Clinical decision support systems in orthodontics: A narrative review of data science approaches
Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination, imaging, medical devices, as well as experimental and biological data. Proper management and analysis of these data via high‐end computing soluti...
Uloženo v:
| Vydáno v: | Orthodontics & craniofacial research Ročník 24; číslo S2; s. 26 - 36 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Subscription Services, Inc
01.12.2021
|
| Témata: | |
| ISSN: | 1601-6335, 1601-6343, 1601-6343 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination, imaging, medical devices, as well as experimental and biological data. Proper management and analysis of these data via high‐end computing solutions, artificial intelligence and machine learning approaches can assist in extracting meaningful information that enhances population health and well‐being. Furthermore, the extracted knowledge can provide new avenues for modern healthcare delivery via clinical decision support systems. This manuscript presents a narrative review of data science approaches for clinical decision support systems in orthodontics. We describe the fundamental components of data science approaches including (a) Data collection, storage and management; (b) Data processing; (c) In‐depth data analysis; and (d) Data communication. Then, we introduce a web‐based data management platform, the Data Storage for Computation and Integration, for temporomandibular joint and dental clinical decision support systems. |
|---|---|
| AbstractList | Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination, imaging, medical devices, as well as experimental and biological data. Proper management and analysis of these data via high-end computing solutions, artificial intelligence and machine learning approaches can assist in extracting meaningful information that enhances population health and well-being. Furthermore, the extracted knowledge can provide new avenues for modern healthcare delivery via clinical decision support systems. This manuscript presents a narrative review of data science approaches for clinical decision support systems in orthodontics. We describe the fundamental components of data science approaches including (a) Data collection, storage and management; (b) Data processing; (c) In-depth data analysis; and (d) Data communication. Then, we introduce a web-based data management platform, the Data Storage for Computation and Integration, for temporomandibular joint and dental clinical decision support systems. Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination, imaging, medical devices, as well as experimental and biological data. Proper management and analysis of these data via high-end computing solutions, artificial intelligence and machine learning approaches can assist in extracting meaningful information that enhances population health and well-being. Furthermore, the extracted knowledge can provide new avenues for modern healthcare delivery via clinical decision support systems. This manuscript presents a narrative review of data science approaches for clinical decision support systems in orthodontics. We describe the fundamental components of data science approaches including (a) Data collection, storage and management; (b) Data processing; (c) In-depth data analysis; and (d) Data communication. Then, we introduce a web-based data management platform, the Data Storage for Computation and Integration, for temporomandibular joint and dental clinical decision support systems.Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination, imaging, medical devices, as well as experimental and biological data. Proper management and analysis of these data via high-end computing solutions, artificial intelligence and machine learning approaches can assist in extracting meaningful information that enhances population health and well-being. Furthermore, the extracted knowledge can provide new avenues for modern healthcare delivery via clinical decision support systems. This manuscript presents a narrative review of data science approaches for clinical decision support systems in orthodontics. We describe the fundamental components of data science approaches including (a) Data collection, storage and management; (b) Data processing; (c) In-depth data analysis; and (d) Data communication. Then, we introduce a web-based data management platform, the Data Storage for Computation and Integration, for temporomandibular joint and dental clinical decision support systems. |
| Author | Le, Celia Yatabe, Marilia Fillion‐Robin, Jean‐Christophe Benavides, Erika Paniagua, Beatriz Tengfei, Li Gryak, Jonathan Evangelista, Karine Soroushmehr, Reza Deleat‐Besson, Romain Zhang, Winston Styner, Martin Al Turkestani, Najla Bianchi, Jonas Gurgel, Marcela Prieto, Juan Carlos Soki, Fabiana Najarian, Kayvan Ruellas, Antonio C. O. Aliaga Del Castillo, Aron Cevidanes, Lucia H. S. Massaro, Camila |
| AuthorAffiliation | 10 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA 9 Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA 3 Department of Orthodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA 11 Departments Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA 12 Kitware Inc., Carrboro, NC, USA 8 Department of Orthodontics, School of Dentistry, University of Goias, Goiania, Brazil 2 Department of Restorative and Aesthetic Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia 6 Department of Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 1 Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA 4 Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA 7 Department of Orthod |
| AuthorAffiliation_xml | – name: 2 Department of Restorative and Aesthetic Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia – name: 3 Department of Orthodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA – name: 7 Department of Orthodontics, Bauru Dental School, University of São Paulo, São Paulo, Brazil – name: 1 Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA – name: 6 Department of Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil – name: 10 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA – name: 12 Kitware Inc., Carrboro, NC, USA – name: 8 Department of Orthodontics, School of Dentistry, University of Goias, Goiania, Brazil – name: 9 Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA – name: 5 Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA – name: 4 Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA – name: 11 Departments Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA |
| Author_xml | – sequence: 1 givenname: Najla surname: Al Turkestani fullname: Al Turkestani, Najla email: alnajla@umich.edu organization: King Abdulaziz University – sequence: 2 givenname: Jonas orcidid: 0000-0002-3749-0918 surname: Bianchi fullname: Bianchi, Jonas organization: University of the Pacific – sequence: 3 givenname: Romain surname: Deleat‐Besson fullname: Deleat‐Besson, Romain organization: University of Michigan School of Dentistry – sequence: 4 givenname: Celia surname: Le fullname: Le, Celia organization: University of Michigan School of Dentistry – sequence: 5 givenname: Li surname: Tengfei fullname: Tengfei, Li organization: University of North Carolina – sequence: 6 givenname: Juan Carlos surname: Prieto fullname: Prieto, Juan Carlos organization: University of North Carolina – sequence: 7 givenname: Marcela surname: Gurgel fullname: Gurgel, Marcela organization: University of Michigan School of Dentistry – sequence: 8 givenname: Antonio C. O. surname: Ruellas fullname: Ruellas, Antonio C. O. organization: Federal University of Rio de Janeiro – sequence: 9 givenname: Camila orcidid: 0000-0001-6011-7946 surname: Massaro fullname: Massaro, Camila organization: University of São Paulo – sequence: 10 givenname: Aron surname: Aliaga Del Castillo fullname: Aliaga Del Castillo, Aron organization: University of São Paulo – sequence: 11 givenname: Karine surname: Evangelista fullname: Evangelista, Karine organization: University of Goias – sequence: 12 givenname: Marilia surname: Yatabe fullname: Yatabe, Marilia organization: University of Michigan School of Dentistry – sequence: 13 givenname: Erika surname: Benavides fullname: Benavides, Erika organization: University of Michigan School of Dentistry – sequence: 14 givenname: Fabiana surname: Soki fullname: Soki, Fabiana organization: University of Michigan School of Dentistry – sequence: 15 givenname: Winston surname: Zhang fullname: Zhang, Winston organization: University of Michigan – sequence: 16 givenname: Kayvan surname: Najarian fullname: Najarian, Kayvan organization: University of Michigan – sequence: 17 givenname: Jonathan surname: Gryak fullname: Gryak, Jonathan organization: University of Michigan – sequence: 18 givenname: Martin surname: Styner fullname: Styner, Martin organization: University of North Carolina – sequence: 19 givenname: Jean‐Christophe surname: Fillion‐Robin fullname: Fillion‐Robin, Jean‐Christophe organization: Kitware Inc – sequence: 20 givenname: Beatriz surname: Paniagua fullname: Paniagua, Beatriz organization: Kitware Inc – sequence: 21 givenname: Reza surname: Soroushmehr fullname: Soroushmehr, Reza organization: University of Michigan – sequence: 22 givenname: Lucia H. S. surname: Cevidanes fullname: Cevidanes, Lucia H. S. organization: University of Michigan School of Dentistry |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33973362$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kVtrGzEQhUVJaC7tQ_9AEfSlfXCiy0re7UMgmN4gECjtszqdna0V1tJW2nXwv68cp6YNJPOiEfrmcEbnhB2EGIixV1KcyVLnEdOZVFWjnrFjaYWcWV3pg32vzRE7yflGCCWUss_ZkdbNXGurjtmPRe-DR-h5S-izj4HnaRhiGnne5JFWmfvAy3UZ2xhGj_k9v-QBUoLRr4knWnu65bHjLYzAM3oKSByGIUXAJeUX7LCDPtPL-_OUff_44dvi8-zq-tOXxeXVDKtKq5lCMwddoaGmtaIDIlMbAS0I2ZFEZbUB2wisBXYVaYWgDAlZd1Vp51LqU3ax0x2mnytqkcKYoHdD8itIGxfBu_9fgl-6X3Ht6qYuJYrA23uBFH9PlEe38hmp7yFQnLJTRhlrpLDzgr55gN7EKYWynlNW1kppa7eOXv_raG_l7-cX4N0OwBRzTtTtESncNlhXgnV3wRb2_AGLfiwRxO0yvn9q4tb3tHlc2l0vvu4m_gDPL7WD |
| CitedBy_id | crossref_primary_10_3390_data10050060 crossref_primary_10_2319_032923_225_1 crossref_primary_10_1177_23800844221116850 crossref_primary_10_1016_j_identj_2024_11_009 crossref_primary_10_1016_j_engappai_2024_109998 crossref_primary_10_1016_j_joms_2023_07_137 crossref_primary_10_3390_healthcare11050683 crossref_primary_10_1111_ocr_12543 crossref_primary_10_1111_ocr_12520 crossref_primary_10_3389_fdmed_2022_833191 crossref_primary_10_3390_dj11010001 crossref_primary_10_15407_sociology2025_02_080 crossref_primary_10_33295_1992_576X_2024_4_98 crossref_primary_10_1016_j_ejwf_2022_10_006 crossref_primary_10_3390_ai5010009 crossref_primary_10_1007_s00784_022_04742_0 crossref_primary_10_1590_2177_6709_27_5_e22spe5 crossref_primary_10_3390_diagnostics13162700 crossref_primary_10_1038_s41598_023_43125_7 crossref_primary_10_33295_1992_576X_2024_3_95 crossref_primary_10_1109_ACCESS_2023_3314380 |
| Cites_doi | 10.1016/j.compmedimag.2018.04.009 10.1093/eurpub/ckz168 10.1007/978-3-030-60946-7_5 10.1109/eScience.2017.12 10.1186/2047-2501-2-3 10.1111/odi.13007 10.1038/s41591-019-0548-6 10.1016/j.jds.2020.06.019 10.1109/BigData.2014.7004307 10.1159/000501643 10.1007/s11548-015-1334-7 10.3390/computation8010015 10.1186/s12874-016-0169-4 10.1016/j.jebdp.2009.03.003 10.1038/s41598-020-64942-0 10.1186/s12874-018-0587-6 10.1109/NaBIC.2014.6921892 10.1186/s40510-019-0295-8 10.1186/s12903-020-01256-7 10.1186/s40537-019-0217-0 10.5624/isd.2019.49.1.19 10.1111/jphd.12354 10.1186/s41512-019-0046-9 10.3390/ijerph17103636 10.3390/ijerph15112357 10.1177/0022034520915714 10.1016/j.jds.2020.05.022 10.1007/s40747-019-00124-4 10.15713/ins.jcri.267 10.1109/EMBC44109.2020.9175692 10.1186/s12874-019-0681-4 10.1007/978-3-030-61056-2_12 10.1016/j.compbiomed.2015.11.006 10.2319/021220-100.1 10.1007/978-3-030-22475-2_1 10.11607/jop.1151 10.1177/0193945917749481 10.1093/ejo/cju038 10.2334/josnusd.16-0224 10.1016/j.oooo.2018.10.003 10.1055/s-0038-1637913 10.2319/022019-127.1 10.1053/j.sodo.2017.07.001 10.3390/ijerph17072495 10.1038/s41598-018-38439-w 10.22146/teknosains.38641 10.1016/j.beth.2020.05.002 10.1016/S0167-9236(02)00098-2 10.1038/s41746-020-0221-y 10.1111/ocr.12279 10.1093/jamia/ocu010 10.25259/APOS_123_2019 10.1016/j.ijmedinf.2016.06.017 10.25259/APOS_117_2019 10.1016/j.ajodo.2015.07.030 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons A/S |
| Copyright_xml | – notice: 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons A/S |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP K9. 7X8 5PM |
| DOI | 10.1111/ocr.12492 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Dentistry |
| EISSN | 1601-6343 |
| EndPage | 36 |
| ExternalDocumentID | PMC8988880 33973362 10_1111_ocr_12492 OCR12492 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: National Institute of Dental and Craniofacial Research funderid: R01DE024450 – fundername: American Association of Orthodontists Foundation – fundername: NIDCR NIH HHS grantid: R01 DE024450 – fundername: NIDCR NIH HHS grantid: R01DE024450 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 34H 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WBNRW WIH WIK WOHZO WPGGZ WQJ WRC WXSBR XG1 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7QP K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c4432-2c57a34c5e9d60faee5850ada01fe1c2635a690c80cf4e32ca25e018f42ca7113 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653135800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1601-6335 1601-6343 |
| IngestDate | Tue Nov 04 01:55:48 EST 2025 Thu Oct 02 06:00:16 EDT 2025 Sat Nov 29 14:52:28 EST 2025 Mon Jul 21 05:59:04 EDT 2025 Sat Nov 29 03:39:29 EST 2025 Tue Nov 18 22:17:52 EST 2025 Wed Jan 22 16:27:55 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | S2 |
| Keywords | orthodontics machine learning artificial intelligence decision support systems |
| Language | English |
| License | 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4432-2c57a34c5e9d60faee5850ada01fe1c2635a690c80cf4e32ca25e018f42ca7113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 AUTHOR CONTRIBUTIONS Najla N. Al Turkestani: Formal analysis, Investigation, Methodology, Writing original draft. Jonas Bianchi, Marcela Gurgel, Camila Massaro, Aron Aliaga Del Castillo, Karine Evangelista, Marilia Yatabe: Writing–review & editing. Romain Deleat-Besson, Celia Le, Juan Carlos Prieto, Winston Zhang, Kayvan Najarian, Jonathan Gryak, Martin Styner, Jean-Christophe Fillion-Robin, Beatriz Paniagua, Reza Soroushmehr: software engineering, Writing–review & editing. Li Tengfei: statistician, Writing – review & editing. Antonio Ruellas: Methodology, Writing–review & editing. Erika Benavides, Fabiana; radiological image interpretation, Writing–review & editing. Lucia Cevidanes: Conceptualization, Formal analysis, Investigation, Methodology, Writing–review & editing. |
| ORCID | 0000-0002-3749-0918 0000-0001-6011-7946 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ocr.12492 |
| PMID | 33973362 |
| PQID | 2618223661 |
| PQPubID | 1096360 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8988880 proquest_miscellaneous_2525651067 proquest_journals_2618223661 pubmed_primary_33973362 crossref_primary_10_1111_ocr_12492 crossref_citationtrail_10_1111_ocr_12492 wiley_primary_10_1111_ocr_12492_OCR12492 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Malden |
| PublicationTitle | Orthodontics & craniofacial research |
| PublicationTitleAlternate | Orthod Craniofac Res |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 41 2020; 20 1999; 08 2021; 11600 2020; 17 2019; 127 2019; 19 2019; 10949 2016; 149 2020; 99 2020; 10 2014; 28 2020; 8 2018; 7 2020; 3 2014; 2 2019; 20 2020; 12445 2019; 22 2020; 51 2019; 25 2019; 29 2019; 9 2019; 3 2019; 6 2011 2020; 80 2015; 11 2017; 23 2003; 35 2016; 94 2004 2020; 12474 2018; 67 2016; 16 2016; 58 2018; 25 2021; 91 2021; 16 2018; 18 2019; 10950 2020 2017; 10 2019; 89 2015; 22 2014; 37 2019; 49 2009; 9 2017 2016 2014 2018; 15 2016; 68 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 Liu H (e_1_2_8_44_1) 2011 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Tubau N (e_1_2_8_74_1) 2019; 10950 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 Reinhold J (e_1_2_8_41_1) 2019; 10949 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Ashburner J (e_1_2_8_39_1) 2004 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Al‐Jabery K (e_1_2_8_37_1) 2020 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_58_1 Henry J (e_1_2_8_23_1) 2016 Brosset S (e_1_2_8_32_1) 2021; 11600 Gudivada V (e_1_2_8_35_1) 2017; 10 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – year: 2011 – volume: 16 start-page: 482 issue: 1 year: 2021 end-page: 492 article-title: Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision‐making ‐ a systematic review publication-title: J Dent Sci – volume: 8 start-page: 15 issue: 1 year: 2020 article-title: Machine‐learning methods for computational science and engineering publication-title: Computation – volume: 9 start-page: 2037 issue: 1 year: 2019 article-title: Orthodontic treatment planning based on artificial neural networks publication-title: Sci Rep – volume: 22 start-page: 8 issue: S1 year: 2019 end-page: 13 article-title: Orthodontics in the era of big data analytics publication-title: Orthod Craniofac Res – volume: 127 start-page: 351 issue: 4 year: 2019 end-page: 360 article-title: Accuracy and reliability of mandibular digital model registration with use of the mucogingival junction as the reference publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol – volume: 37 start-page: 257 issue: 3 year: 2014 end-page: 267 article-title: Prediction of class III treatment outcomes through orthodontic data mining publication-title: Eur J Orthod – volume: 7 start-page: 148 issue: 2 year: 2018 article-title: Clinical decision support systems theory and practice publication-title: Jurnal Teknosains – volume: 17 start-page: 3636 issue: 10 year: 2020 article-title: Dental public health landscape: challenges, technological innovation and opportunities in the 21st century and COVID‐19 pandemic publication-title: Int J Environ Res Public Health – volume: 25 start-page: 1245 issue: 5 year: 2018 end-page: 1252 article-title: Impact of big data on oral health outcomes publication-title: Oral Dis – volume: 9 start-page: 73 issue: 2 year: 2009 end-page: 76 article-title: Decision support systems in dental decision making: an introduction publication-title: J Evid Based Dent Pract – volume: 149 start-page: 127 issue: 1 year: 2016 end-page: 133 article-title: New approach for the diagnosis of extractions with neural network machine learning publication-title: Am J Orthod Dentofac Orthop – volume: 41 start-page: 78 issue: 1 year: 2017 end-page: 95 article-title: Creation of data repositories to advance nursing science publication-title: West J Nurs Res – volume: 12445 start-page: 44 year: 2020 end-page: 53 article-title: 3D slicer craniomaxillofacial modules support patient‐specific decision‐making for personalized healthcare in dental research publication-title: Multimodal Learn Clin Decis Support Clin Image Based Proc (2020) – volume: 99 start-page: 769 issue: 7 year: 2020 end-page: 774 article-title: Artificial Intelligence in Dentistry: Chances and Challenges publication-title: J Dent Res – volume: 3 start-page: 17 issue: 1 year: 2020 article-title: An overview of clinical decision support systems: benefits, risks, and strategies for success publication-title: NPJ Digit Med – volume: 15 start-page: 2357 issue: 11 year: 2018 article-title: Population‐based linkage of big data in dental research publication-title: Int J Environ Res Public Health – volume: 29 start-page: 23 issue: Supplement_3 year: 2019 end-page: 27 article-title: Benefits and challenges of big data in healthcare: an overview of the european initiatives publication-title: Eur J Public Health – volume: 94 start-page: 143 year: 2016 end-page: 154 article-title: Impact of the HITECH financial incentives on EHR adoption in small. Physician‐Owned Practices publication-title: Int J Med Inform – volume: 10 start-page: 1 issue: 1 year: 2017 end-page: 20 article-title: Data quality considerations for big data and machine learning: going beyond data cleaning and transformations publication-title: Int J Advances in Software – year: 2014 – volume: 17 start-page: 2495 issue: 7 year: 2020 article-title: Big data and digitalization in dentistry: a systematic review of the ethical issues publication-title: Int J Environ Res Public Health – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 25 article-title: Big data in healthcare: management, analysis and future prospects publication-title: J Big Data – volume: 10949 start-page: 109493H year: 2019 article-title: Evaluating the impact of intensity normalization on MR image synthesis publication-title: Proc SPIE Int Soc Opt Eng – volume: 11 start-page: 1297 issue: 7 year: 2015 end-page: 1309 article-title: Accuracy of 3D cephalometric measurements based on an automatic knowledge‐based landmark detection algorithm publication-title: Int J Comput Assist Radiol Surg – volume: 16 start-page: 77 issue: S1 year: 2016 article-title: Protecting patient privacy when sharing patient‐level data from clinical trials publication-title: BMC Med Res Methodol – volume: 19 start-page: 64 issue: 1 year: 2019 article-title: Machine learning in medicine: a practical introduction publication-title: BMC Med Res Methodol – volume: 25 start-page: 1337 issue: 9 year: 2019 end-page: 1340 article-title: Do no harm: a roadmap for responsible machine learning for health care publication-title: Nat Med – volume: 22 start-page: 764 issue: 4 year: 2015 end-page: 772 article-title: Drug‐drug interaction checking assisted by clinical decision support: a return on investment analysis publication-title: J Am Med Inform Assoc – volume: 22 start-page: 1 issue: 1–2 year: 2019 end-page: 7 article-title: Health data in dentistry: an attempt to master the digital challenge publication-title: Public Health Genomics – volume: 49 start-page: 19 issue: 1 year: 2019 article-title: dental age estimation using the pulp‐to‐tooth ratio in canines by neural networks publication-title: Imaging Sci Dent – volume: 10950 start-page: 1095021 year: 2019 article-title: Shape variation analyzer: a classifier for temporomandibular joint damaged by osteoarthritis publication-title: Proc SPIE Int Soc Opt Eng – volume: 16 start-page: 508 issue: 1 year: 2021 end-page: 522 article-title: Developments, application, and performance of artificial intelligence in dentistry – a systematic review publication-title: J Dent Sci – volume: 6 start-page: 86 issue: 3 year: 2019 end-page: 90 article-title: Genetics in an Orthodontic Perspective publication-title: J Adv Clin Res Insights – volume: 2 start-page: 3 issue: 1 year: 2014 article-title: Big data analytics in healthcare: promise and potential publication-title: Health Inf Sci Syst – volume: 68 start-page: 67 year: 2016 end-page: 75 article-title: Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? A general question answered for bone age assessment publication-title: Comput Biol Med – volume: 18 start-page: 137 issue: 1 year: 2018 article-title: CDSS‐RM: a clinical decision support system reference model publication-title: BMC Med Res Methodol – volume: 9 start-page: 201 year: 2019 end-page: 205 article-title: Artificial intelligence in orthodontics publication-title: APOS Trends Orthod – volume: 08 start-page: 78 issue: 01 year: 1999 end-page: 82 article-title: Reasoning foundations of medical diagnosis revisited publication-title: Yearb Med Inform – volume: 6 start-page: 157 issue: 1 year: 2019 end-page: 163 article-title: Data‐driven decision support under concept drift in streamed big data publication-title: Complex Intell Syst – volume: 80 start-page: S43 issue: S1 year: 2020 end-page: S58 article-title: Using big data to promote precision oral health in the context of a learning healthcare system publication-title: J Public Health Dent – year: 2016 – volume: 91 start-page: 329 issue: 3 year: 2021 end-page: 335 article-title: Evaluation of automated cephalometric analysis based on the latest deep learning method publication-title: Angle Orthod – volume: 12474 start-page: 145 year: 2020 end-page: 153 article-title: Patient specific classification of dental root canal and crown shape publication-title: Shape Med Imaging – volume: 51 start-page: 675 issue: 5 year: 2020 end-page: 687 article-title: Supervised machine learning: a brief primer publication-title: Behav Ther – start-page: 655 year: 2004 end-page: 672 – volume: 67 start-page: 45 year: 2018 end-page: 54 article-title: A web‐based system for neural network based classification in temporomandibular joint osteoarthritis publication-title: Comput Med Imaging Graph – volume: 10 start-page: 8012 issue: 1 year: 2020 article-title: Osteoarthritis of the Temporomandibular Joint can be Diagnosed Earlier Using Biomarkers and Machine Learning publication-title: Sci Rep – volume: 23 start-page: 321 issue: 4 year: 2017 end-page: 335 article-title: Guidelines for assessing the growth and development of orthodontic patients publication-title: Semin Orthod – volume: 28 start-page: 6 issue: 1 year: 2014 end-page: 27 article-title: Diagnostic criteria for Temporomandibular Disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD consortium network* and orofacial pain special interest group† publication-title: J Oral Facial Pain Headache – year: 2020 – volume: 3 start-page: 6 issue: 1 year: 2019 article-title: Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting publication-title: Diagn Progn Res – volume: 11600 start-page: 116001N year: 2021 article-title: Web infrastructure for data management, storage and computation publication-title: Proc SPIE Int Soc Opt Eng – volume: 89 start-page: 903 issue: 6 year: 2019 end-page: 909 article-title: Automated identification of cephalometric landmarks: part 1—comparisons between the latest deep‐learning methods YOLOV3 and SSD publication-title: Angle Orthod – volume: 10 start-page: 17 year: 2020 end-page: 24 article-title: Applications of artificial intelligence and machine learning in orthodontics publication-title: APOS Trends Orthod – year: 2017 – volume: 20 start-page: 270 issue: 1 year: 2020 article-title: Automated cephalometric landmark detection with confidence regions using bayesian convolutional neural networks publication-title: BMC Oral Health – volume: 58 start-page: 483 issue: 4 year: 2016 end-page: 490 article-title: Correlation between oral health‐related quality of life and clinical dysfunction index in patients with temporomandibular joint osteoarthritis publication-title: J Oral Sci – volume: 20 start-page: 41 issue: 1 year: 2019 article-title: Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics publication-title: Prog Orthod – volume: 35 start-page: 103 issue: 1 year: 2003 end-page: 112 article-title: Integrating web‐based data mining tools with business models for knowledge management publication-title: Decis Support Syst – ident: e_1_2_8_31_1 doi: 10.1016/j.compmedimag.2018.04.009 – ident: e_1_2_8_5_1 doi: 10.1093/eurpub/ckz168 – ident: e_1_2_8_42_1 doi: 10.1007/978-3-030-60946-7_5 – ident: e_1_2_8_63_1 doi: 10.1109/eScience.2017.12 – ident: e_1_2_8_17_1 doi: 10.1186/2047-2501-2-3 – ident: e_1_2_8_18_1 doi: 10.1111/odi.13007 – ident: e_1_2_8_66_1 doi: 10.1038/s41591-019-0548-6 – ident: e_1_2_8_70_1 doi: 10.1016/j.jds.2020.06.019 – ident: e_1_2_8_7_1 doi: 10.1109/BigData.2014.7004307 – ident: e_1_2_8_16_1 doi: 10.1159/000501643 – ident: e_1_2_8_59_1 doi: 10.1007/s11548-015-1334-7 – ident: e_1_2_8_6_1 doi: 10.3390/computation8010015 – ident: e_1_2_8_30_1 doi: 10.1186/s12874-016-0169-4 – ident: e_1_2_8_8_1 doi: 10.1016/j.jebdp.2009.03.003 – ident: e_1_2_8_45_1 doi: 10.1038/s41598-020-64942-0 – ident: e_1_2_8_15_1 doi: 10.1186/s12874-018-0587-6 – ident: e_1_2_8_36_1 doi: 10.1109/NaBIC.2014.6921892 – ident: e_1_2_8_62_1 doi: 10.1186/s40510-019-0295-8 – ident: e_1_2_8_58_1 doi: 10.1186/s12903-020-01256-7 – ident: e_1_2_8_4_1 doi: 10.1186/s40537-019-0217-0 – volume-title: Computational Learning Approaches to Data Analytics in Biomedical Applications year: 2020 ident: e_1_2_8_37_1 – ident: e_1_2_8_53_1 doi: 10.5624/isd.2019.49.1.19 – ident: e_1_2_8_3_1 doi: 10.1111/jphd.12354 – ident: e_1_2_8_64_1 – ident: e_1_2_8_29_1 – ident: e_1_2_8_26_1 doi: 10.1186/s41512-019-0046-9 – start-page: 655 volume-title: Human Brain Function year: 2004 ident: e_1_2_8_39_1 – ident: e_1_2_8_2_1 doi: 10.3390/ijerph17103636 – ident: e_1_2_8_20_1 doi: 10.3390/ijerph15112357 – volume-title: Adoption of Electronic Health Record Systems Among U.S. Non‐Federal Acute Care Hospitals: 2008–2015 year: 2016 ident: e_1_2_8_23_1 – ident: e_1_2_8_34_1 – ident: e_1_2_8_33_1 doi: 10.1177/0022034520915714 – ident: e_1_2_8_11_1 doi: 10.1016/j.jds.2020.05.022 – ident: e_1_2_8_19_1 doi: 10.1007/s40747-019-00124-4 – ident: e_1_2_8_65_1 doi: 10.15713/ins.jcri.267 – ident: e_1_2_8_73_1 doi: 10.1109/EMBC44109.2020.9175692 – ident: e_1_2_8_54_1 doi: 10.1186/s12874-019-0681-4 – ident: e_1_2_8_75_1 doi: 10.1007/978-3-030-61056-2_12 – ident: e_1_2_8_51_1 – ident: e_1_2_8_61_1 doi: 10.1016/j.compbiomed.2015.11.006 – ident: e_1_2_8_46_1 doi: 10.2319/021220-100.1 – ident: e_1_2_8_49_1 doi: 10.1007/978-3-030-22475-2_1 – ident: e_1_2_8_72_1 doi: 10.11607/jop.1151 – ident: e_1_2_8_43_1 – ident: e_1_2_8_25_1 – volume: 10 start-page: 1 issue: 1 year: 2017 ident: e_1_2_8_35_1 article-title: Data quality considerations for big data and machine learning: going beyond data cleaning and transformations publication-title: Int J Advances in Software – ident: e_1_2_8_27_1 doi: 10.1177/0193945917749481 – ident: e_1_2_8_50_1 doi: 10.1093/ejo/cju038 – ident: e_1_2_8_47_1 – ident: e_1_2_8_71_1 doi: 10.2334/josnusd.16-0224 – ident: e_1_2_8_21_1 – volume: 10949 start-page: 109493H year: 2019 ident: e_1_2_8_41_1 article-title: Evaluating the impact of intensity normalization on MR image synthesis publication-title: Proc SPIE Int Soc Opt Eng – ident: e_1_2_8_40_1 doi: 10.1016/j.oooo.2018.10.003 – ident: e_1_2_8_9_1 doi: 10.1055/s-0038-1637913 – ident: e_1_2_8_24_1 – volume: 10950 start-page: 1095021 year: 2019 ident: e_1_2_8_74_1 article-title: Shape variation analyzer: a classifier for temporomandibular joint damaged by osteoarthritis publication-title: Proc SPIE Int Soc Opt Eng – volume: 11600 start-page: 116001N year: 2021 ident: e_1_2_8_32_1 article-title: Web infrastructure for data management, storage and computation publication-title: Proc SPIE Int Soc Opt Eng – ident: e_1_2_8_56_1 doi: 10.2319/022019-127.1 – ident: e_1_2_8_60_1 doi: 10.1053/j.sodo.2017.07.001 – ident: e_1_2_8_28_1 doi: 10.3390/ijerph17072495 – ident: e_1_2_8_38_1 – ident: e_1_2_8_67_1 doi: 10.1038/s41598-018-38439-w – ident: e_1_2_8_12_1 doi: 10.22146/teknosains.38641 – ident: e_1_2_8_55_1 doi: 10.1016/j.beth.2020.05.002 – ident: e_1_2_8_69_1 doi: 10.1016/S0167-9236(02)00098-2 – ident: e_1_2_8_14_1 doi: 10.1038/s41746-020-0221-y – ident: e_1_2_8_48_1 doi: 10.1111/ocr.12279 – ident: e_1_2_8_13_1 doi: 10.1093/jamia/ocu010 – ident: e_1_2_8_57_1 doi: 10.25259/APOS_123_2019 – volume-title: Encyclopedia of Machine Learning year: 2011 ident: e_1_2_8_44_1 – ident: e_1_2_8_68_1 – ident: e_1_2_8_22_1 doi: 10.1016/j.ijmedinf.2016.06.017 – ident: e_1_2_8_10_1 doi: 10.25259/APOS_117_2019 – ident: e_1_2_8_52_1 doi: 10.1016/j.ajodo.2015.07.030 |
| SSID | ssj0020226 |
| Score | 2.39467 |
| SecondaryResourceType | review_article |
| Snippet | Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination,... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 26 |
| SubjectTerms | Artificial Intelligence Data collection Data processing Data Science Data storage Decision support systems Decision Support Systems, Clinical Health care Learning algorithms Machine Learning Medical equipment Orthodontics Temporomandibular joint Well being |
| Title | Clinical decision support systems in orthodontics: A narrative review of data science approaches |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Focr.12492 https://www.ncbi.nlm.nih.gov/pubmed/33973362 https://www.proquest.com/docview/2618223661 https://www.proquest.com/docview/2525651067 https://pubmed.ncbi.nlm.nih.gov/PMC8988880 |
| Volume | 24 |
| WOSCitedRecordID | wos000653135800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1601-6343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020226 issn: 1601-6335 databaseCode: DRFUL dateStart: 20020101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1t2UrtBWgpNHzJVD1wSeXEziaBEwJWHCpACKS9pbbjiJVQFm26_f3MOE7EiiIhkVMkT5QPezzvxeM3AD-F1rHRkoca4UgoS2NDHWcmLLWJlbQjOyqVKzaRXl5mk0l-PYDjbi9Mqw_R_3Ajz3DzNTm40s0zJ5-Z-S-qnIzz75A2VSHzGp7djO9-93wLw5PbXIScIxwJkXhhIUrk6S9eDkcvMObLVMnnENbFoPHau55-HVY99GQn7Vj5AgNbf4VPZ5QuRBXfNuCPFwl9YKWvvMOaxSMBdNYKPjdsWjNa6EEuW5O-8xE7YbWat-rhrN0Gw2YVo7xT5oMr62TLbfMN7sbnt6cXoa_AEBopRRzGJkmVkCaxeTnilbIW2QVXpeJRZSNDQjYK6bXJuKmkFbFRcWJ5lFUST9MoEpuwUs9q-x1Ywk1uo7LiiUFKKlMk5TnXmlJyEAPyMoDDriMK4-XJqUrGQ9HRFPxkhftkAfzoTR9bTY7_Ge12vVl4t2wKpIsIiARikgAO-mZ0KFolUbWdLdAmQRSYkLJeAFtt5_d3EYjeBIb8ANKlYdEbkFj3cks9vXei3Vme4cHxNd2weP3Bi6vTG3ey_XbTHfgcU66NS7PZhZW_84Xdg4_mHw6g-T58SCfZvveOJ1DOFFs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB7kFPTFqq0ae9W1-OBLyia7-VV8OdRD8bwWUfAt3Ww2KEhO7jz__s5sNsHDFgrN00Im5Mfu7HzfZvYbgCNRFKEuJPcLhCO-LLXxizDVflnoUEkTm7hUtthEMh6n9_fZzyU4affCNPoQ3YIbeYadr8nBaUH6jZdP9PQblU7GCXhZxiJJe7B8djO8G3WEC-OT3V2EpMOPhYicshBl8nQXL8ajdyDzfa7kWwxrg9Dww_89_gasO_DJBs1o2YQlU2_B6hklDFHNt4_wy8mEPrHS1d5hs_kzQXTWSD7P2GPN6FcPstmaFJ6_swGr1bTRD2fNRhg2qRhlnjIXXlkrXG5mn-BueH57euG7Ggy-llKEfqijRAmpI5OVMa-UMcgvuCoVDyoTaJKyUUiwdcp1JY0ItQojw4O0kthMgkBsQ6-e1GYXWMR1ZoKy4pFGUioTpOUZLwpKykEUyEsPjtueyLUTKKc6GU95S1Twk-X2k3nwtTN9blQ5_mTUb7szd445y5EwIiQSiEo8OOxOo0vRfxJVm8kcbSLEgRFp63mw0_R-dxeB-E1g0PcgWRgXnQHJdS-eqR8frGx3mqV4cHxNOy7-_uD5j9Mb29j7d9MDWL24vR7lo8vx1WdYCynzxibd9KH3Mp2bL7CiX3EwTfedk_wGR9sXYw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2hpWp7KaVfBCi4VQ-9BDmxvUkQF8SyagVaECoSt9SxHRUJZVe7bH8_M44TsaKVKjWnSJ4oH_Z43ovHbwC-iKpKTSV5XCEciaU1Lq7S3MS2MqmWbuiGVvtiE9lkkt_cFJdrcNTthWn1IfofbuQZfr4mB3czWz_y8qmZH1DpZJyA16UqlBzA-uhqfH3eEy6MT353EZKOeCiECspClMnTX7waj56AzKe5ko8xrA9C443_e_zX8CqAT3bcjpZNWHPNG3gxooQhqvn2Fn4GmdA7ZkPtHbZYzgiis1byecFuG0ZLPchmG1J4PmTHrNHzVj-ctRth2LRmlHnKQnhlnXC5W7yD6_Hpj5NvcajBEBspRRqnRmVaSKNcYYe81s4hv-Daap7ULjEkZaORYJucm1o6kRqdKseTvJZ4miWJeA-DZtq4LWCKm8IltubKICmVGdLyglcVJeUgCuQ2gq9dT5QmCJRTnYy7siMq-MlK_8ki-NybzlpVjj8Z7XbdWQbHXJRIGBESCUQlEXzqm9GlaJ1EN266RBuFOFCRtl4EH9re7-8iEL8JDPoRZCvjojcgue7Vlub2l5ftzoscD46v6cfF3x-8vDi58ifb_266D88vR-Py_PvkbAdeppR443NudmFwP1-6j_DM_MaxNN8LPvIAs0UW3g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+decision+support+systems+in+orthodontics%3A+A+narrative+review+of+data+science+approaches&rft.jtitle=Orthodontics+%26+craniofacial+research&rft.au=Al+Turkestani%2C+Najla&rft.au=Bianchi%2C+Jonas&rft.au=Deleat-Besson%2C+Romain&rft.au=Le%2C+Celia&rft.date=2021-12-01&rft.issn=1601-6335&rft.eissn=1601-6343&rft.volume=24&rft.issue=Suppl+2&rft.spage=26&rft.epage=36&rft_id=info:doi/10.1111%2Focr.12492&rft_id=info%3Apmid%2F33973362&rft.externalDocID=PMC8988880 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1601-6335&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1601-6335&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1601-6335&client=summon |