Evaluation of the spatial variability in the major resting‐state networks across human brain functional atlases
The human brain is intrinsically organized into resting‐state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative c...
Uložené v:
| Vydané v: | Human brain mapping Ročník 40; číslo 15; s. 4577 - 4587 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
15.10.2019
|
| Predmet: | |
| ISSN: | 1065-9471, 1097-0193, 1097-0193 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The human brain is intrinsically organized into resting‐state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel‐wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting‐state Networks, based on the most reliable atlases. |
|---|---|
| AbstractList | The human brain is intrinsically organized into resting‐state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (
n
= 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel‐wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting‐state Networks, based on the most reliable atlases. The human brain is intrinsically organized into resting-state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel-wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting-state Networks, based on the most reliable atlases.The human brain is intrinsically organized into resting-state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel-wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting-state Networks, based on the most reliable atlases. The human brain is intrinsically organized into resting-state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel-wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting-state Networks, based on the most reliable atlases. |
| Author | Lee, Won Hee Doucet, Gaelle E. Frangou, Sophia |
| AuthorAffiliation | 1 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York |
| AuthorAffiliation_xml | – name: 1 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York |
| Author_xml | – sequence: 1 givenname: Gaelle E. orcidid: 0000-0003-4120-0474 surname: Doucet fullname: Doucet, Gaelle E. email: gaelle.doucet@mssm.edu organization: Icahn School of Medicine at Mount Sinai – sequence: 2 givenname: Won Hee surname: Lee fullname: Lee, Won Hee organization: Icahn School of Medicine at Mount Sinai – sequence: 3 givenname: Sophia surname: Frangou fullname: Frangou, Sophia organization: Icahn School of Medicine at Mount Sinai |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31322303$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1uFDEQhS0URH5gwQWQJTaw6MQ_bXtmgwRRIJESsYG1Vd3tznhw2xPbPdHsOAJn5CS4Z5KIRIKV7aqvnur5HaI9H7xB6DUlx5QQdrJohmNWK8aeoQNK5qoidM73prsU1bxWdB8dprQkhFJB6Au0zylnjBN-gG7O1uBGyDZ4HHqcFwanVXmCw2uIFhrrbN5g67etAZYh4mhStv76989fKUM22Jt8G-KPhKGNISW8GAfwuIlQpvrRt5N40YPsIJn0Ej3vwSXz6u48Qt8_n307Pa8uv365OP14WbV1zVlFCTMCRGtEr4QhhNOeCNOwWT9jvFSlaLpedUaSRlApOHQN7WQtCmzmUjF-hD7sdFdjM5iuNT5HcHoV7QBxowNY_bjj7UJfh7WWStGZ4kXg3Z1ADDdj8awHm1rjHHgTxqQZk5QppgQp6Nsn6DKMsZieqFldM1nLiXrz90YPq9ynUYD3O2D7j9H0Dwglekpal6T1NunCnjxhW5u3ORYz1v1v4tY6s_m3tD7_dLWb-AO8uryF |
| CitedBy_id | crossref_primary_10_3390_brainsci11010118 crossref_primary_10_1111_ejn_15958 crossref_primary_10_1002_hbm_26400 crossref_primary_10_1016_j_compbiomed_2024_108862 crossref_primary_10_1038_s41467_024_55242_6 crossref_primary_10_1093_scan_nsae018 crossref_primary_10_3390_biology11091320 crossref_primary_10_1162_imag_a_00127 crossref_primary_10_1016_j_neubiorev_2025_106165 crossref_primary_10_1038_s41598_025_10432_0 crossref_primary_10_1089_brain_2022_0038 crossref_primary_10_1002_brb3_2790 crossref_primary_10_1016_j_neuroimage_2022_119672 crossref_primary_10_1093_alcalc_agac028 crossref_primary_10_1002_aur_2846 crossref_primary_10_1007_s10548_019_00744_6 crossref_primary_10_1016_j_neuroimage_2023_120243 crossref_primary_10_1155_2022_6962359 crossref_primary_10_1038_s41467_023_39131_y crossref_primary_10_1055_a_1690_0497 crossref_primary_10_1016_j_neuroimage_2022_119714 crossref_primary_10_1503_jpn_220075 crossref_primary_10_1007_s00259_025_07100_w crossref_primary_10_1038_s41380_024_02682_7 crossref_primary_10_1038_s41598_020_60406_7 crossref_primary_10_1016_j_nicl_2025_103767 crossref_primary_10_1016_j_nicl_2023_103530 crossref_primary_10_1007_s12021_021_09514_x crossref_primary_10_1111_ejn_15161 crossref_primary_10_1016_j_biopsych_2023_11_013 crossref_primary_10_1016_j_bandc_2024_106156 crossref_primary_10_1093_cercor_bhac349 crossref_primary_10_1016_j_chb_2024_108258 crossref_primary_10_1002_hbm_70063 crossref_primary_10_1093_cercor_bhaa321 crossref_primary_10_1016_j_dcn_2023_101216 crossref_primary_10_1002_hbm_25330 crossref_primary_10_1007_s00429_022_02467_0 crossref_primary_10_1002_hbm_25411 crossref_primary_10_1016_j_neuroscience_2021_11_004 crossref_primary_10_1109_TCDS_2024_3462709 crossref_primary_10_1038_s41598_020_61440_1 crossref_primary_10_1192_j_eurpsy_2022_21 crossref_primary_10_1016_j_bandc_2023_105975 crossref_primary_10_1016_j_biopsych_2020_05_033 crossref_primary_10_1016_j_jad_2023_08_020 crossref_primary_10_1016_j_scib_2025_05_042 crossref_primary_10_1016_j_neubiorev_2021_12_012 crossref_primary_10_3389_fnimg_2024_1339244 crossref_primary_10_3390_brainsci11081065 crossref_primary_10_1038_s41467_025_58176_9 crossref_primary_10_1016_j_dcn_2025_101523 crossref_primary_10_1111_psyp_14716 crossref_primary_10_3389_fnhum_2022_1067968 crossref_primary_10_1093_scan_nsab075 crossref_primary_10_1093_scan_nsaf037 crossref_primary_10_1111_psyp_14237 crossref_primary_10_3389_fpsyt_2024_1341908 crossref_primary_10_1002_hbm_26096 crossref_primary_10_1038_s41598_020_80346_6 crossref_primary_10_1113_JP286074 crossref_primary_10_1089_brain_2020_0791 crossref_primary_10_1192_j_eurpsy_2020_57 crossref_primary_10_1016_j_jneumeth_2025_110445 crossref_primary_10_1002_hbm_70206 crossref_primary_10_1016_j_jad_2020_06_041 crossref_primary_10_1089_brain_2020_0950 crossref_primary_10_1002_hbm_26409 crossref_primary_10_1038_s42003_025_08509_7 |
| Cites_doi | 10.1016/j.neuron.2017.06.038 10.3758/s13415-011-0083-5 10.1016/j.neuron.2011.09.006 10.1016/j.neuroimage.2013.10.046 10.1109/TMI.2003.822821 10.1016/j.neuroimage.2011.11.059 10.1038/nm.4246 10.1093/cercor/bhx008 10.1093/cercor/bhr099 10.1016/j.neuroimage.2018.10.006 10.1073/pnas.0905267106 10.1038/nn.4361 10.1016/j.dcn.2018.03.001 10.1073/pnas.0601417103 10.1073/pnas.1502829112 10.1152/jn.00895.2010 10.1137/080734315 10.1016/j.neuron.2017.07.011 10.3389/fnagi.2017.00385 10.1002/hbm.20813 10.1073/pnas.98.2.676 10.1016/j.neuron.2012.12.028 10.2307/1932409 10.1523/JNEUROSCI.5587-06.2007 10.1073/pnas.1018985108 10.1016/j.neuroimage.2014.11.028 10.1016/j.biopsych.2010.11.009 10.1016/j.schres.2018.04.029 10.1038/nrn.2016.167 10.1152/jn.00338.2011 10.1038/s41380-018-0269-0 10.1038/s42003-018-0073-z 10.1093/cercor/bhv190 10.1073/pnas.0504136102 10.1073/pnas.0900234106 10.1016/j.neuroimage.2005.11.002 10.1016/S0361-9230(00)00437-8 10.1093/schbul/sbx034 10.1101/cshperspect.a021816 10.1007/s00429-010-0262-0 10.1196/annals.1440.011 10.1016/j.neuroimage.2013.04.127 10.1093/cercor/7.1.18 10.1002/mrm.1910340409 10.1093/cercor/bhu239 10.1038/mp.2017.247 10.1371/journal.pone.0068910 10.1016/j.neuron.2015.09.020 10.1089/brain.2012.0134 10.1016/j.brainres.2018.04.035 10.1089/brain.2014.0327 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. 2019 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. – notice: 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. – notice: 2019 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| DOI | 10.1002/hbm.24722 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Technology Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Doucet et al |
| EISSN | 1097-0193 |
| EndPage | 4587 |
| ExternalDocumentID | PMC6771873 31322303 10_1002_hbm_24722 HBM24722 |
| Genre | article Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of Mental Health funderid: R01‐MH116147; R01‐MH104284 – fundername: Icahn School of Medicine at Mount Sinai – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIMH NIH HHS grantid: R01-MH116147 – fundername: NIMH NIH HHS grantid: R01 MH104284 – fundername: NIMH NIH HHS grantid: R01-MH104284 – fundername: NIH HHS grantid: S10 OD018522 – fundername: NIMH NIH HHS grantid: R01 MH116147 – fundername: ; – fundername: ; grantid: R01‐MH116147; R01‐MH104284 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION O8X WXSBR CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4432-102e5a5ce5f75e0031f05eb28f823ce565bdf7de60b51653adb1d64575ee96723 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478475800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Tue Sep 30 16:23:32 EDT 2025 Thu Oct 02 06:23:15 EDT 2025 Sat Nov 29 14:42:16 EST 2025 Mon Jul 21 05:52:53 EDT 2025 Tue Nov 18 20:47:48 EST 2025 Sat Nov 29 02:24:42 EST 2025 Wed Jan 22 16:38:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | brain functional atlases functional connectivity consensual atlas resting-state networks spatial variability |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4432-102e5a5ce5f75e0031f05eb28f823ce565bdf7de60b51653adb1d64575ee96723 |
| Notes | Funding information National Institute of Mental Health, Grant/Award Numbers: R01‐MH116147, R01‐MH104284; Icahn School of Medicine at Mount Sinai ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Funding information National Institute of Mental Health, Grant/Award Numbers: R01‐MH116147, R01‐MH104284; Icahn School of Medicine at Mount Sinai The copyright line for this article was changed on 7 September 2019 after original online publication. |
| ORCID | 0000-0003-4120-0474 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24722 |
| PMID | 31322303 |
| PQID | 2284426460 |
| PQPubID | 996345 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771873 proquest_miscellaneous_2261272750 proquest_journals_2284426460 pubmed_primary_31322303 crossref_primary_10_1002_hbm_24722 crossref_citationtrail_10_1002_hbm_24722 wiley_primary_10_1002_hbm_24722_HBM24722 |
| PublicationCentury | 2000 |
| PublicationDate | October 15, 2019 |
| PublicationDateYYYYMMDD | 2019-10-15 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 15, 2019 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2013; 3 2006; 30 2018; 201 1995; 34 2004; 23 2011; 53 2015; 106 2012; 59 2018; 44 2013; 8 2012; 12 2017; 9 1997; 7 2008; 1124 2018; 1 2005; 102 2015; 88 2011; 72 2011; 69 2018; 32 2012; 22 2001; 54 2001; 98 2007; 27 2018; 28 2018; 1692 2015; 5 2016; 19 2017; 23 2018; 23 2019; 185 2015; 8 2014; 88 2017; 95 2011; 105 2009; 30 2011; 108 2011; 106 2013; 77 1945; 26 2015; 112 2010; 214 2013; 80 2018 2017; 18 2016; 26 2016; 8 2006; 103 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Nyberg L. (e_1_2_8_36_1) 2015; 8 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 Siman‐Tov T. (e_1_2_8_45_1) 2016; 8 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 88 start-page: 212 year: 2014 end-page: 227 article-title: Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex publication-title: NeuroImage – volume: 27 start-page: 2349 year: 2007 end-page: 2356 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: The Journal of Neuroscience – volume: 106 start-page: 1125 year: 2011 end-page: 1165 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: Journal of Neurophysiology – volume: 77 start-page: 586 year: 2013 end-page: 595 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron – volume: 12 start-page: 241 year: 2012 end-page: 268 article-title: Meta‐analytic evidence for a superordinate cognitive control network subserving diverse executive functions publication-title: Cognitive, Affective, & Behavioral Neuroscience – volume: 106 start-page: 13040 year: 2009 end-page: 13045 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 26 start-page: 297 year: 1945 end-page: 302 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 108 start-page: 7641 year: 2011 end-page: 7646 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 1124 start-page: 1 year: 2008 end-page: 38 article-title: The brain's default network: Anatomy, function, and relevance to disease publication-title: Annals of the New York Academy of Sciences – volume: 3 start-page: 363 year: 2013 end-page: 374 article-title: Impact of analysis methods on the reproducibility and reliability of resting‐state networks publication-title: Brain Connectivity – volume: 26 start-page: 288 year: 2016 end-page: 303 article-title: Generation and evaluation of a cortical area parcellation from resting‐state correlations publication-title: Cerebral Cortex – volume: 53 start-page: 526 year: 2011 end-page: 543 article-title: Comparing community structure to characteristics in online collegiate social networks publication-title: SIAM Review – volume: 5 start-page: 505 year: 2015 end-page: 516 article-title: Functional connectivity in multiple cortical networks is associated with performance across cognitive domains in older adults publication-title: Brain Connectivity – volume: 23 start-page: 137 year: 2004 end-page: 152 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Transactions on Medical Imaging – volume: 28 start-page: 988 year: 2018 end-page: 997 article-title: Elevated body mass index is associated with increased integration and reduced cohesion of sensory‐driven and internally guided resting‐state functional brain networks publication-title: Cerebral Cortex – volume: 19 start-page: 1175 year: 2016 end-page: 1187 article-title: The Human Connectome Project's neuroimaging approach publication-title: Nature Neuroscience – volume: 54 start-page: 287 year: 2001 end-page: 298 article-title: Cortical networks for working memory and executive functions sustain the conscious resting state in man publication-title: Brain Research Bulletin – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magnetic Resonance in Medicine – volume: 59 start-page: 3194 year: 2012 end-page: 3200 article-title: Patterns of hemodynamic low‐frequency oscillations in the brain are modulated by the nature of free thought during rest publication-title: NeuroImage – volume: 23 start-page: 28 year: 2017 end-page: 38 article-title: Resting‐state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nature Medicine – year: 2018 article-title: Baseline brain structural and functional predictors of clinical outcome in the early course of schizophrenia publication-title: Molecular Psychiatry – volume: 88 start-page: 33 year: 2015 end-page: 46 article-title: Neurocognitive architecture of working memory publication-title: Neuron – volume: 95 start-page: 791 year: 2017 end-page: 807 article-title: Precision functional mapping of individual human brains publication-title: Neuron – volume: 72 start-page: 665 year: 2011 end-page: 678 article-title: Functional network organization of the human brain publication-title: Neuron – volume: 106 start-page: 111 year: 2015 end-page: 122 article-title: Functional connectivity in BOLD and CBF data: Similarity and reliability of resting brain networks publication-title: NeuroImage – volume: 26 start-page: 3851 year: 2016 end-page: 3865 article-title: Aging effects on whole‐brain functional connectivity in adults free of cognitive and psychiatric disorders publication-title: Cerebral Cortex – volume: 44 start-page: 168 year: 2018 end-page: 181 article-title: Dysfunction of large‐scale brain networks in schizophrenia: A meta‐analysis of resting‐state functional connectivity publication-title: Schizophrenia Bulletin – volume: 105 start-page: 2753 year: 2011 end-page: 2763 article-title: Brain activity at rest: A multiscale hierarchical functional organization publication-title: Journal of Neurophysiology – volume: 214 start-page: 655 year: 2010 end-page: 667 article-title: Saliency, switching, attention and control: A network model of insula function publication-title: Brain Structure & Function – volume: 8 start-page: a021816 year: 2015 article-title: Working memory: Maintenance, updating, and the realization of intentions publication-title: Cold Spring Harbor Perspectives in Biology – volume: 201 start-page: 208 year: 2018 end-page: 216 article-title: Resting‐state network connectivity and metastability predict clinical symptoms in schizophrenia publication-title: Schizophrenia Research – volume: 18 start-page: 115 year: 2017 end-page: 126 article-title: Scanning the horizon: Towards transparent and reproducible neuroimaging research publication-title: Nature Reviews. Neuroscience – volume: 30 start-page: 1414 year: 2006 end-page: 1432 article-title: Meta‐analyzing left hemisphere language areas: Phonology, semantics, and sentence processing publication-title: NeuroImage – volume: 112 start-page: 13681 year: 2015 end-page: 13686 article-title: Emergence of system roles in normative neurodevelopment publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 98 start-page: 676 year: 2001 end-page: 682 article-title: A default mode of brain function publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 103 start-page: 13848 year: 2006 end-page: 13853 article-title: Consistent resting‐state networks across healthy subjects publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 start-page: 18 year: 1997 end-page: 30 article-title: Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus publication-title: Cerebral Cortex – volume: 95 start-page: 457 year: 2017 end-page: 471 article-title: Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity publication-title: Neuron – volume: 102 start-page: 9673 year: 2005 end-page: 9678 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 1692 start-page: 66 year: 2018 end-page: 73 article-title: The salience network and human personality: Integrity of white matter tracts within anterior and posterior salience network relates to the self‐directedness character trait publication-title: Brain Research – volume: 1 start-page: 62 year: 2018 article-title: Small sample sizes reduce the replicability of task‐based fMRI studies publication-title: Communications Biology – volume: 32 start-page: 43 year: 2018 end-page: 54 article-title: The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites publication-title: Developmental Cognitive Neuroscience – volume: 185 start-page: 35 year: 2019 end-page: 57 article-title: Mapping the human brain's cortical‐subcortical functional network organization publication-title: Neuroimage – volume: 8 start-page: 330 year: 2016 article-title: Early age‐related functional connectivity decline in high‐order cognitive networks publication-title: Frontiers in Aging Neuroscience – volume: 8 year: 2013 article-title: BrainNet viewer: A network visualization tool for human brain connectomics publication-title: PLoS One – volume: 30 start-page: 3865 year: 2009 end-page: 3886 article-title: Functional segmentation of the brain cortex using high model order group PICA publication-title: Human Brain Mapping – volume: 23 start-page: 1974 issue: 10 year: 2018 end-page: 1980 article-title: An integrated brain‐behavior model for working memory publication-title: Molecular Psychiatry – volume: 9 start-page: 385 year: 2017 article-title: Linking inter‐individual variability in functional brain connectivity to cognitive ability in elderly individuals publication-title: Frontiers in Aging Neuroscience – volume: 106 start-page: 8719 year: 2009 end-page: 8724 article-title: Experience sampling during fMRI reveals default network and executive system contributions to mind wandering publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 80 start-page: 105 year: 2013 end-page: 124 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage – volume: 22 start-page: 158 year: 2012 end-page: 165 article-title: Decoding subject‐driven cognitive states with whole‐brain connectivity patterns publication-title: Cerebral Cortex – volume: 69 start-page: 967 year: 2011 end-page: 973 article-title: Brain network connectivity in individuals with schizophrenia and their siblings publication-title: Biological Psychiatry – ident: e_1_2_8_5_1 doi: 10.1016/j.neuron.2017.06.038 – ident: e_1_2_8_35_1 doi: 10.3758/s13415-011-0083-5 – ident: e_1_2_8_38_1 doi: 10.1016/j.neuron.2011.09.006 – ident: e_1_2_8_52_1 doi: 10.1016/j.neuroimage.2013.10.046 – ident: e_1_2_8_3_1 doi: 10.1109/TMI.2003.822821 – ident: e_1_2_8_13_1 doi: 10.1016/j.neuroimage.2011.11.059 – ident: e_1_2_8_16_1 doi: 10.1038/nm.4246 – ident: e_1_2_8_15_1 doi: 10.1093/cercor/bhx008 – ident: e_1_2_8_44_1 doi: 10.1093/cercor/bhr099 – ident: e_1_2_8_27_1 doi: 10.1016/j.neuroimage.2018.10.006 – ident: e_1_2_8_46_1 doi: 10.1073/pnas.0905267106 – ident: e_1_2_8_21_1 doi: 10.1038/nn.4361 – ident: e_1_2_8_7_1 doi: 10.1016/j.dcn.2018.03.001 – ident: e_1_2_8_9_1 doi: 10.1073/pnas.0601417103 – ident: e_1_2_8_25_1 doi: 10.1073/pnas.1502829112 – ident: e_1_2_8_12_1 doi: 10.1152/jn.00895.2010 – ident: e_1_2_8_47_1 doi: 10.1137/080734315 – ident: e_1_2_8_24_1 doi: 10.1016/j.neuron.2017.07.011 – ident: e_1_2_8_30_1 doi: 10.3389/fnagi.2017.00385 – ident: e_1_2_8_28_1 doi: 10.1002/hbm.20813 – ident: e_1_2_8_40_1 doi: 10.1073/pnas.98.2.676 – ident: e_1_2_8_34_1 doi: 10.1016/j.neuron.2012.12.028 – ident: e_1_2_8_10_1 doi: 10.2307/1932409 – ident: e_1_2_8_42_1 doi: 10.1523/JNEUROSCI.5587-06.2007 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.1018985108 – ident: e_1_2_8_26_1 doi: 10.1016/j.neuroimage.2014.11.028 – ident: e_1_2_8_41_1 doi: 10.1016/j.biopsych.2010.11.009 – ident: e_1_2_8_29_1 doi: 10.1016/j.schres.2018.04.029 – ident: e_1_2_8_37_1 doi: 10.1038/nrn.2016.167 – ident: e_1_2_8_53_1 doi: 10.1152/jn.00338.2011 – ident: e_1_2_8_14_1 doi: 10.1038/s41380-018-0269-0 – ident: e_1_2_8_48_1 doi: 10.1038/s42003-018-0073-z – ident: e_1_2_8_18_1 doi: 10.1093/cercor/bhv190 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.0504136102 – ident: e_1_2_8_8_1 doi: 10.1073/pnas.0900234106 – ident: e_1_2_8_49_1 doi: 10.1016/j.neuroimage.2005.11.002 – volume: 8 start-page: 330 year: 2016 ident: e_1_2_8_45_1 article-title: Early age‐related functional connectivity decline in high‐order cognitive networks publication-title: Frontiers in Aging Neuroscience – ident: e_1_2_8_31_1 doi: 10.1016/S0361-9230(00)00437-8 – ident: e_1_2_8_11_1 doi: 10.1093/schbul/sbx034 – volume: 8 start-page: a021816 year: 2015 ident: e_1_2_8_36_1 article-title: Working memory: Maintenance, updating, and the realization of intentions publication-title: Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a021816 – ident: e_1_2_8_32_1 doi: 10.1007/s00429-010-0262-0 – ident: e_1_2_8_6_1 doi: 10.1196/annals.1440.011 – ident: e_1_2_8_22_1 doi: 10.1016/j.neuroimage.2013.04.127 – ident: e_1_2_8_50_1 doi: 10.1093/cercor/7.1.18 – ident: e_1_2_8_4_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_8_23_1 doi: 10.1093/cercor/bhu239 – ident: e_1_2_8_33_1 doi: 10.1038/mp.2017.247 – ident: e_1_2_8_51_1 doi: 10.1371/journal.pone.0068910 – ident: e_1_2_8_17_1 doi: 10.1016/j.neuron.2015.09.020 – ident: e_1_2_8_20_1 doi: 10.1089/brain.2012.0134 – ident: e_1_2_8_39_1 doi: 10.1016/j.brainres.2018.04.035 – ident: e_1_2_8_43_1 doi: 10.1089/brain.2014.0327 |
| SSID | ssj0011501 |
| Score | 2.5628302 |
| Snippet | The human brain is intrinsically organized into resting‐state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial... The human brain is intrinsically organized into resting-state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4577 |
| SubjectTerms | Adolescent Adult Anatomy, Artistic Atlases as Topic Brain brain functional atlases Connectome consensual atlas Cortex (parietal) Executive Function Female functional connectivity Humans Magnetic Resonance Imaging Male Middle Aged Nerve Net - anatomy & histology Nerve Net - physiology Networks Neural networks Reproducibility of Results resting‐state networks Sensorimotor system spatial variability Variability Young Adult |
| Title | Evaluation of the spatial variability in the major resting‐state networks across human brain functional atlases |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24722 https://www.ncbi.nlm.nih.gov/pubmed/31322303 https://www.proquest.com/docview/2284426460 https://www.proquest.com/docview/2261272750 https://pubmed.ncbi.nlm.nih.gov/PMC6771873 |
| Volume | 40 |
| WOSCitedRecordID | wos000478475800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley-Blackwell Open Access Backfiles customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VglAvFFoeSwsyCKFe0iZ2HMfiVFCrItFVDzz2FtmJrS5is2WzrdQbP4Hf2F_SGScbWBUkJC5RFI_jyJnxfOPHNwCvSiMselWByM0qOpKTR1ZaG3HtU6Wt0z6kb_v8QQ2H-WikT1bgzeIsTMsP0U-4kWWE8ZoM3Nhm7xdp6Kmd7HKiOrwFt5NEKFJpnp70SwiIdEK0hT420jgEL2iFYr7XV112RjcQ5s2Nkr8D2OCBDtf_69vvw70OeLL9VlMewIqrN2Bzv8age3LJXrOwFTTMsW_A3eNuxX0Tvh_0dOBs6hnCRdbQJmx81QWG2S3L9yUb16FoYr5OZ4zSfaBHvPrxMxxXYnW71bxhJnQDC3kBmaXkFIz8ajsdycwckbxrHsKnw4OP746iLk1DVKap4DiQcyeNLJ30SjoaJXwsMWDPfc4FPs2krbyqXBZbmWRSmMomVZYiTnROZ4qLR7BaT2v3BFjsE-mrkgvEYRiKeS1KIZwRTmM17uIB7Cz-V1F2HOaUSuNb0bIv8wJ7tgg9O4CXvehZS9zxJ6HtxU8vOtttCo4em3Bihs296IvR6mgpxdRuek4yiAwVceMP4HGrI30rRIaJgZ0YgFrSnl6AGL2XS-rxaWD2zhRCBYU1d4L2_P3Di6O3x-Hm6b-LbsEaoj1NjjeR27A6n527Z3CnvJiPm9nzYDx4VaMcr1_eD68B8qAhGw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFgGXFvrF0gIGIdRL2qwdx2upl4JaLWJ31UNBvUVxYquLutl2s63UW39CfyO_pDNONrAqSEjconicRI7H740_3gB8yFJhEFUFMjej6EhOJzDSmIBrFyltrHY-fdv3nhoMOqen-ngB9mdnYSp9iGbCjTzDj9fk4DQhvfdLNfTMjHY5aR0-gqUIUYbyF_DouFlDQKrjwy0E2UDjGDzTFQr5XlN1Ho0eUMyHOyV_Z7Aego5W_u_jn8NyTT3ZQdVXXsCCLVZh7aDAsHt0wz4yvxnUz7KvwpN-vea-BpeHjSA4GzuGhJGVtA0bH3WNgXal833DhoUvGqU_xhNGCT8QE3_e3vkDS6yoNpuXLPXtwHxmQGYoPQUjZK0mJFk6RS5vy3X4dnR48rkb1IkagiyKBMehnFuZysxKp6SlccKFEkP2jutwgXdjaXKnchuHRrZjKdLctPM4QqZorY4VFxuwWIwL-xJY6NrS5RkXyMQwGHNaZELYVFiN1bgNW7Az-2FJVquYUzKN86TSX-YJtmziW7YF7xvTi0q6409G27O_ntTeWyYcMZuYYoyve9cUo9_RYkpa2PEV2SA3VKSO34LNqpM0byE5TAztRAvUXPdpDEjTe76kGJ55be9YIVlQWHPHd5-_f3jS_dT3F6_-3fQtPO2e9HtJ78vg6xY8Q-6nCYbbchsWp5Mr-xoeZ9fTYTl54z3pHmDCIwY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTtswFD5ibELcwAYDytjmTWjiJpDacVxLu2EbFdOg6sU2cRfFiS2KaApNQeKOR-AZ9ySc46TZKpg0aXdVfNxE9vn5jn--A7CdpcJgVBWI3IyiKzmdwEhjAq5dpLSx2vnybT-PVK_XOTnR_Tn4OL0LU_FDNAtuZBneX5OB24vc7f1mDT01w11OXIdP4Gkk0ccSr3PUb_YQEOr4dAuDbKDRB095hUK-13SdjUYPIObDk5J_IlgfgrrL__fxz2Gphp5sv9KVFzBnixVY3S8w7R7esA_MHwb1q-wrsHBc77mvwuVBQwjORo4hYGQlHcPGv7rGRLvi-b5hg8I3DdOz0ZhRwQ-Mib9u7_yFJVZUh81LlvpxYL4yIDNUnoJRZK0WJFk6QSxvy5fwo3vw_fNhUBdqCLIoEhxdObcylZmVTklLfsKFElP2jutwgU9jaXKnchuHRrZjKdLctPMY50xaq2PFxRrMF6PCbgALXVu6POMCkRgmY06LTAibCquxG7dhC3amE5ZkNYs5FdM4Tyr-ZZ7gyCZ-ZFvwvhG9qKg7HhPams56UltvmXCM2YQUY3zdu6YZ7Y42U9LCjq5IBrGhInb8FqxXStK8hegwMbUTLVAz6tMIEKf3bEsxOPXc3rFCRVbYc8erz98_PDn8dOx_bP676FtY6H_pJkdfe99ewSJCP01RuC23YH4yvrKv4Vl2PRmU4zfekO4B2I4iig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+spatial+variability+in+the+major+resting%E2%80%90state+networks+across+human+brain+functional+atlases&rft.jtitle=Human+brain+mapping&rft.au=Doucet%2C+Gaelle+E.&rft.au=Lee%2C+Won+Hee&rft.au=Frangou%2C+Sophia&rft.date=2019-10-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=15&rft.spage=4577&rft.epage=4587&rft_id=info:doi/10.1002%2Fhbm.24722&rft_id=info%3Apmid%2F31322303&rft.externalDocID=PMC6771873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |