – ident: e_1_2_7_29_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_2_7_59_1 doi: 10.1016/j.biopsych.2014.02.018 – ident: e_1_2_7_68_1 doi: 10.1038/nn.4393 – ident: e_1_2_7_10_1 doi: 10.1038/nn.4497 – ident: e_1_2_7_56_1 doi: 10.18637/jss.v070.i01 – ident: e_1_2_7_102_1 doi: 10.1016/j.pnpbp.2021.110329 – ident: e_1_2_7_12_1 doi: 10.1038/nrn2575 – ident: e_1_2_7_57_1 doi: 10.1016/j.neuroimage.2016.09.046 – ident: e_1_2_7_89_1 doi: 10.1002/hbm.23501 – ident: e_1_2_7_11_1 doi: 10.1016/j.neuroimage.2019.116443 – ident: e_1_2_7_54_1 doi: 10.1016/j.intell.2007.06.001 – ident: e_1_2_7_32_1 doi: 10.1371/journal.pone.0231627 – volume: 13 start-page: 3323 issue: 1 year: 2012 ident: e_1_2_7_48_1 article-title: Large‐scale linear support vector regression publication-title: The Journal of Machine Learning Research – ident: e_1_2_7_63_1 doi: 10.1002/hbm.25116 – ident: e_1_2_7_82_1 doi: 10.1038/s41398-018-0217-4 – ident: e_1_2_7_104_1 doi: 10.1016/j.neulet.2018.11.025 – ident: e_1_2_7_67_1 doi: 10.1007/978-3-030-31901-4_16 – ident: e_1_2_7_72_1 doi: 10.1089/brain.2018.0658 – ident: e_1_2_7_42_1 doi: 10.1038/s41588-022-01057-4 – ident: e_1_2_7_97_1 doi: 10.1093/cercor/bhaa407 – ident: e_1_2_7_33_1 doi: 10.1038/nn.4135 – ident: e_1_2_7_71_1 doi: 10.1002/hbm.24392 – ident: e_1_2_7_24_1 doi: 10.1037/h0040957 – ident: e_1_2_7_90_1 doi: 10.1503/jpn.170214 – volume-title: Non‐linear registration aka spatial normalisation FMRIB Technical report TR07JA2 year: 2007 ident: e_1_2_7_7_1 – ident: e_1_2_7_51_1 doi: 10.1093/cercor/bhz134 – ident: e_1_2_7_44_1 doi: 10.1371/journal.pbio.0060159 – ident: e_1_2_7_62_1 doi: 10.1016/j.media.2021.102233 – ident: e_1_2_7_41_1 doi: 10.1177/2167702618820018 – start-page: 281 volume-title: Advances in Neural Information Processing Systems 9 year: 1997 ident: e_1_2_7_93_1 – ident: e_1_2_7_94_1 doi: 10.1016/j.neubiorev.2017.01.002 – ident: e_1_2_7_78_1 doi: 10.1093/cercor/bhy109 – ident: e_1_2_7_81_1 doi: 10.1038/s41467-020-18037-z – ident: e_1_2_7_85_1 – ident: e_1_2_7_99_1 doi: 10.3389/fnagi.2020.00028 – ident: e_1_2_7_88_1 doi: 10.1016/j.intell.2006.09.004 – ident: e_1_2_7_100_1 doi: 10.3390/biom10111534 – ident: e_1_2_7_55_1 doi: 10.1016/j.neuroimage.2012.06.081 – ident: e_1_2_7_80_1 doi: 10.1016/j.jpsychires.2019.02.008 – ident: e_1_2_7_79_1 doi: 10.1016/j.neuroimage.2010.01.019 – ident: e_1_2_7_64_1 doi: 10.1371/journal.pone.0154222 – ident: e_1_2_7_6_1 doi: 10.1111/jcpp.13113 – ident: e_1_2_7_39_1 doi: 10.1002/hbm.22952 – ident: e_1_2_7_92_1 doi: 10.1177/0959354317737185 – ident: e_1_2_7_43_1 doi: 10.1038/s41467-022-33724-9 – ident: e_1_2_7_65_1 doi: 10.1093/schbul/sbz111 – ident: e_1_2_7_87_1 doi: 10.1038/s41380-021-01031-2 – ident: e_1_2_7_49_1 doi: 10.1109/EMBC44109.2020.9176610 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroimage.2017.10.034 – ident: e_1_2_7_2_1 doi: 10.1038/s41467-020-20655-6 – ident: e_1_2_7_15_1 doi: 10.1177/2167702613497473 – ident: e_1_2_7_22_1 doi: 10.1093/eurheartj/ehz100 – ident: e_1_2_7_60_1 doi: 10.1037/abn0000258 – ident: e_1_2_7_84_1 doi: 10.1073/pnas.1521083113 – ident: e_1_2_7_26_1 doi: 10.1038/s41562-019-0659-6 – ident: e_1_2_7_45_1 doi: 10.1016/j.jaac.2019.05.006 – ident: e_1_2_7_34_1 doi: 10.1093/aje/kwx246 |
| SSID | ssj0011501 |
| Score | 2.5280702 |
| Snippet | There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population‐wide... There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1913 |
| SubjectTerms | Accuracy Algorithms Brain Brain - diagnostic imaging Brain - pathology Cognition Cognitive ability Complexity Connectome - methods Decision making Deep learning diffusion tensor imaging general psychopathology Humans Learning algorithms Machine Learning Magnetic resonance imaging Mathematical models Medical imaging Mental disorders Mental Health Neural networks Neuroimaging Phenotypes Predictions Psychopathology Sex Statistical methods structural connectomes |
| Title | Predicting sex, age, general cognition and mental health with machine learning on brain structural connectomes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26182 https://www.ncbi.nlm.nih.gov/pubmed/36541441 https://www.proquest.com/docview/2781282302 https://www.proquest.com/docview/2756670906 https://pubmed.ncbi.nlm.nih.gov/PMC9980898 |
| Volume | 44 |
| WOSCitedRecordID | wos000900710100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: 7X7 dateStart: 20210801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: PIMPY dateStart: 20210801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NG0K88LHxURiVQQjxsLDYceJYPG1o0_bQKkIgylMUO9dtEnXRwhD895ztNFANJCReokS-pK59d_7ZPv8O4IWVvullm6DkJpFo2qQ0OSYtn3PBUVuR25BsQk2n5Wymqw14szoLE_khhgU3bxnBX3sDb0y3_4s09NwsXhP8L8n_bnGeKa_SQlbDFgIhnTDbojE20eSCV7RCqdgfXl0fjK4hzOuBkr8D2DACHd_5r7rfhds98GQHUVPuwQa6bdg5cDTpXvxgL1kIBQ1r7Ntwc9LvuO-Aqy79vQ-OZh1-32Pkf_bYWSSrZn3w0dKxxrUs5glg8Wgl8yu8bBFiNZH1ySnOGIkan5WCReLaq_gVcvaW6oHdffhwfPT-7UnS52hIrJSZSGSTK2xV1pImFNympbQ8nc-LAiX1PpYWuYcIojVZ2qBQtqEpk21Jco7acMwewKZbOnwErDCaZ8ZkAv1JaWkabTJdNhbbHHVu0hG8WnVWbXsCc59H43MdqZdFTc1ah2YdwfNB9Etk7fiT0O6qx-vecLtaKEI8fvORip8NxWRyfh-lcbi88jKEgVWq02IED6OCDL-Shbzqko9AranOIODpvNdL3MV5oPWmiW9a6pL-ZlCdv1e8PjmchJvH_y76BG4Jgmcx5mgXNqmP8SncsN--XnSX42A5dFUzFa7lGLYOj6bVu3FYo6Cn6nRSfaKnj6fTn79VJTM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8QJMqLIl-eoFZjjA8sbLvdjya-oJEckbvcAya8bbbtHJB4PcOJ0f-eabu3eEETEt-adHa3285Mf22nvwF4a6TvemkTlFwnErVNKp1jYvmYC47KiNyEZBPlcFidnanREnyY34WJ_BDdhpu3jOCvvYH7DemDW9bQCz3ZJ_xfkQN-IGmW8fkLhBx1ZwgEdcJyiybZRJEPnvMKpeKge3RxNroDMe9GSv6JYMMUdPTk_xq_Bo9b6MkOo648hSV067Bx6GjZPfnN3rEQDBp22dfh4aA9c98AN7ryZR8ezWb4a4-RB9pj55GumrXhR1PHGmdZzBTA4uVK5vd42SREayJr01OcMxLVPi8Fi9S11_Et5O4NtQNnm_D16PPpp37SZmlIjJSZSGSTl2jLzJIuFNyklTQ8HY-LAiWNP1YGuQcJwuosbVCUpqFFk7EkOUalOWZbsOymDp8BK7TimdaZQH9XWupG6UxVjUGbo8p12oP389GqTUth7jNpfKsj-bKoqVvr0K09eNOJfo-8HX8T2p0Ped2a7qwWJWEef_xI1a-7ajI6f5LSOJxeexlCwWWq0qIH21FDuq9kIbO65D0oF3SnE_CE3os17vIiEHvT0jetVEW_GXTn3w2v-x8HofD8_qKv4FH_dHBSnxwPv-zAqiCwFiOQdmGZxhtfwIr5-eNydvUymNENZ3oh9g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8QJMQXFfDjBLEaY3xgZdvtfjTxhQ8vGOVyD5rwttm2s0DC9QgHRv97pu3e6gVNTHxr0tndbjsz_bWd_gbgjZG-66VNUHKdSNQ2qXSOieUtFxyVEbkJySbK0ag6OVHjJfgwvwsT-SH6DTdvGcFfewPHS9vu_mINPdOT94T_K3LA92ROPtbzOstxf4ZAUCcst2iSTRT54DmvUCp2-0cXZ6M7EPNupOTvCDZMQcOH_9f4R_Cgg55sL-rKGiyhW4eNPUfL7slP9paFYNCwy74Oq8fdmfsGuPGVL_vwaDbDHzuMPNAOO4101awLP5o61jjLYqYAFi9XMr_HyyYhWhNZl57ilJGo9nkpWKSuvYlvIXdvqB04ewzfhh-_HhwlXZaGxEiZiUQ2eYm2zCzpQsFNWknD07YtCpQ0_lgZ5B4kCKuztEFRmoYWTcaSZItKc8yewLKbOnwGrNCKZ1pnAv1daakbpTNVNQZtjirX6QDezUerNh2Fuc-kcVFH8mVRU7fWoVsH8LoXvYy8HX8S2poPed2Z7qwWJWEef_xI1a_6ajI6f5LSOJzeeBlCwWWq0mIAT6OG9F_JQmZ1yQdQLuhOL-AJvRdr3PlZIPampW9aqYp-M-jO3xteH-0fh8Lzfxd9Cavjw2H95dPo8ybcF4TVYgDSFizTcOMLWDHfr89nV9vBim4B4K8heg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+sex%2C+age%2C+general+cognition+and+mental+health+with+machine+learning+on+brain+structural+connectomes&rft.jtitle=Human+brain+mapping&rft.au=Yeung%2C+Hon+Wah&rft.au=Stolicyn%2C+Aleks&rft.au=Buchanan%2C+Colin+R.&rft.au=Tucker%E2%80%90Drob%2C+Elliot+M.&rft.date=2023-04-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=44&rft.issue=5&rft.spage=1913&rft.epage=1933&rft_id=info:doi/10.1002%2Fhbm.26182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_26182 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |