Evaluation of the spatial variability in the major resting‐state networks across human brain functional atlases

The human brain is intrinsically organized into resting‐state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Human brain mapping Ročník 40; číslo 15; s. 4577 - 4587
Hlavní autori: Doucet, Gaelle E., Lee, Won Hee, Frangou, Sophia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 15.10.2019
Predmet:
ISSN:1065-9471, 1097-0193, 1097-0193
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The human brain is intrinsically organized into resting‐state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel‐wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting‐state Networks, based on the most reliable atlases.
AbstractList The human brain is intrinsically organized into resting‐state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases ( n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel‐wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting‐state Networks, based on the most reliable atlases.
The human brain is intrinsically organized into resting-state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel-wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting-state Networks, based on the most reliable atlases.The human brain is intrinsically organized into resting-state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel-wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting-state Networks, based on the most reliable atlases.
The human brain is intrinsically organized into resting-state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial constituents of these RSNs. However, there are significant concerns about interatlas variability. In response, we undertook a quantitative comparison of the five major RSNs (default mode [DMN], salience, central executive, sensorimotor, and visual networks) across currently available brain functional atlases (n = 6) in which we demonstrated that (a) similarity between atlases was modest and positively linked to the size of the sample used to construct them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76% (mean = 39%), which resulted in variability in their functional connectivity; (c) lower order RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the DMN was the most conserved across atlases; and (e) voxel-wise flexibility (i.e., the likelihood of a voxel to change network assignment across atlases) was high for subcortical regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus. In order to facilitate RSN reproducibility in future studies, we provide a new freely available Consensual Atlas of REsting-state Networks, based on the most reliable atlases.
Author Lee, Won Hee
Doucet, Gaelle E.
Frangou, Sophia
AuthorAffiliation 1 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York
AuthorAffiliation_xml – name: 1 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York
Author_xml – sequence: 1
  givenname: Gaelle E.
  orcidid: 0000-0003-4120-0474
  surname: Doucet
  fullname: Doucet, Gaelle E.
  email: gaelle.doucet@mssm.edu
  organization: Icahn School of Medicine at Mount Sinai
– sequence: 2
  givenname: Won Hee
  surname: Lee
  fullname: Lee, Won Hee
  organization: Icahn School of Medicine at Mount Sinai
– sequence: 3
  givenname: Sophia
  surname: Frangou
  fullname: Frangou, Sophia
  organization: Icahn School of Medicine at Mount Sinai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31322303$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1uFDEQhS0URH5gwQWQJTaw6MQ_bXtmgwRRIJESsYG1Vd3tznhw2xPbPdHsOAJn5CS4Z5KIRIKV7aqvnur5HaI9H7xB6DUlx5QQdrJohmNWK8aeoQNK5qoidM73prsU1bxWdB8dprQkhFJB6Au0zylnjBN-gG7O1uBGyDZ4HHqcFwanVXmCw2uIFhrrbN5g67etAZYh4mhStv76989fKUM22Jt8G-KPhKGNISW8GAfwuIlQpvrRt5N40YPsIJn0Ej3vwSXz6u48Qt8_n307Pa8uv365OP14WbV1zVlFCTMCRGtEr4QhhNOeCNOwWT9jvFSlaLpedUaSRlApOHQN7WQtCmzmUjF-hD7sdFdjM5iuNT5HcHoV7QBxowNY_bjj7UJfh7WWStGZ4kXg3Z1ADDdj8awHm1rjHHgTxqQZk5QppgQp6Nsn6DKMsZieqFldM1nLiXrz90YPq9ynUYD3O2D7j9H0Dwglekpal6T1NunCnjxhW5u3ORYz1v1v4tY6s_m3tD7_dLWb-AO8uryF
CitedBy_id crossref_primary_10_3390_brainsci11010118
crossref_primary_10_1111_ejn_15958
crossref_primary_10_1002_hbm_26400
crossref_primary_10_1016_j_compbiomed_2024_108862
crossref_primary_10_1038_s41467_024_55242_6
crossref_primary_10_1093_scan_nsae018
crossref_primary_10_3390_biology11091320
crossref_primary_10_1162_imag_a_00127
crossref_primary_10_1016_j_neubiorev_2025_106165
crossref_primary_10_1038_s41598_025_10432_0
crossref_primary_10_1089_brain_2022_0038
crossref_primary_10_1002_brb3_2790
crossref_primary_10_1016_j_neuroimage_2022_119672
crossref_primary_10_1093_alcalc_agac028
crossref_primary_10_1002_aur_2846
crossref_primary_10_1007_s10548_019_00744_6
crossref_primary_10_1016_j_neuroimage_2023_120243
crossref_primary_10_1155_2022_6962359
crossref_primary_10_1038_s41467_023_39131_y
crossref_primary_10_1055_a_1690_0497
crossref_primary_10_1016_j_neuroimage_2022_119714
crossref_primary_10_1503_jpn_220075
crossref_primary_10_1007_s00259_025_07100_w
crossref_primary_10_1038_s41380_024_02682_7
crossref_primary_10_1038_s41598_020_60406_7
crossref_primary_10_1016_j_nicl_2025_103767
crossref_primary_10_1016_j_nicl_2023_103530
crossref_primary_10_1007_s12021_021_09514_x
crossref_primary_10_1111_ejn_15161
crossref_primary_10_1016_j_biopsych_2023_11_013
crossref_primary_10_1016_j_bandc_2024_106156
crossref_primary_10_1093_cercor_bhac349
crossref_primary_10_1016_j_chb_2024_108258
crossref_primary_10_1002_hbm_70063
crossref_primary_10_1093_cercor_bhaa321
crossref_primary_10_1016_j_dcn_2023_101216
crossref_primary_10_1002_hbm_25330
crossref_primary_10_1007_s00429_022_02467_0
crossref_primary_10_1002_hbm_25411
crossref_primary_10_1016_j_neuroscience_2021_11_004
crossref_primary_10_1109_TCDS_2024_3462709
crossref_primary_10_1038_s41598_020_61440_1
crossref_primary_10_1192_j_eurpsy_2022_21
crossref_primary_10_1016_j_bandc_2023_105975
crossref_primary_10_1016_j_biopsych_2020_05_033
crossref_primary_10_1016_j_jad_2023_08_020
crossref_primary_10_1016_j_scib_2025_05_042
crossref_primary_10_1016_j_neubiorev_2021_12_012
crossref_primary_10_3389_fnimg_2024_1339244
crossref_primary_10_3390_brainsci11081065
crossref_primary_10_1038_s41467_025_58176_9
crossref_primary_10_1016_j_dcn_2025_101523
crossref_primary_10_1111_psyp_14716
crossref_primary_10_3389_fnhum_2022_1067968
crossref_primary_10_1093_scan_nsab075
crossref_primary_10_1093_scan_nsaf037
crossref_primary_10_1111_psyp_14237
crossref_primary_10_3389_fpsyt_2024_1341908
crossref_primary_10_1002_hbm_26096
crossref_primary_10_1038_s41598_020_80346_6
crossref_primary_10_1113_JP286074
crossref_primary_10_1089_brain_2020_0791
crossref_primary_10_1192_j_eurpsy_2020_57
crossref_primary_10_1016_j_jneumeth_2025_110445
crossref_primary_10_1002_hbm_70206
crossref_primary_10_1016_j_jad_2020_06_041
crossref_primary_10_1089_brain_2020_0950
crossref_primary_10_1002_hbm_26409
crossref_primary_10_1038_s42003_025_08509_7
Cites_doi 10.1016/j.neuron.2017.06.038
10.3758/s13415-011-0083-5
10.1016/j.neuron.2011.09.006
10.1016/j.neuroimage.2013.10.046
10.1109/TMI.2003.822821
10.1016/j.neuroimage.2011.11.059
10.1038/nm.4246
10.1093/cercor/bhx008
10.1093/cercor/bhr099
10.1016/j.neuroimage.2018.10.006
10.1073/pnas.0905267106
10.1038/nn.4361
10.1016/j.dcn.2018.03.001
10.1073/pnas.0601417103
10.1073/pnas.1502829112
10.1152/jn.00895.2010
10.1137/080734315
10.1016/j.neuron.2017.07.011
10.3389/fnagi.2017.00385
10.1002/hbm.20813
10.1073/pnas.98.2.676
10.1016/j.neuron.2012.12.028
10.2307/1932409
10.1523/JNEUROSCI.5587-06.2007
10.1073/pnas.1018985108
10.1016/j.neuroimage.2014.11.028
10.1016/j.biopsych.2010.11.009
10.1016/j.schres.2018.04.029
10.1038/nrn.2016.167
10.1152/jn.00338.2011
10.1038/s41380-018-0269-0
10.1038/s42003-018-0073-z
10.1093/cercor/bhv190
10.1073/pnas.0504136102
10.1073/pnas.0900234106
10.1016/j.neuroimage.2005.11.002
10.1016/S0361-9230(00)00437-8
10.1093/schbul/sbx034
10.1101/cshperspect.a021816
10.1007/s00429-010-0262-0
10.1196/annals.1440.011
10.1016/j.neuroimage.2013.04.127
10.1093/cercor/7.1.18
10.1002/mrm.1910340409
10.1093/cercor/bhu239
10.1038/mp.2017.247
10.1371/journal.pone.0068910
10.1016/j.neuron.2015.09.020
10.1089/brain.2012.0134
10.1016/j.brainres.2018.04.035
10.1089/brain.2014.0327
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc.
2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
2019 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc.
– notice: 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
– notice: 2019 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24722
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


Technology Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Doucet et al
EISSN 1097-0193
EndPage 4587
ExternalDocumentID PMC6771873
31322303
10_1002_hbm_24722
HBM24722
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Mental Health
  funderid: R01‐MH116147; R01‐MH104284
– fundername: Icahn School of Medicine at Mount Sinai
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIMH NIH HHS
  grantid: R01-MH116147
– fundername: NIMH NIH HHS
  grantid: R01 MH104284
– fundername: NIMH NIH HHS
  grantid: R01-MH104284
– fundername: NIH HHS
  grantid: S10 OD018522
– fundername: NIMH NIH HHS
  grantid: R01 MH116147
– fundername: ;
– fundername: ;
  grantid: R01‐MH116147; R01‐MH104284
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
O8X
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4432-102e5a5ce5f75e0031f05eb28f823ce565bdf7de60b51653adb1d64575ee96723
IEDL.DBID 24P
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478475800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:23:32 EDT 2025
Thu Oct 02 06:23:15 EDT 2025
Sat Nov 29 14:42:16 EST 2025
Mon Jul 21 05:52:53 EDT 2025
Tue Nov 18 20:47:48 EST 2025
Sat Nov 29 02:24:42 EST 2025
Wed Jan 22 16:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords brain functional atlases
functional connectivity
consensual atlas
resting-state networks
spatial variability
Language English
License Attribution-NonCommercial-NoDerivs
2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4432-102e5a5ce5f75e0031f05eb28f823ce565bdf7de60b51653adb1d64575ee96723
Notes Funding information
National Institute of Mental Health, Grant/Award Numbers: R01‐MH116147, R01‐MH104284; Icahn School of Medicine at Mount Sinai
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Funding information National Institute of Mental Health, Grant/Award Numbers: R01‐MH116147, R01‐MH104284; Icahn School of Medicine at Mount Sinai
The copyright line for this article was changed on 7 September 2019 after original online publication.
ORCID 0000-0003-4120-0474
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24722
PMID 31322303
PQID 2284426460
PQPubID 996345
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771873
proquest_miscellaneous_2261272750
proquest_journals_2284426460
pubmed_primary_31322303
crossref_primary_10_1002_hbm_24722
crossref_citationtrail_10_1002_hbm_24722
wiley_primary_10_1002_hbm_24722_HBM24722
PublicationCentury 2000
PublicationDate October 15, 2019
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: October 15, 2019
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2013; 3
2006; 30
2018; 201
1995; 34
2004; 23
2011; 53
2015; 106
2012; 59
2018; 44
2013; 8
2012; 12
2017; 9
1997; 7
2008; 1124
2018; 1
2005; 102
2015; 88
2011; 72
2011; 69
2018; 32
2012; 22
2001; 54
2001; 98
2007; 27
2018; 28
2018; 1692
2015; 5
2016; 19
2017; 23
2018; 23
2019; 185
2015; 8
2014; 88
2017; 95
2011; 105
2009; 30
2011; 108
2011; 106
2013; 77
1945; 26
2015; 112
2010; 214
2013; 80
2018
2017; 18
2016; 26
2016; 8
2006; 103
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Nyberg L. (e_1_2_8_36_1) 2015; 8
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
Siman‐Tov T. (e_1_2_8_45_1) 2016; 8
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 88
  start-page: 212
  year: 2014
  end-page: 227
  article-title: Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex
  publication-title: NeuroImage
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: The Journal of Neuroscience
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 77
  start-page: 586
  year: 2013
  end-page: 595
  article-title: Individual variability in functional connectivity architecture of the human brain
  publication-title: Neuron
– volume: 12
  start-page: 241
  year: 2012
  end-page: 268
  article-title: Meta‐analytic evidence for a superordinate cognitive control network subserving diverse executive functions
  publication-title: Cognitive, Affective, & Behavioral Neuroscience
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 108
  start-page: 7641
  year: 2011
  end-page: 7646
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 1124
  start-page: 1
  year: 2008
  end-page: 38
  article-title: The brain's default network: Anatomy, function, and relevance to disease
  publication-title: Annals of the New York Academy of Sciences
– volume: 3
  start-page: 363
  year: 2013
  end-page: 374
  article-title: Impact of analysis methods on the reproducibility and reliability of resting‐state networks
  publication-title: Brain Connectivity
– volume: 26
  start-page: 288
  year: 2016
  end-page: 303
  article-title: Generation and evaluation of a cortical area parcellation from resting‐state correlations
  publication-title: Cerebral Cortex
– volume: 53
  start-page: 526
  year: 2011
  end-page: 543
  article-title: Comparing community structure to characteristics in online collegiate social networks
  publication-title: SIAM Review
– volume: 5
  start-page: 505
  year: 2015
  end-page: 516
  article-title: Functional connectivity in multiple cortical networks is associated with performance across cognitive domains in older adults
  publication-title: Brain Connectivity
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Transactions on Medical Imaging
– volume: 28
  start-page: 988
  year: 2018
  end-page: 997
  article-title: Elevated body mass index is associated with increased integration and reduced cohesion of sensory‐driven and internally guided resting‐state functional brain networks
  publication-title: Cerebral Cortex
– volume: 19
  start-page: 1175
  year: 2016
  end-page: 1187
  article-title: The Human Connectome Project's neuroimaging approach
  publication-title: Nature Neuroscience
– volume: 54
  start-page: 287
  year: 2001
  end-page: 298
  article-title: Cortical networks for working memory and executive functions sustain the conscious resting state in man
  publication-title: Brain Research Bulletin
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 59
  start-page: 3194
  year: 2012
  end-page: 3200
  article-title: Patterns of hemodynamic low‐frequency oscillations in the brain are modulated by the nature of free thought during rest
  publication-title: NeuroImage
– volume: 23
  start-page: 28
  year: 2017
  end-page: 38
  article-title: Resting‐state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nature Medicine
– year: 2018
  article-title: Baseline brain structural and functional predictors of clinical outcome in the early course of schizophrenia
  publication-title: Molecular Psychiatry
– volume: 88
  start-page: 33
  year: 2015
  end-page: 46
  article-title: Neurocognitive architecture of working memory
  publication-title: Neuron
– volume: 95
  start-page: 791
  year: 2017
  end-page: 807
  article-title: Precision functional mapping of individual human brains
  publication-title: Neuron
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 106
  start-page: 111
  year: 2015
  end-page: 122
  article-title: Functional connectivity in BOLD and CBF data: Similarity and reliability of resting brain networks
  publication-title: NeuroImage
– volume: 26
  start-page: 3851
  year: 2016
  end-page: 3865
  article-title: Aging effects on whole‐brain functional connectivity in adults free of cognitive and psychiatric disorders
  publication-title: Cerebral Cortex
– volume: 44
  start-page: 168
  year: 2018
  end-page: 181
  article-title: Dysfunction of large‐scale brain networks in schizophrenia: A meta‐analysis of resting‐state functional connectivity
  publication-title: Schizophrenia Bulletin
– volume: 105
  start-page: 2753
  year: 2011
  end-page: 2763
  article-title: Brain activity at rest: A multiscale hierarchical functional organization
  publication-title: Journal of Neurophysiology
– volume: 214
  start-page: 655
  year: 2010
  end-page: 667
  article-title: Saliency, switching, attention and control: A network model of insula function
  publication-title: Brain Structure & Function
– volume: 8
  start-page: a021816
  year: 2015
  article-title: Working memory: Maintenance, updating, and the realization of intentions
  publication-title: Cold Spring Harbor Perspectives in Biology
– volume: 201
  start-page: 208
  year: 2018
  end-page: 216
  article-title: Resting‐state network connectivity and metastability predict clinical symptoms in schizophrenia
  publication-title: Schizophrenia Research
– volume: 18
  start-page: 115
  year: 2017
  end-page: 126
  article-title: Scanning the horizon: Towards transparent and reproducible neuroimaging research
  publication-title: Nature Reviews. Neuroscience
– volume: 30
  start-page: 1414
  year: 2006
  end-page: 1432
  article-title: Meta‐analyzing left hemisphere language areas: Phonology, semantics, and sentence processing
  publication-title: NeuroImage
– volume: 112
  start-page: 13681
  year: 2015
  end-page: 13686
  article-title: Emergence of system roles in normative neurodevelopment
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  article-title: A default mode of brain function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  article-title: Consistent resting‐state networks across healthy subjects
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  start-page: 18
  year: 1997
  end-page: 30
  article-title: Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus
  publication-title: Cerebral Cortex
– volume: 95
  start-page: 457
  year: 2017
  end-page: 471
  article-title: Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity
  publication-title: Neuron
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 1692
  start-page: 66
  year: 2018
  end-page: 73
  article-title: The salience network and human personality: Integrity of white matter tracts within anterior and posterior salience network relates to the self‐directedness character trait
  publication-title: Brain Research
– volume: 1
  start-page: 62
  year: 2018
  article-title: Small sample sizes reduce the replicability of task‐based fMRI studies
  publication-title: Communications Biology
– volume: 32
  start-page: 43
  year: 2018
  end-page: 54
  article-title: The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites
  publication-title: Developmental Cognitive Neuroscience
– volume: 185
  start-page: 35
  year: 2019
  end-page: 57
  article-title: Mapping the human brain's cortical‐subcortical functional network organization
  publication-title: Neuroimage
– volume: 8
  start-page: 330
  year: 2016
  article-title: Early age‐related functional connectivity decline in high‐order cognitive networks
  publication-title: Frontiers in Aging Neuroscience
– volume: 8
  year: 2013
  article-title: BrainNet viewer: A network visualization tool for human brain connectomics
  publication-title: PLoS One
– volume: 30
  start-page: 3865
  year: 2009
  end-page: 3886
  article-title: Functional segmentation of the brain cortex using high model order group PICA
  publication-title: Human Brain Mapping
– volume: 23
  start-page: 1974
  issue: 10
  year: 2018
  end-page: 1980
  article-title: An integrated brain‐behavior model for working memory
  publication-title: Molecular Psychiatry
– volume: 9
  start-page: 385
  year: 2017
  article-title: Linking inter‐individual variability in functional brain connectivity to cognitive ability in elderly individuals
  publication-title: Frontiers in Aging Neuroscience
– volume: 106
  start-page: 8719
  year: 2009
  end-page: 8724
  article-title: Experience sampling during fMRI reveals default network and executive system contributions to mind wandering
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
– volume: 22
  start-page: 158
  year: 2012
  end-page: 165
  article-title: Decoding subject‐driven cognitive states with whole‐brain connectivity patterns
  publication-title: Cerebral Cortex
– volume: 69
  start-page: 967
  year: 2011
  end-page: 973
  article-title: Brain network connectivity in individuals with schizophrenia and their siblings
  publication-title: Biological Psychiatry
– ident: e_1_2_8_5_1
  doi: 10.1016/j.neuron.2017.06.038
– ident: e_1_2_8_35_1
  doi: 10.3758/s13415-011-0083-5
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuron.2011.09.006
– ident: e_1_2_8_52_1
  doi: 10.1016/j.neuroimage.2013.10.046
– ident: e_1_2_8_3_1
  doi: 10.1109/TMI.2003.822821
– ident: e_1_2_8_13_1
  doi: 10.1016/j.neuroimage.2011.11.059
– ident: e_1_2_8_16_1
  doi: 10.1038/nm.4246
– ident: e_1_2_8_15_1
  doi: 10.1093/cercor/bhx008
– ident: e_1_2_8_44_1
  doi: 10.1093/cercor/bhr099
– ident: e_1_2_8_27_1
  doi: 10.1016/j.neuroimage.2018.10.006
– ident: e_1_2_8_46_1
  doi: 10.1073/pnas.0905267106
– ident: e_1_2_8_21_1
  doi: 10.1038/nn.4361
– ident: e_1_2_8_7_1
  doi: 10.1016/j.dcn.2018.03.001
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.0601417103
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.1502829112
– ident: e_1_2_8_12_1
  doi: 10.1152/jn.00895.2010
– ident: e_1_2_8_47_1
  doi: 10.1137/080734315
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neuron.2017.07.011
– ident: e_1_2_8_30_1
  doi: 10.3389/fnagi.2017.00385
– ident: e_1_2_8_28_1
  doi: 10.1002/hbm.20813
– ident: e_1_2_8_40_1
  doi: 10.1073/pnas.98.2.676
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuron.2012.12.028
– ident: e_1_2_8_10_1
  doi: 10.2307/1932409
– ident: e_1_2_8_42_1
  doi: 10.1523/JNEUROSCI.5587-06.2007
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.1018985108
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuroimage.2014.11.028
– ident: e_1_2_8_41_1
  doi: 10.1016/j.biopsych.2010.11.009
– ident: e_1_2_8_29_1
  doi: 10.1016/j.schres.2018.04.029
– ident: e_1_2_8_37_1
  doi: 10.1038/nrn.2016.167
– ident: e_1_2_8_53_1
  doi: 10.1152/jn.00338.2011
– ident: e_1_2_8_14_1
  doi: 10.1038/s41380-018-0269-0
– ident: e_1_2_8_48_1
  doi: 10.1038/s42003-018-0073-z
– ident: e_1_2_8_18_1
  doi: 10.1093/cercor/bhv190
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.0504136102
– ident: e_1_2_8_8_1
  doi: 10.1073/pnas.0900234106
– ident: e_1_2_8_49_1
  doi: 10.1016/j.neuroimage.2005.11.002
– volume: 8
  start-page: 330
  year: 2016
  ident: e_1_2_8_45_1
  article-title: Early age‐related functional connectivity decline in high‐order cognitive networks
  publication-title: Frontiers in Aging Neuroscience
– ident: e_1_2_8_31_1
  doi: 10.1016/S0361-9230(00)00437-8
– ident: e_1_2_8_11_1
  doi: 10.1093/schbul/sbx034
– volume: 8
  start-page: a021816
  year: 2015
  ident: e_1_2_8_36_1
  article-title: Working memory: Maintenance, updating, and the realization of intentions
  publication-title: Cold Spring Harbor Perspectives in Biology
  doi: 10.1101/cshperspect.a021816
– ident: e_1_2_8_32_1
  doi: 10.1007/s00429-010-0262-0
– ident: e_1_2_8_6_1
  doi: 10.1196/annals.1440.011
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_8_50_1
  doi: 10.1093/cercor/7.1.18
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_8_23_1
  doi: 10.1093/cercor/bhu239
– ident: e_1_2_8_33_1
  doi: 10.1038/mp.2017.247
– ident: e_1_2_8_51_1
  doi: 10.1371/journal.pone.0068910
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neuron.2015.09.020
– ident: e_1_2_8_20_1
  doi: 10.1089/brain.2012.0134
– ident: e_1_2_8_39_1
  doi: 10.1016/j.brainres.2018.04.035
– ident: e_1_2_8_43_1
  doi: 10.1089/brain.2014.0327
SSID ssj0011501
Score 2.5628302
Snippet The human brain is intrinsically organized into resting‐state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial...
The human brain is intrinsically organized into resting-state networks (RSNs). Currently, several human brain functional atlases are used to define the spatial...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4577
SubjectTerms Adolescent
Adult
Anatomy, Artistic
Atlases as Topic
Brain
brain functional atlases
Connectome
consensual atlas
Cortex (parietal)
Executive Function
Female
functional connectivity
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Nerve Net - anatomy & histology
Nerve Net - physiology
Networks
Neural networks
Reproducibility of Results
resting‐state networks
Sensorimotor system
spatial variability
Variability
Young Adult
Title Evaluation of the spatial variability in the major resting‐state networks across human brain functional atlases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24722
https://www.ncbi.nlm.nih.gov/pubmed/31322303
https://www.proquest.com/docview/2284426460
https://www.proquest.com/docview/2261272750
https://pubmed.ncbi.nlm.nih.gov/PMC6771873
Volume 40
WOSCitedRecordID wos000478475800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Backfiles
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VglAvFFoeSwsyCKFe0iZ2HMfiVFCrItFVDzz2FtmJrS5is2WzrdQbP4Hf2F_SGScbWBUkJC5RFI_jyJnxfOPHNwCvSiMselWByM0qOpKTR1ZaG3HtU6Wt0z6kb_v8QQ2H-WikT1bgzeIsTMsP0U-4kWWE8ZoM3Nhm7xdp6Kmd7HKiOrwFt5NEKFJpnp70SwiIdEK0hT420jgEL2iFYr7XV112RjcQ5s2Nkr8D2OCBDtf_69vvw70OeLL9VlMewIqrN2Bzv8age3LJXrOwFTTMsW_A3eNuxX0Tvh_0dOBs6hnCRdbQJmx81QWG2S3L9yUb16FoYr5OZ4zSfaBHvPrxMxxXYnW71bxhJnQDC3kBmaXkFIz8ajsdycwckbxrHsKnw4OP746iLk1DVKap4DiQcyeNLJ30SjoaJXwsMWDPfc4FPs2krbyqXBZbmWRSmMomVZYiTnROZ4qLR7BaT2v3BFjsE-mrkgvEYRiKeS1KIZwRTmM17uIB7Cz-V1F2HOaUSuNb0bIv8wJ7tgg9O4CXvehZS9zxJ6HtxU8vOtttCo4em3Bihs296IvR6mgpxdRuek4yiAwVceMP4HGrI30rRIaJgZ0YgFrSnl6AGL2XS-rxaWD2zhRCBYU1d4L2_P3Di6O3x-Hm6b-LbsEaoj1NjjeR27A6n527Z3CnvJiPm9nzYDx4VaMcr1_eD68B8qAhGw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFgGXFvrF0gIGIdRL2qwdx2upl4JaLWJ31UNBvUVxYquLutl2s63UW39CfyO_pDNONrAqSEjconicRI7H740_3gB8yFJhEFUFMjej6EhOJzDSmIBrFyltrHY-fdv3nhoMOqen-ngB9mdnYSp9iGbCjTzDj9fk4DQhvfdLNfTMjHY5aR0-gqUIUYbyF_DouFlDQKrjwy0E2UDjGDzTFQr5XlN1Ho0eUMyHOyV_Z7Aego5W_u_jn8NyTT3ZQdVXXsCCLVZh7aDAsHt0wz4yvxnUz7KvwpN-vea-BpeHjSA4GzuGhJGVtA0bH3WNgXal833DhoUvGqU_xhNGCT8QE3_e3vkDS6yoNpuXLPXtwHxmQGYoPQUjZK0mJFk6RS5vy3X4dnR48rkb1IkagiyKBMehnFuZysxKp6SlccKFEkP2jutwgXdjaXKnchuHRrZjKdLctPM4QqZorY4VFxuwWIwL-xJY6NrS5RkXyMQwGHNaZELYVFiN1bgNW7Az-2FJVquYUzKN86TSX-YJtmziW7YF7xvTi0q6409G27O_ntTeWyYcMZuYYoyve9cUo9_RYkpa2PEV2SA3VKSO34LNqpM0byE5TAztRAvUXPdpDEjTe76kGJ55be9YIVlQWHPHd5-_f3jS_dT3F6_-3fQtPO2e9HtJ78vg6xY8Q-6nCYbbchsWp5Mr-xoeZ9fTYTl54z3pHmDCIwY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTtswFD5ibELcwAYDytjmTWjiJpDacVxLu2EbFdOg6sU2cRfFiS2KaApNQeKOR-AZ9ySc46TZKpg0aXdVfNxE9vn5jn--A7CdpcJgVBWI3IyiKzmdwEhjAq5dpLSx2vnybT-PVK_XOTnR_Tn4OL0LU_FDNAtuZBneX5OB24vc7f1mDT01w11OXIdP4Gkk0ccSr3PUb_YQEOr4dAuDbKDRB095hUK-13SdjUYPIObDk5J_IlgfgrrL__fxz2Gphp5sv9KVFzBnixVY3S8w7R7esA_MHwb1q-wrsHBc77mvwuVBQwjORo4hYGQlHcPGv7rGRLvi-b5hg8I3DdOz0ZhRwQ-Mib9u7_yFJVZUh81LlvpxYL4yIDNUnoJRZK0WJFk6QSxvy5fwo3vw_fNhUBdqCLIoEhxdObcylZmVTklLfsKFElP2jutwgU9jaXKnchuHRrZjKdLctPMY50xaq2PFxRrMF6PCbgALXVu6POMCkRgmY06LTAibCquxG7dhC3amE5ZkNYs5FdM4Tyr-ZZ7gyCZ-ZFvwvhG9qKg7HhPams56UltvmXCM2YQUY3zdu6YZ7Y42U9LCjq5IBrGhInb8FqxXStK8hegwMbUTLVAz6tMIEKf3bEsxOPXc3rFCRVbYc8erz98_PDn8dOx_bP676FtY6H_pJkdfe99ewSJCP01RuC23YH4yvrKv4Vl2PRmU4zfekO4B2I4iig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+spatial+variability+in+the+major+resting%E2%80%90state+networks+across+human+brain+functional+atlases&rft.jtitle=Human+brain+mapping&rft.au=Doucet%2C+Gaelle+E.&rft.au=Lee%2C+Won+Hee&rft.au=Frangou%2C+Sophia&rft.date=2019-10-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=15&rft.spage=4577&rft.epage=4587&rft_id=info:doi/10.1002%2Fhbm.24722&rft_id=info%3Apmid%2F31322303&rft.externalDocID=PMC6771873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon