Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification

Brain functional connectivity (FC) extracted from resting‐state fMRI (RS‐fMRI) has become a popular approach for diagnosing various neurodegenerative diseases, including Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Human brain mapping Ročník 38; číslo 10; s. 5019 - 5034
Hlavní autoři: Chen, Xiaobo, Zhang, Han, Zhang, Lichi, Shen, Celina, Lee, Seong‐Whan, Shen, Dinggang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States John Wiley & Sons, Inc 01.10.2017
John Wiley and Sons Inc
Témata:
ISSN:1065-9471, 1097-0193, 1097-0193
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Brain functional connectivity (FC) extracted from resting‐state fMRI (RS‐fMRI) has become a popular approach for diagnosing various neurodegenerative diseases, including Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC networks between grey matter (GM) regions of the brain based on temporal co‐variations of the blood oxygenation level‐dependent (BOLD) signals, which reflects the synchronized neural activities. However, it was rarely investigated whether the FC detected within the white matter (WM) could provide useful information for diagnosis. Motivated by the recently proposed functional correlation tensors (FCT) computed from RS‐fMRI and used to characterize the structured pattern of local FC in the WM, we propose in this article a novel MCI classification method based on the information conveyed by both the FC between the GM regions and that within the WM regions. Specifically, in the WM, the tensor‐based metrics (e.g., fractional anisotropy [FA], similar to the metric calculated based on diffusion tensor imaging [DTI]) are first calculated based on the FCT and then summarized along each of the major WM fiber tracts connecting each pair of the brain GM regions. This could capture the functional information in the WM, in a similar network structure as the FC network constructed for the GM, based only on the same RS‐fMRI data. Moreover, a sliding window approach is further used to partition the voxel‐wise BOLD signal into multiple short overlapping segments. Then, both the FC and FCT between each pair of the brain regions can be calculated based on the BOLD signal segments in the GM and WM, respectively. In such a way, our method can generate dynamic FC and dynamic FCT to better capture functional information in both GM and WM and further integrate them together by using our developed feature extraction, selection, and ensemble learning algorithms. The experimental results verify that the dynamic FCT can provide valuable functional information in the WM; by combining it with the dynamic FC in the GM, the diagnosis accuracy for MCI subjects can be significantly improved even using RS‐fMRI data alone. Hum Brain Mapp 38:5019–5034, 2017. © 2017 Wiley Periodicals, Inc.
AbstractList Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for diagnosing various neurodegenerative diseases, including Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC networks between grey matter (GM) regions of the brain based on temporal co-variations of the blood oxygenation level-dependent (BOLD) signals, which reflects the synchronized neural activities. However, it was rarely investigated whether the FC detected within the white matter (WM) could provide useful information for diagnosis. Motivated by the recently proposed functional correlation tensors (FCT) computed from RS-fMRI and used to characterize the structured pattern of local FC in the WM, we propose in this article a novel MCI classification method based on the information conveyed by both the FC between the GM regions and that within the WM regions. Specifically, in the WM, the tensor-based metrics (e.g., fractional anisotropy [FA], similar to the metric calculated based on diffusion tensor imaging [DTI]) are first calculated based on the FCT and then summarized along each of the major WM fiber tracts connecting each pair of the brain GM regions. This could capture the functional information in the WM, in a similar network structure as the FC network constructed for the GM, based only on the same RS-fMRI data. Moreover, a sliding window approach is further used to partition the voxel-wise BOLD signal into multiple short overlapping segments. Then, both the FC and FCT between each pair of the brain regions can be calculated based on the BOLD signal segments in the GM and WM, respectively. In such a way, our method can generate dynamic FC and dynamic FCT to better capture functional information in both GM and WM and further integrate them together by using our developed feature extraction, selection, and ensemble learning algorithms. The experimental results verify that the dynamic FCT can provide valuable functional information in the WM; by combining it with the dynamic FC in the GM, the diagnosis accuracy for MCI subjects can be significantly improved even using RS-fMRI data alone. Hum Brain Mapp 38:5019-5034, 2017. © 2017 Wiley Periodicals, Inc.
Brain functional connectivity (FC) extracted from resting‐state fMRI (RS‐fMRI) has become a popular approach for diagnosing various neurodegenerative diseases, including Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC networks between grey matter (GM) regions of the brain based on temporal co‐variations of the blood oxygenation level‐dependent (BOLD) signals, which reflects the synchronized neural activities. However, it was rarely investigated whether the FC detected within the white matter (WM) could provide useful information for diagnosis. Motivated by the recently proposed functional correlation tensors (FCT) computed from RS‐fMRI and used to characterize the structured pattern of local FC in the WM, we propose in this article a novel MCI classification method based on the information conveyed by both the FC between the GM regions and that within the WM regions. Specifically, in the WM, the tensor‐based metrics (e.g., fractional anisotropy [FA], similar to the metric calculated based on diffusion tensor imaging [DTI]) are first calculated based on the FCT and then summarized along each of the major WM fiber tracts connecting each pair of the brain GM regions. This could capture the functional information in the WM, in a similar network structure as the FC network constructed for the GM, based only on the same RS‐fMRI data. Moreover, a sliding window approach is further used to partition the voxel‐wise BOLD signal into multiple short overlapping segments. Then, both the FC and FCT between each pair of the brain regions can be calculated based on the BOLD signal segments in the GM and WM, respectively. In such a way, our method can generate dynamic FC and dynamic FCT to better capture functional information in both GM and WM and further integrate them together by using our developed feature extraction, selection, and ensemble learning algorithms. The experimental results verify that the dynamic FCT can provide valuable functional information in the WM; by combining it with the dynamic FC in the GM, the diagnosis accuracy for MCI subjects can be significantly improved even using RS‐fMRI data alone. Hum Brain Mapp 38:5019–5034, 2017 . © 2017 Wiley Periodicals, Inc.
Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for diagnosing various neurodegenerative diseases, including Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC networks between grey matter (GM) regions of the brain based on temporal co-variations of the blood oxygenation level-dependent (BOLD) signals, which reflects the synchronized neural activities. However, it was rarely investigated whether the FC detected within the white matter (WM) could provide useful information for diagnosis. Motivated by the recently proposed functional correlation tensors (FCT) computed from RS-fMRI and used to characterize the structured pattern of local FC in the WM, we propose in this article a novel MCI classification method based on the information conveyed by both the FC between the GM regions and that within the WM regions. Specifically, in the WM, the tensor-based metrics (e.g., fractional anisotropy [FA], similar to the metric calculated based on diffusion tensor imaging [DTI]) are first calculated based on the FCT and then summarized along each of the major WM fiber tracts connecting each pair of the brain GM regions. This could capture the functional information in the WM, in a similar network structure as the FC network constructed for the GM, based only on the same RS-fMRI data. Moreover, a sliding window approach is further used to partition the voxel-wise BOLD signal into multiple short overlapping segments. Then, both the FC and FCT between each pair of the brain regions can be calculated based on the BOLD signal segments in the GM and WM, respectively. In such a way, our method can generate dynamic FC and dynamic FCT to better capture functional information in both GM and WM and further integrate them together by using our developed feature extraction, selection, and ensemble learning algorithms. The experimental results verify that the dynamic FCT can provide valuable functional information in the WM; by combining it with the dynamic FC in the GM, the diagnosis accuracy for MCI subjects can be significantly improved even using RS-fMRI data alone. Hum Brain Mapp 38:5019-5034, 2017. © 2017 Wiley Periodicals, Inc.Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for diagnosing various neurodegenerative diseases, including Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC networks between grey matter (GM) regions of the brain based on temporal co-variations of the blood oxygenation level-dependent (BOLD) signals, which reflects the synchronized neural activities. However, it was rarely investigated whether the FC detected within the white matter (WM) could provide useful information for diagnosis. Motivated by the recently proposed functional correlation tensors (FCT) computed from RS-fMRI and used to characterize the structured pattern of local FC in the WM, we propose in this article a novel MCI classification method based on the information conveyed by both the FC between the GM regions and that within the WM regions. Specifically, in the WM, the tensor-based metrics (e.g., fractional anisotropy [FA], similar to the metric calculated based on diffusion tensor imaging [DTI]) are first calculated based on the FCT and then summarized along each of the major WM fiber tracts connecting each pair of the brain GM regions. This could capture the functional information in the WM, in a similar network structure as the FC network constructed for the GM, based only on the same RS-fMRI data. Moreover, a sliding window approach is further used to partition the voxel-wise BOLD signal into multiple short overlapping segments. Then, both the FC and FCT between each pair of the brain regions can be calculated based on the BOLD signal segments in the GM and WM, respectively. In such a way, our method can generate dynamic FC and dynamic FCT to better capture functional information in both GM and WM and further integrate them together by using our developed feature extraction, selection, and ensemble learning algorithms. The experimental results verify that the dynamic FCT can provide valuable functional information in the WM; by combining it with the dynamic FC in the GM, the diagnosis accuracy for MCI subjects can be significantly improved even using RS-fMRI data alone. Hum Brain Mapp 38:5019-5034, 2017. © 2017 Wiley Periodicals, Inc.
Author Shen, Celina
Zhang, Han
Zhang, Lichi
Lee, Seong‐Whan
Shen, Dinggang
Chen, Xiaobo
AuthorAffiliation 1 Department of Radiology and BRIC University of North Carolina at Chapel Hill Chapel Hill North Carolina
2 Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
AuthorAffiliation_xml – name: 1 Department of Radiology and BRIC University of North Carolina at Chapel Hill Chapel Hill North Carolina
– name: 2 Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
Author_xml – sequence: 1
  givenname: Xiaobo
  orcidid: 0000-0001-9940-1637
  surname: Chen
  fullname: Chen, Xiaobo
  organization: University of North Carolina at Chapel Hill
– sequence: 2
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  organization: University of North Carolina at Chapel Hill
– sequence: 3
  givenname: Lichi
  surname: Zhang
  fullname: Zhang, Lichi
  organization: University of North Carolina at Chapel Hill
– sequence: 4
  givenname: Celina
  surname: Shen
  fullname: Shen, Celina
  organization: University of North Carolina at Chapel Hill
– sequence: 5
  givenname: Seong‐Whan
  surname: Lee
  fullname: Lee, Seong‐Whan
  organization: Korea University
– sequence: 6
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Korea University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28665045$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1vFSEUhompsR-68A8YEje6mBaGr8vGRG-qbdLGja4Jw0AvDQMVZlrn38v9amqjK-DwnDfvOe8xOIgpWgDeYnSKEWrPVt1w2hKB8QtwhJEUDcKSHKzvnDWSCnwIjku5RQhjhvArcNguOGeIsiMQzn-PWZvRpwiTg_0c9eANdFPc1HSAJsVo6-PejzN0OQ2wy9pHeJPtDAc9jjZDHXv4sPKj3RdcyvB6eQlN0KV4541eq70GL50Oxb7ZnSfg59fzH8uL5ur7t8vl56vGUEpwY9qWMEotEgsimDAdbzvSU845aY1pHXdcUNI5iQSSiPQ9d7ZzfS8tJYa6npyAT1vdu6kbbG9srDMGdZf9oPOskvbq75_oV-om3SvGJBELWQU-7ARy-jXZMqrBF2ND0NGmqSgsMSOUIowq-v4ZepumXBe3poiguJUMV-rdU0ePVvZBVOBsC5icSsnWKePHzdKqQR8URmodtapRq03UtePjs4696L_YnfqDD3b-P6guvlxvO_4ALie5YA
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108626
crossref_primary_10_1097_HEP_0000000000001343
crossref_primary_10_1016_j_media_2023_102932
crossref_primary_10_1109_TMI_2022_3152157
crossref_primary_10_1109_TNSRE_2023_3247590
crossref_primary_10_1016_j_nicl_2022_103245
crossref_primary_10_1109_JBHI_2018_2839771
crossref_primary_10_1016_j_neuroimage_2018_07_004
crossref_primary_10_3389_fnins_2021_707944
crossref_primary_10_1109_TBME_2023_3294511
crossref_primary_10_1155_2020_8853835
crossref_primary_10_1002_hbm_24979
crossref_primary_10_1093_cercor_bhad542
crossref_primary_10_1007_s11517_020_02193_x
crossref_primary_10_1007_s10489_018_1328_6
crossref_primary_10_1007_s11604_018_0794_4
crossref_primary_10_1007_s12021_025_09746_1
crossref_primary_10_1007_s10278_023_00872_3
crossref_primary_10_1109_TMI_2019_2928790
crossref_primary_10_1073_pnas_2219666120
crossref_primary_10_1109_ACCESS_2020_3000788
crossref_primary_10_1016_j_patrec_2019_05_019
crossref_primary_10_1093_cercor_bhy010
crossref_primary_10_1016_j_neulet_2020_134891
crossref_primary_10_1016_j_nlm_2020_107340
crossref_primary_10_1007_s11682_024_00914_6
crossref_primary_10_1016_j_neuroimage_2021_118048
crossref_primary_10_3389_fnins_2020_00165
crossref_primary_10_1109_TMI_2020_2976825
crossref_primary_10_1002_hbm_25536
crossref_primary_10_1016_j_bbe_2019_12_002
crossref_primary_10_1109_ACCESS_2019_2946322
crossref_primary_10_3389_fnins_2022_933660
crossref_primary_10_1002_hbm_25575
crossref_primary_10_1109_TNNLS_2023_3282961
crossref_primary_10_1108_GKMC_02_2023_0053
crossref_primary_10_1109_TNSRE_2022_3202713
crossref_primary_10_3389_fnagi_2024_1326394
crossref_primary_10_3233_JAD_181049
crossref_primary_10_1016_j_patcog_2019_01_015
crossref_primary_10_1002_hbm_25845
crossref_primary_10_1016_j_media_2018_10_012
crossref_primary_10_1016_j_knosys_2024_111450
crossref_primary_10_1016_j_compbiomed_2024_108054
crossref_primary_10_1109_JBHI_2019_2893880
crossref_primary_10_1109_JSEN_2024_3387103
crossref_primary_10_1016_j_mri_2019_07_017
crossref_primary_10_1109_TMI_2022_3170701
crossref_primary_10_1002_jnr_24956
crossref_primary_10_3389_fncir_2020_603208
crossref_primary_10_1117_1_NPh_9_4_045010
crossref_primary_10_1109_TNNLS_2024_3449949
crossref_primary_10_3389_fnins_2021_651574
crossref_primary_10_1159_000493167
crossref_primary_10_1016_j_bbr_2019_112111
crossref_primary_10_1016_j_schres_2021_06_014
crossref_primary_10_1017_S0033291720003141
crossref_primary_10_1016_j_compbiomed_2019_02_010
crossref_primary_10_1155_2019_9027803
crossref_primary_10_3389_fninf_2022_902452
crossref_primary_10_1109_TMI_2020_2987817
crossref_primary_10_3233_JAD_215649
crossref_primary_10_3233_JAD_201244
crossref_primary_10_1016_j_neubiorev_2020_02_023
crossref_primary_10_3389_fneur_2025_1539995
crossref_primary_10_1109_ACCESS_2020_3006907
crossref_primary_10_1016_j_patcog_2022_109106
crossref_primary_10_1109_ACCESS_2020_3025370
crossref_primary_10_3389_fnagi_2019_00152
crossref_primary_10_1016_j_nicl_2021_102917
crossref_primary_10_1002_hbm_25225
crossref_primary_10_1002_jmri_26214
crossref_primary_10_1038_s41598_025_04963_9
crossref_primary_10_3389_fnins_2019_00873
crossref_primary_10_1038_s41598_023_28163_5
crossref_primary_10_1080_0361073X_2024_2313940
crossref_primary_10_1007_s12652_019_01535_4
crossref_primary_10_1016_j_jad_2019_05_067
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_3233_JAD_180106
crossref_primary_10_1007_s11682_021_00468_x
crossref_primary_10_1080_14737175_2023_2174016
crossref_primary_10_3389_fnagi_2023_1101879
crossref_primary_10_1016_j_media_2024_103133
crossref_primary_10_3389_fninf_2021_802305
crossref_primary_10_1038_s44220_023_00111_2
crossref_primary_10_1140_epjs_s11734_024_01463_1
crossref_primary_10_1002_hbm_24444
crossref_primary_10_1111_cns_13937
crossref_primary_10_3389_fnagi_2022_806828
crossref_primary_10_1016_j_knosys_2024_112856
crossref_primary_10_1016_j_mri_2017_07_008
crossref_primary_10_3233_JAD_221037
crossref_primary_10_7717_peerj_11692
crossref_primary_10_1002_brb3_1407
crossref_primary_10_1109_TNSRE_2023_3275608
crossref_primary_10_1109_ACCESS_2019_2920978
crossref_primary_10_1016_j_heliyon_2022_e12276
crossref_primary_10_1002_hbm_25369
crossref_primary_10_1186_s40708_025_00252_3
crossref_primary_10_1109_JSEN_2023_3274180
crossref_primary_10_3389_fneur_2025_1581105
crossref_primary_10_1002_brb3_954
crossref_primary_10_1007_s11042_018_7125_8
crossref_primary_10_1016_j_compmedimag_2018_04_002
crossref_primary_10_1186_s13229_024_00620_6
crossref_primary_10_1038_s41598_018_29538_9
crossref_primary_10_1002_mp_14183
crossref_primary_10_3390_sci5010013
crossref_primary_10_1007_s12021_019_09418_x
crossref_primary_10_3389_fnins_2019_00657
crossref_primary_10_3390_nu16244303
crossref_primary_10_1109_JBHI_2024_3393625
crossref_primary_10_1109_JBHI_2021_3100559
crossref_primary_10_1007_s12652_020_02031_w
crossref_primary_10_2174_0115672050352061250328055829
crossref_primary_10_1038_s41598_020_58074_8
crossref_primary_10_1155_2021_6890024
crossref_primary_10_1016_j_patrec_2019_06_026
crossref_primary_10_1002_hbm_24428
Cites_doi 10.1001/archneurol.2011.123
10.1016/j.pscychresns.2011.06.014
10.1196/annals.1440.011
10.1016/j.nicl.2014.12.009
10.1016/j.nicl.2013.07.006
10.1016/j.neuroimage.2013.05.079
10.1111/cns.12499
10.1109/TNNLS.2015.2476656
10.2307/2531595
10.3233/JAD-2010-100840
10.1007/978-3-642-33065-0_33
10.1097/WCO.0b013e328306f2c5
10.1109/TPAMI.2008.79
10.1001/archneur.58.12.1985
10.1016/j.jalz.2012.02.001
10.1093/cercor/bhn256
10.1016/j.neuroimage.2008.10.055
10.1007/978-3-642-40763-5_72
10.1007/s00429-010-0283-8
10.1109/ICPR.2010.626
10.1002/hbm.23240
10.1093/brain/124.4.739
10.1371/journal.pone.0102995
10.1148/radiol.2511080924
10.1016/j.jneumeth.2015.05.020
10.1002/hbm.23524
10.1016/j.neuroimage.2013.09.071
10.1145/1961189.1961199
10.1118/1.4941011
10.1017/S1355617709090523
10.1016/j.dcn.2015.08.003
10.1016/j.neuroimage.2009.10.003
10.1109/TIP.2016.2627806
10.1016/j.jalz.2007.04.381
10.1007/s12021-014-9241-6
10.1006/nimg.2001.0978
10.3389/fnins.2015.00307
10.1016/j.compbiomed.2013.07.004
10.1371/journal.pone.0021976
10.1093/brain/aww143
10.1007/BF00308809
10.1007/BF03164791
10.1002/hbm.22957
10.1002/hbm.22156
10.1016/j.mri.2015.10.003
10.1016/j.media.2016.03.003
10.1109/BMEI.2012.6513178
10.1016/j.neuroimage.2013.10.067
10.3233/JAD-2010-091504
10.1109/TBME.2013.2284195
10.1142/S0129065716500325
10.3233/JAD-160092
10.1002/hbm.22914
10.1016/j.neuroimage.2008.10.031
10.1152/jn.2002.88.2.1051
10.1002/hipo.22051
10.1002/hbm.23448
10.1109/EMBC.2016.7591989
10.1007/11941439_114
10.1016/j.neuroimage.2011.07.044
10.1016/j.nicl.2014.07.003
10.1038/jcbfm.1993.4
10.1007/978-3-319-10470-6_90
10.1016/j.neuroimage.2015.02.037
10.1080/10556788.2010.526608
10.1016/j.cpet.2007.09.003
10.1016/j.patcog.2012.11.019
10.1093/brain/awn278
10.1111/j.1467-9868.2010.00767.x
10.1016/j.neuroimage.2007.08.018
10.1016/j.neuroimage.2016.07.058
10.1371/journal.pone.0037828
10.1093/brain/awp105
10.1073/pnas.0504136102
10.1371/journal.pone.0082107
10.1016/j.neuroimage.2017.02.074
10.1016/j.neuroimage.2010.10.026
10.1016/j.mri.2016.07.001
10.1109/TNB.2015.2403274
10.3389/fnins.2014.00239
10.1523/JNEUROSCI.0415-15.2015
10.1186/1471-2202-12-56
10.1016/j.neuroimage.2011.10.015
10.1080/000164800750001026
10.1111/j.2517-6161.1996.tb02080.x
10.1523/JNEUROSCI.4356-13.2014
10.1016/j.neuroimage.2016.10.005
10.1016/j.neuroimage.2013.07.019
10.1016/j.neuroimage.2011.10.018
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23711
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Dynamic Connectivity for MCI Classification
EISSN 1097-0193
EndPage 5034
ExternalDocumentID PMC5593789
28665045
10_1002_hbm_23711
HBM23711
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: EB006733; EB008374; MH100217; MH108914; AG041721; AG049371; AG042599; AG053867; EB022880; MH110274
– fundername: Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government
  funderid: 2017‐0‐00451
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB022880
– fundername: NIMH NIH HHS
  grantid: U01 MH110274
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIMH NIH HHS
  grantid: R21 MH108914
– fundername: NIA NIH HHS
  grantid: R01 AG049371
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
– fundername: NIA NIH HHS
  grantid: RF1 AG053867
– fundername: Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government
  grantid: 2017‐0‐00451
– fundername: ;
  grantid: EB006733; EB008374; MH100217; MH108914; AG041721; AG049371; AG042599; AG053867; EB022880; MH110274
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFFHD
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4431-c223544e0783757cb62b3d466632cc2f6f6743bf9070903dd6febfdd9e43c4fd3
IEDL.DBID WIN
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417002000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:44:44 EDT 2025
Sat Sep 27 23:06:49 EDT 2025
Mon Oct 06 17:51:53 EDT 2025
Mon Jul 21 06:07:13 EDT 2025
Sat Nov 29 02:24:35 EST 2025
Tue Nov 18 21:04:16 EST 2025
Tue Nov 11 03:12:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords mild cognitive impairment
functional connectivity
functional correlation tensor
resting-state fMRI
Alzheimer's disease
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4431-c223544e0783757cb62b3d466632cc2f6f6743bf9070903dd6febfdd9e43c4fd3
Notes Xiaobo Chen and Han Zhang are co‐first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9940-1637
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.23711
PMID 28665045
PQID 1937412951
PQPubID 996345
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5593789
proquest_miscellaneous_1915344010
proquest_journals_1937412951
pubmed_primary_28665045
crossref_citationtrail_10_1002_hbm_23711
crossref_primary_10_1002_hbm_23711
wiley_primary_10_1002_hbm_23711_HBM23711
PublicationCentury 2000
PublicationDate October 2017
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 1993; 7
2009; 45
2015; 35
2009; 44
2014b; 61
2015; 36
2002; 15
2013; 3
2013; 23
2016d; 43
2008; 39
2016; 32
2011; 54
2011; 12
2017; 152
2012; 59
2013; 8
2011; 194
2016; 37
2016; 141
2016; 34
2010; 22
2010; 20
2014; 5
2008; 1124
2005; 102
2017; 38
2006; 27
2015; 253
2011; 73
2002; 88
2000; 120
2008; 21
2011; 68
2012; 7440
2007; 2
2012; 27
2007; 3
2014; 9
2014; 8
2009; 19
2001; 58
2009; 15
2016a; 54
1988
2011; 215
2015; 13
2012a; 7
2001; 124
2015; 15
2015; 14
2011; 2
2012
2017; 26
2013; 43
2013; 46
2010
2017; 27
2013; 83
2014a; 8674
2009; 132
1991; 82
1996
2006
1999; 20
2009; 251
2013; 8150
2015; 9
2011; 6
2015; 7
2014; 87
1993; 13
2016b; 27
2009; 31
2013; 34
2015; 112
2013; 80
2015; 2015
2016
2016; 139
2009; 6
2015
2014
2012b; 59
2012; 6
2017; 146
2008; 131
2014; 34
2010; 52
2012; 8
2016; 22
2014; 102
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
Tibshirani R (e_1_2_7_72_1) 1996
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Mori S (e_1_2_7_53_1) 2006; 27
Wee C‐Y (e_1_2_7_76_1) 2015
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_94_1
Egidio D (e_1_2_7_24_1) 2012; 6
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
Li X (e_1_2_7_46_1) 2015; 2015
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
Liu J (e_1_2_7_42_1) 2009; 6
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_91_1
e_1_2_7_95_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Mosier KM (e_1_2_7_55_1) 1999; 20
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 54
  start-page: 1812
  year: 2011
  end-page: 1822
  article-title: Enriched white matter connectivity networks for accurate identification of MCI patients
  publication-title: Neuroimage
– volume: 43
  start-page: 1175
  year: 2016d
  end-page: 1186
  article-title: Automatic labeling of MR brain images by hierarchical learning of atlas forests
  publication-title: Med Phys
– volume: 120
  start-page: 247
  year: 2000
  end-page: 250
  article-title: Synaptic alterations in the vestibulocerebellar system in Alzheimer's disease‐A golgi and electron microscope study
  publication-title: Acta Otolaryngol
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 8
  article-title: Exploring dynamic brain functional networks using continuous state‐related functional MRI
  publication-title: BioMed Research International
– volume: 20
  start-page: 843
  year: 2010
  end-page: 854
  article-title: Pre‐clinical detection of Alzheimer's disease using FDG‐PET, with or without amyloid imaging
  publication-title: J Alzheimers Dis
– volume: 8150
  start-page: 583
  year: 2013
  end-page: 590
– volume: 7
  start-page: 45
  year: 1993
  end-page: 50
  article-title: Cerebrocerebellar relationships in normal subjects and patients with dementia of the Alzheimer type: A SPECT study
  publication-title: Ann Nucl Med
– volume: 27
  start-page: 1384
  year: 2006
  end-page: 1385
  article-title: MRI Atlas of Human White Matter
  publication-title: AJNR Am. J. Neuroradiol
– volume: 124
  start-page: 739
  year: 2001
  end-page: 756
  article-title: Altered brain functional connectivity and impaired short‐term memory in Alzheimer's disease
  publication-title: Brain
– start-page: 2556
  year: 2010
  end-page: 2559
– volume: 34
  start-page: 10541
  year: 2014
  end-page: 10553
  article-title: Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients
  publication-title: J Neurosci
– volume: 39
  start-page: 279
  year: 2008
  end-page: 289
  article-title: A simple view of the brain through a frequency‐specific functional connectivity measure
  publication-title: Neuroimage
– volume: 22
  start-page: 212
  year: 2016
  end-page: 219
  article-title: Diagnosis of autism spectrum disorders using temporally distinct resting‐state functional connectivity networks
  publication-title: CNS Neurosci Ther
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: Neuroimage
– volume: 32
  start-page: 84
  year: 2016
  end-page: 100
  article-title: Hyper‐connectivity of functional networks for brain disease diagnosis
  publication-title: Med Image Anal
– volume: 215
  start-page: 265
  year: 2011
  end-page: 271
  article-title: Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer's disease
  publication-title: Brain Struct Funct
– volume: 21
  start-page: 424
  year: 2008
  end-page: 430
  article-title: Resting‐state functional connectivity in neuropsychiatric disorders
  publication-title: Curr Opin Neurol
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 2209
  year: 2009
  end-page: 2229
  article-title: The resting brain: Unconstrained yet reliable
  publication-title: Cereb Cortex
– year: 2014
– volume: 13
  start-page: 277
  year: 2015
  end-page: 295
  article-title: Supervised discriminative group sparse representation for mild cognitive impairment diagnosis
  publication-title: Neuroinformatics
– volume: 46
  start-page: 1579
  year: 2013
  end-page: 1594
  article-title: Complete large margin linear discriminant analysis using mathematical programming approach
  publication-title: Pattern Recognit
– volume: 15
  start-page: 372
  year: 2009
  article-title: Functional MRI changes in amnestic and non‐amnestic MCI during encoding and recognition tasks
  publication-title: J Int Neuropsychol Soc
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  article-title: On the interpretation of weight vectors of linear models in multivariate
  publication-title: Neuroimage
– volume: 83
  start-page: 937
  year: 2013
  end-page: 950
  article-title: Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest
  publication-title: Neuroimage
– volume: 8674
  start-page: 724
  year: 2014a
  end-page: 732
– volume: 7
  start-page: e37828
  year: 2012a
  article-title: Resting‐state multi‐spectrum functional connectivity networks for identification of MCI patients
  publication-title: PLoS One
– volume: 152
  start-page: 371
  year: 2017
  end-page: 380
  article-title: Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations
  publication-title: Neuroimage
– volume: 58
  start-page: 1985
  year: 2001
  end-page: 1992
  article-title: Current concepts in mild cognitive impairment
  publication-title: Arch Neurol
– volume: 3
  start-page: 180
  year: 2013
  end-page: 195
  article-title: Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging
  publication-title: Neuroimage
– start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc Ser B
– volume: 34
  start-page: 1235
  year: 2016
  end-page: 1241
  article-title: Effects of anesthesia on resting state BOLD signals in white matter of non‐human primates
  publication-title: Magn Reson Imaging
– volume: 27
  start-page: 2256
  year: 2016b
  end-page: 2267
  article-title: Sparse Bayesian classification of EEG for brain‐computer Interface
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 8
  start-page: e82107
  year: 2013
  article-title: Spatio‐temporal correlation tensors reveal functional structure in human brain
  publication-title: PLoS One
– volume: 7
  start-page: 288
  year: 2015
  end-page: 296
  article-title: Cerebro‐cerebellar connectivity is increased in primary lateral sclerosis
  publication-title: Neuroimage
– start-page: 837
  year: 1988
  end-page: 845
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
– volume: 8
  start-page: 239
  year: 2014
  article-title: Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions
  publication-title: Front Neurosci
– volume: 132
  start-page: 2036
  year: 2009
  end-page: 2047
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: Impact of cognitive reserve
  publication-title: Brain
– volume: 251
  start-page: 195
  year: 2009
  end-page: 205
  article-title: Alzheimer disease: Quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment 1
  publication-title: Radiology
– volume: 27
  start-page: 1650032
  year: 2017
  article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int J Neural Syst
– volume: 112
  start-page: 232
  year: 2015
  end-page: 243
  article-title: Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting‐state fMRI
  publication-title: Neuroimage
– volume: 12
  start-page: 56
  year: 2011
  article-title: Investigation of fMRI activation in the internal capsule
  publication-title: BMC Neurosci
– volume: 6
  start-page: 491
  year: 2009
  article-title: SLEP: Sparse learning with efficient projections
  publication-title: Ariz State Univ
– volume: 7440
  year: 2012
– volume: 45
  start-page: S173
  year: 2009
  end-page: S186
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: Neuroimage
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 13
  start-page: 5
  year: 1993
  end-page: 5
  article-title: Functional connectivity: The principal‐component analysis of large (PET) data sets
  publication-title: J Cereb Blood Flow Metab
– volume: 73
  start-page: 559
  year: 2011
  end-page: 578
  article-title: Multiscale adaptive regression models for neuroimaging data
  publication-title: J R Stat Soc Ser B
– start-page: 1
  year: 2015
  end-page: 15
  article-title: Sparse temporally dynamic resting‐state functional connectivity networks for early MCI identification
  publication-title: Brain Imaging Behav
– volume: 61
  start-page: 576
  year: 2014b
  end-page: 589
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans Biomed Eng
– volume: 6
  start-page: 116
  year: 2012
  article-title: Seeking a unified framework for cerebellar function and dysfunction: From circuit operations to cognition
  publication-title: Front Neural Circuits
– volume: 59
  start-page: 2045
  year: 2012b
  end-page: 2056
  article-title: Identification of MCI individuals using structural and functional connectivity networks
  publication-title: Neuroimage
– volume: 43
  start-page: 1313
  year: 2013
  end-page: 1320
  article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease
  publication-title: Comput Biol Med
– volume: 27
  start-page: 431
  year: 2012
  end-page: 443
  article-title: A feature selection method for nonparallel plane support vector machine classification
  publication-title: Optimization Methods Softw
– volume: 9
  start-page: 307
  year: 2015
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: A machine learning approach
  publication-title: Front Neurosci
– volume: 139
  start-page: 2307
  year: 2016
  end-page: 2321
  article-title: Neural, electrophysiological and anatomical basis of brain‐network variability and its characteristic changes in mental disorders
  publication-title: Brain
– volume: 3
  start-page: 186
  year: 2007
  end-page: 191
  article-title: Forecasting the global burden of Alzheimer's disease
  publication-title: Alzheimer's Dementia
– volume: 37
  start-page: 3282
  year: 2016
  end-page: 3296
  article-title: High‐order resting‐state functional connectivity network for MCI classification
  publication-title: Hum Brain Mapp
– volume: 194
  start-page: 7
  year: 2011
  end-page: 13
  article-title: Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity
  publication-title: Psychiatry Res
– volume: 35
  start-page: 12932
  year: 2015
  end-page: 12946
  article-title: Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury
  publication-title: J Neurosci
– volume: 131
  start-page: 3277
  year: 2008
  end-page: 3285
  article-title: Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: An MRI study
  publication-title: Brain
– volume: 22
  start-page: 315
  year: 2010
  end-page: 327
  article-title: Individual prediction of cognitive decline in mild cognitive impairment using support vector machine‐based analysis of diffusion tensor imaging data
  publication-title: J Alzheimers Dis
– volume: 141
  start-page: 399
  year: 2016
  end-page: 407
  article-title: Estimating functional brain networks by incorporating a modularity prior
  publication-title: NeuroImage
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: Neuroimage
– year: 2016
– volume: 88
  start-page: 1051
  year: 2002
  end-page: 1058
  article-title: Interhemispheric transmission of visuomotor information in humans: fMRI evidence
  publication-title: J Neurophysiol
– volume: 26
  start-page: 648
  year: 2017
  end-page: 659
  article-title: Flexible multi‐view dimensionality co‐reduction
  publication-title: IEEE Trans Image Process
– volume: 2
  year: 2011
  article-title: LIBSVM: A Library for Support Vector Machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 54
  start-page: 1095
  year: 2016a
  end-page: 1112
  article-title: Topographic information based high‐order functional connectivity and its application in abnormality detection for mild cognitive impairment
  publication-title: J Alzheimers Dis
– year: 2012
– start-page: 1015
  year: 2006
  end-page: 1021
– volume: 102
  start-page: 184
  year: 2014
  end-page: 191
  article-title: Fusing DTI and fMRI data: a survey of methods and applications
  publication-title: Neuroimage
– volume: 253
  start-page: 183
  year: 2015
  end-page: 192
  article-title: Test‐retest reliability of graph metrics of resting state MRI functional brain networks: A review
  publication-title: J Neurosci Methods
– volume: 146
  start-page: :1128
  year: 2017
  end-page: 1141
  article-title: Mapping white‐matter functional organization at rest and during naturalistic visual perception
  publication-title: Neuroimage
– volume: 44
  start-page: 1415
  year: 2009
  end-page: 1422
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short‐term conversion to AD: Results from ADNI
  publication-title: Neuroimage
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain
  publication-title: Neuroimage
– volume: 38
  start-page: 2370
  year: 2017
  end-page: 2383
  article-title: Connectivity strength‐weighted sparse group representation‐based brain network construction for MCI classification
  publication-title: Hum Brain Mapp
– volume: 20
  start-page: 1520
  year: 1999
  end-page: 1526
  article-title: Lateralization of cortical function in swallowing: A functional MR imaging study
  publication-title: Am J Neuroradiol
– volume: 2
  start-page: 25
  year: 2007
  end-page: 34
  article-title: Positron emission tomography diagnosis of Alzheimer's disease
  publication-title: PET Clin
– volume: 6
  start-page: e21976
  year: 2011
  article-title: Graph theoretical analysis of functional brain networks: Test‐retest evaluation on short‐ and long‐term resting‐state functional MRI data
  publication-title: PLoS ONE
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
– volume: 14
  start-page: 237
  year: 2015
  end-page: 247
  article-title: Resting‐state whole‐brain functional connectivity networks for MCI classification using L2‐regularized logistic regression
  publication-title: IEEE Trans Nanobiosci
– volume: 9
  start-page: e102995
  year: 2014
  article-title: Widespread disruption of functional brain organization in early‐onset Alzheimer's disease
  publication-title: PLoS One
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  article-title: Neuropathological stageing of Alzheimer‐related changes
  publication-title: Acta Neuropathol
– volume: 1124
  start-page: 1
  year: 2008
  end-page: 38
  article-title: The brain's default network
  publication-title: Ann NY Acad Sci
– volume: 36
  start-page: 4880
  year: 2015
  end-page: 4896
  article-title: Identification of infants at high‐risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks
  publication-title: Hum Brain Mapp
– volume: 8
  start-page: 131
  year: 2012
  end-page: 168
  article-title: 2012 Alzheimer's disease facts and figures
  publication-title: Alzheimers Dementia
– volume: 34
  start-page: 8
  year: 2016
  end-page: 17
  article-title: Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging
  publication-title: Magn Reson Imaging
– volume: 34
  start-page: 3411
  year: 2013
  end-page: 3425
  article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Hum Brain Mapp
– volume: 36
  start-page: 4247
  year: 2015
  end-page: 4261
  article-title: Disruption of cortical integration during midazolam‐induced light sedation: Effects of Midazolam‐Induced Sedation on RSNs
  publication-title: Hum Brain Mapp
– volume: 15
  start-page: 83
  year: 2015
  end-page: 93
  article-title: A Short‐term test‐retest reliability of resting state fMRI metrics in children with and without attention‐deficit/hyperactivity disorder
  publication-title: Dev Cognit Neurosci
– volume: 68
  start-page: 1257
  year: 2011
  end-page: 1266
  article-title: Longitudinal change of biomarkers in cognitive decline
  publication-title: Arch Neurol
– volume: 23
  start-page: 1
  year: 2013
  end-page: 6
  article-title: Increased functional connectivity within medial temporal lobe in mild cognitive impairment
  publication-title: Hippocampus
– volume: 38
  start-page: 1191
  year: 2017
  end-page: 1207
  article-title: 3D tract‐specific local and global analysis of white matter integrity in Alzheimer's disease
  publication-title: Hum Brain Mapp
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 59
  start-page: 431
  year: 2012
  end-page: 438
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
– ident: e_1_2_7_47_1
  doi: 10.1001/archneurol.2011.123
– ident: e_1_2_7_58_1
  doi: 10.1016/j.pscychresns.2011.06.014
– ident: e_1_2_7_10_1
  doi: 10.1196/annals.1440.011
– ident: e_1_2_7_51_1
  doi: 10.1016/j.nicl.2014.12.009
– ident: e_1_2_7_56_1
  doi: 10.1016/j.nicl.2013.07.006
– ident: e_1_2_7_20_1
– ident: e_1_2_7_34_1
  doi: 10.1016/j.neuroimage.2013.05.079
– ident: e_1_2_7_80_1
  doi: 10.1111/cns.12499
– ident: e_1_2_7_91_1
  doi: 10.1109/TNNLS.2015.2476656
– ident: e_1_2_7_19_1
  doi: 10.2307/2531595
– ident: e_1_2_7_31_1
  doi: 10.3233/JAD-2010-100840
– ident: e_1_2_7_4_1
  doi: 10.1007/978-3-642-33065-0_33
– ident: e_1_2_7_30_1
  doi: 10.1097/WCO.0b013e328306f2c5
– ident: e_1_2_7_83_1
  doi: 10.1109/TPAMI.2008.79
– ident: e_1_2_7_57_1
  doi: 10.1001/archneur.58.12.1985
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jalz.2012.02.001
– ident: e_1_2_7_65_1
  doi: 10.1093/cercor/bhn256
– ident: e_1_2_7_82_1
  doi: 10.1016/j.neuroimage.2008.10.055
– ident: e_1_2_7_69_1
  doi: 10.1007/978-3-642-40763-5_72
– volume: 27
  start-page: 1384
  year: 2006
  ident: e_1_2_7_53_1
  article-title: MRI Atlas of Human White Matter
  publication-title: AJNR Am. J. Neuroradiol
– ident: e_1_2_7_23_1
  doi: 10.1007/s00429-010-0283-8
– ident: e_1_2_7_66_1
  doi: 10.1109/ICPR.2010.626
– ident: e_1_2_7_14_1
  doi: 10.1002/hbm.23240
– ident: e_1_2_7_29_1
  doi: 10.1093/brain/124.4.739
– ident: e_1_2_7_3_1
  doi: 10.1371/journal.pone.0102995
– ident: e_1_2_7_50_1
  doi: 10.1148/radiol.2511080924
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jneumeth.2015.05.020
– ident: e_1_2_7_89_1
  doi: 10.1002/hbm.23524
– ident: e_1_2_7_97_1
  doi: 10.1016/j.neuroimage.2013.09.071
– ident: e_1_2_7_12_1
  doi: 10.1145/1961189.1961199
– ident: e_1_2_7_93_1
  doi: 10.1118/1.4941011
– ident: e_1_2_7_48_1
  doi: 10.1017/S1355617709090523
– ident: e_1_2_7_68_1
  doi: 10.1016/j.dcn.2015.08.003
– ident: e_1_2_7_62_1
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: e_1_2_7_94_1
  doi: 10.1109/TIP.2016.2627806
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jalz.2007.04.381
– ident: e_1_2_7_70_1
  doi: 10.1007/s12021-014-9241-6
– ident: e_1_2_7_73_1
  doi: 10.1006/nimg.2001.0978
– ident: e_1_2_7_64_1
  doi: 10.3389/fnins.2015.00307
– ident: e_1_2_7_40_1
  doi: 10.1016/j.compbiomed.2013.07.004
– ident: e_1_2_7_75_1
  doi: 10.1371/journal.pone.0021976
– ident: e_1_2_7_92_1
  doi: 10.1093/brain/aww143
– ident: e_1_2_7_8_1
  doi: 10.1007/BF00308809
– ident: e_1_2_7_32_1
  doi: 10.1007/BF03164791
– ident: e_1_2_7_39_1
  doi: 10.1002/hbm.22957
– volume: 2015
  start-page: 1
  year: 2015
  ident: e_1_2_7_46_1
  article-title: Exploring dynamic brain functional networks using continuous state‐related functional MRI
  publication-title: BioMed Research International
– ident: e_1_2_7_81_1
  doi: 10.1002/hbm.22156
– ident: e_1_2_7_22_1
  doi: 10.1016/j.mri.2015.10.003
– ident: e_1_2_7_37_1
  doi: 10.1016/j.media.2016.03.003
– volume: 6
  start-page: 491
  year: 2009
  ident: e_1_2_7_42_1
  article-title: SLEP: Sparse learning with efficient projections
  publication-title: Ariz State Univ
– volume: 6
  start-page: 116
  year: 2012
  ident: e_1_2_7_24_1
  article-title: Seeking a unified framework for cerebellar function and dysfunction: From circuit operations to cognition
  publication-title: Front Neural Circuits
– ident: e_1_2_7_87_1
  doi: 10.1109/BMEI.2012.6513178
– ident: e_1_2_7_33_1
  doi: 10.1016/j.neuroimage.2013.10.067
– ident: e_1_2_7_54_1
  doi: 10.3233/JAD-2010-091504
– ident: e_1_2_7_36_1
  doi: 10.1109/TBME.2013.2284195
– ident: e_1_2_7_96_1
  doi: 10.1142/S0129065716500325
– ident: e_1_2_7_90_1
  doi: 10.3233/JAD-160092
– ident: e_1_2_7_43_1
  doi: 10.1002/hbm.22914
– ident: e_1_2_7_52_1
  doi: 10.1016/j.neuroimage.2008.10.031
– ident: e_1_2_7_71_1
  doi: 10.1152/jn.2002.88.2.1051
– ident: e_1_2_7_17_1
  doi: 10.1002/hipo.22051
– ident: e_1_2_7_38_1
  doi: 10.1002/hbm.23448
– ident: e_1_2_7_2_1
  doi: 10.1109/EMBC.2016.7591989
– ident: e_1_2_7_67_1
  doi: 10.1007/11941439_114
– ident: e_1_2_7_74_1
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: e_1_2_7_16_1
  doi: 10.1016/j.nicl.2014.07.003
– ident: e_1_2_7_26_1
  doi: 10.1038/jcbfm.1993.4
– ident: e_1_2_7_35_1
  doi: 10.1007/978-3-319-10470-6_90
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2015.02.037
– ident: e_1_2_7_88_1
  doi: 10.1080/10556788.2010.526608
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cpet.2007.09.003
– ident: e_1_2_7_13_1
  doi: 10.1016/j.patcog.2012.11.019
– ident: e_1_2_7_18_1
  doi: 10.1093/brain/awn278
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1467-9868.2010.00767.x
– ident: e_1_2_7_63_1
  doi: 10.1016/j.neuroimage.2007.08.018
– ident: e_1_2_7_60_1
  doi: 10.1016/j.neuroimage.2016.07.058
– ident: e_1_2_7_78_1
  doi: 10.1371/journal.pone.0037828
– ident: e_1_2_7_61_1
  doi: 10.1093/brain/awp105
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.0504136102
– ident: e_1_2_7_21_1
  doi: 10.1371/journal.pone.0082107
– ident: e_1_2_7_84_1
  doi: 10.1016/j.neuroimage.2017.02.074
– ident: e_1_2_7_77_1
  doi: 10.1016/j.neuroimage.2010.10.026
– ident: e_1_2_7_85_1
  doi: 10.1016/j.mri.2016.07.001
– ident: e_1_2_7_95_1
  doi: 10.1109/TNB.2015.2403274
– ident: e_1_2_7_27_1
  doi: 10.3389/fnins.2014.00239
– ident: e_1_2_7_86_1
  doi: 10.1523/JNEUROSCI.0415-15.2015
– ident: e_1_2_7_28_1
  doi: 10.1186/1471-2202-12-56
– ident: e_1_2_7_79_1
  doi: 10.1016/j.neuroimage.2011.10.015
– start-page: 1
  year: 2015
  ident: e_1_2_7_76_1
  article-title: Sparse temporally dynamic resting‐state functional connectivity networks for early MCI identification
  publication-title: Brain Imaging Behav
– ident: e_1_2_7_7_1
  doi: 10.1080/000164800750001026
– start-page: 267
  year: 1996
  ident: e_1_2_7_72_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_7_44_1
  doi: 10.1523/JNEUROSCI.4356-13.2014
– ident: e_1_2_7_49_1
  doi: 10.1016/j.neuroimage.2016.10.005
– ident: e_1_2_7_41_1
  doi: 10.1016/j.neuroimage.2013.07.019
– volume: 20
  start-page: 1520
  year: 1999
  ident: e_1_2_7_55_1
  article-title: Lateralization of cortical function in swallowing: A functional MR imaging study
  publication-title: Am J Neuroradiol
– ident: e_1_2_7_59_1
  doi: 10.1016/j.neuroimage.2011.10.018
SSID ssj0011501
Score 2.593785
Snippet Brain functional connectivity (FC) extracted from resting‐state fMRI (RS‐fMRI) has become a popular approach for diagnosing various neurodegenerative diseases,...
Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for diagnosing various neurodegenerative diseases,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5019
SubjectTerms Alzheimer's disease
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain Mapping
Cerebrovascular Circulation - physiology
Classification
Cognitive ability
Cognitive Dysfunction - classification
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - physiopathology
Diagnosis
Diagnosis, Computer-Assisted - methods
Diffusion Tensor Imaging
Feature extraction
functional connectivity
functional correlation tensor
Functional magnetic resonance imaging
Gray Matter - diagnostic imaging
Gray Matter - physiopathology
Humans
Learning algorithms
Machine Learning
Magnetic Resonance Imaging - methods
Mathematical analysis
mild cognitive impairment
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - physiopathology
Neurodegenerative diseases
Neuroimaging
Neurological diseases
Oxygen - blood
Oxygenation
resting‐state fMRI
Segments
Sensitivity and Specificity
Substantia alba
Substantia grisea
Tensors
White Matter - diagnostic imaging
White Matter - physiopathology
Title Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23711
https://www.ncbi.nlm.nih.gov/pubmed/28665045
https://www.proquest.com/docview/1937412951
https://www.proquest.com/docview/1915344010
https://pubmed.ncbi.nlm.nih.gov/PMC5593789
Volume 38
WOSCitedRecordID wos000417002000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4BqiouQKEFU4q2VYV6cZOsN15bPQECgdREPbQlN8v7EkjEQUl4_Xtmdm23Ea1Uqbconih-zHi-eX0D8JFLK0RpKQWWY4Bi0NJVWspY2Z7ULs9130-5_vwqh8NsNMq_LcGXZhYm8EO0CTeyDP--JgMv1azzizT0Uo0_80T6ud6e8EZ5cT5sKwgIdHywhS42zvEN3LAKdXmn_eWiL3oGMJ_3Sf6OX70DOl3_r1PfgLUad7LDoCivYMlWm7B1WGHMPX5kB8x3gvoU-ya8HNQF9y24PnmYT8PsA5s4ZsL-ekbeMCQRmaZOGR12UDAaVmGKtk4wjOMf2dizd7KyMuye6hXNF4iU2eD4nGnC7tSs5PXjNfw4Pfl-fBbXCxpiLRB4xBqxRV8IS6VA2ZdapVwlRmBElHCtuUsdjTgohwE4pYOMSZ1VzpjcikQLZ5I3sFJNKrsDrKvKTCpXakuE9l2nkh5qi1RpisJZ2o_gU_OoCl2zl9MSjesi8C7zAm9q4W9qBB9a0ZtA2fEnob3meRe11c4KBLMIsDiCzgjet4fR3qiIUlZ2cksy6CMERqXdCLaDerT_wok8EDFyBHJBcVoB4vJePFJdXXpObwzsEpnleJlecf5-4sXZ0cB_2P130bewygmN-B7EPViZT2_tO3ih7-ZXs-k-LMtRtu-t5wnVsh0h
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hWpVeSnkVtxSWqqp6MYT1xhtLXCgCJSKJeqCFm-V9CSTioBDa8u87s2sbIopUiVsUTxQ_ZjzfvL4B-MylFaKwlALLMEAxaOkqLWSs7J7ULst020-5_uzL4bBzfp59n4P9ehYm8EM0CTeyDP--JgOnhPTuPWvohRrt8ETSYO8LkYqM9hec9YZNDQGhjg-30MnGGb6Da16hFt9tfjrrjR5BzMedkg8RrHdBx4vPO_m38KaCnuwg6MoSzNlyGVYOSgy7R3fsC_PNoD7LvgyvBlXNfQWujv5MJ2H8gY0dM2GFPSOHGPKITFOzjA5rKBjNqzBFiycYhvJ3bOQJPFlRGvabShb1FwiW2eCwxzTBd-pX8iqyCj-Oj04Pu3G1oyHWArFHrBFetIWwVA2UbalVylViBAZFCdeau9TRlINyGINTRsiY1FnljMmsSLRwJlmD-XJc2nVgLVV0pHKFtsRp33Iq2UOFkSpNUbiTtiP4Wj-rXFcE5rRH4yoP1Ms8x5ua-5sawadG9DqwdvxLaKN-4HlluDc54lnEWBxxZwTbzWE0OaqjFKUd35IMugmBgWkrgndBP5p_4cQfiDA5AjmjOY0A0XnPHikvLzytN8Z2iexkeJlec54-8bz7beA_vP9_0S1Y6J4O-nm_Nzz5AK85gRPfkrgB89PJrf0IL_Wv6eXNZNMb0V_54CBi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9tAEB4hilBfSjnamnNBVdUXl7DeeGOpL1wRUUnEQw_eLO8lkIiDQmjLv2dm13aJoBISb1E8UXzMeL65vgH4yKUVorCUAsswQDFo6SotZKzsntQuy3TbT7n-PJWDQef8PDubga_1LEzgh2gSbmQZ_n1NBm6vjdv9xxp6oYZfeCJpsPeVQBxODV2_eoOmhoBQx4db6GTjDN_BNa9Qi-82P532Ro8g5uNOyYcI1rug7sLLTv4tvKmgJ9sPurIIM7ZcguX9EsPu4R37xHwzqM-yL8F8v6q5L8PV8d_JOIw_sJFjJqywZ-QQQx6RaWqW0WENBaN5FaZo8QTDUP6ODT2BJytKw_5QyaL-AsEy6x_2mCb4Tv1KXkVW4Ef3-PvhSVztaIi1QOwRa4QXbSEsVQNlW2qVcpUYgUFRwrXmLnU05aAcxuCUETImdVY5YzIrEi2cSd7BbDkq7QdgLVV0pHKFtsRp33Iq2UOFkSpNUbiTtiP4XD-rXFcE5rRH4yoP1Ms8x5ua-5sawU4jeh1YO54SWq8feF4Z7k2OeBYxFkfcGcF2cxhNjuooRWlHtySDbkJgYNqK4H3Qj-ZfOPEHIkyOQE5pTiNAdN7TR8rLC0_rjbFdIjsZXqbXnP-feH5y0PcfVp8vugXzZ0fd_LQ3-LYGrzlhE9-RuA6zk_Gt3YA5_XtyeTPe9DZ0D1d8H90
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+dynamic+functional+connectivity+from+brain+grey+matter+and+white+matter+for+MCI+classification&rft.jtitle=Human+brain+mapping&rft.au=Chen%2C+Xiaobo&rft.au=Zhang%2C+Han&rft.au=Zhang%2C+Lichi&rft.au=Shen%2C+Celina&rft.date=2017-10-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=38&rft.issue=10&rft.spage=5019&rft_id=info:doi/10.1002%2Fhbm.23711&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon