Cytosolic detection of phagosomal bacteria—Mechanisms underlying PAMP exodus from the phagosome into the cytosol
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune resp...
Uloženo v:
| Vydáno v: | Molecular microbiology Ročník 116; číslo 6; s. 1420 - 1432 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.12.2021
|
| Témata: | |
| ISSN: | 0950-382X, 1365-2958, 1365-2958 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane‐oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.
The graphical illustrates the several means by which bacterial products may exit phagosomes to stimulate innate immune receptors present in the cytoplasm of eukaryotic cells. Each of these means of pathogen‐associated molecular pattern exodus is discussed in this review. |
|---|---|
| AbstractList | The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations. The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented towards the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained upon phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding for how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations. The graphical abstract illustrates the several means by which bacterial products may exit phagosomes to stimulate innate immune receptors present in the cytoplasm of eukaryotic cells. Each of these means of PAMP exodus are discussion in this review. Although the phagosomal membrane separates phagosomal bacteria and their PAMPs from the cytosol, phagosomal bacteria can stimulate cytosolic PRRs.Bacteria produce factors (e.g., toxins and secretion systems) that potentiate PAMP exodus from the phagosome into the cytosol to activate cytosolic PRRs.Host cells produce PAMP transporters and membranolytic proteins that aid in PAMP exodus from the phagosome into the cytosol to activate cytosolic PRRs. The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane‐oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations. The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane‐oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations. The graphical illustrates the several means by which bacterial products may exit phagosomes to stimulate innate immune receptors present in the cytoplasm of eukaryotic cells. Each of these means of pathogen‐associated molecular pattern exodus is discussed in this review. |
| Author | Ragland, Stephanie A. Kagan, Jonathan C. |
| Author_xml | – sequence: 1 givenname: Stephanie A. orcidid: 0000-0003-3614-2652 surname: Ragland fullname: Ragland, Stephanie A. organization: Boston Children’s Hospital and Harvard Medical School – sequence: 2 givenname: Jonathan C. orcidid: 0000-0003-2364-2746 surname: Kagan fullname: Kagan, Jonathan C. email: jonathan.kagan@childrens.harvard.edu organization: Boston Children’s Hospital and Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34738270$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9uEzEQxi1URNPCgRdAlrjAIa29f-0LUhUVqNSIHkDiZs3a48TVrh3sXSC3PgRPyJPgNiWCSjCXkT7_5vOMviNy4INHQp5zdsJznQ6DO-GVqPgjMuNlU88LWYsDMmOyZvNSFJ8PyVFK14zxkjXlE3JYVm2WWzYjcbEdQwq909TgiHp0wdNg6WYNq6wP0NMO9IjRwc-bH0vUa_AuDYlO3mDst86v6NXZ8ori92CmRG0MAx3XuDdA6vwY7iS9--opeWyhT_jsvh-TT2_PPy7ezy8_vLtYnF3OdVWVfN5JZIbLpsVadoUFU6NtG94ya0Fbi1ygZFXRdW0thQUB0khowCC0xggB5TF5s_PdTN2ARqMfI_RqE90AcasCOPX3i3drtQpflWiEKIsmG7y6N4jhy4RpVINLGvsePIYpqaKWVSGrWrKMvnyAXocp-nyeKhrO67aSssjUiz832q_yO44MvN4BOoaUIto9wpm6jVrlqNVd1Jk9fcBqN8JtfvkY1_9v4pvrcftva7VcXuwmfgFCHr7q |
| CitedBy_id | crossref_primary_10_1042_BCJ20210711 crossref_primary_10_3389_fimmu_2022_944142 crossref_primary_10_1016_j_immuni_2024_02_011 crossref_primary_10_1016_j_it_2024_02_003 crossref_primary_10_3390_pathogens11080863 crossref_primary_10_1016_j_celrep_2025_116002 crossref_primary_10_1089_jir_2023_0066 crossref_primary_10_1016_j_nantod_2023_102137 crossref_primary_10_1186_s13287_023_03520_3 crossref_primary_10_3389_fcimb_2022_1041682 crossref_primary_10_1038_s41586_025_08629_4 crossref_primary_10_1016_j_immuni_2023_04_001 crossref_primary_10_1016_j_cyto_2022_155875 crossref_primary_10_1186_s12964_025_02252_6 crossref_primary_10_3390_v15010052 |
| Cites_doi | 10.1126/scitranslmed.3001180 10.15252/embj.201798089 10.1016/j.chom.2015.05.004 10.1371/journal.ppat.1001345 10.1016/j.cell.2012.06.040 10.1073/pnas.1615771114 10.1016/j.molcel.2019.05.006 10.1084/jem.20100257 10.1016/j.immuni.2021.04.019 10.1371/journal.ppat.1007519 10.15252/embr.202050829 10.1016/j.cell.2018.01.034 10.1016/j.chom.2013.04.012 10.1016/j.cell.2021.05.020 10.1371/journal.ppat.1007501 10.1016/j.immuni.2018.08.016 10.1128/microbiolspec.VMBF-0012-2015 10.1126/science.aar7607 10.1016/j.celrep.2018.06.012 10.1111/cmi.12793 10.1074/jbc.M112.420869 10.3389/fmicb.2019.02242 10.1371/journal.ppat.1006829 10.1016/j.chom.2013.08.010 10.1128/IAI.00447-16 10.15252/embj.201899753 10.1016/j.molcel.2020.10.021 10.1128/mBio.01765-18 10.1016/j.ceb.2019.12.004 10.1073/pnas.1121286109 10.1128/IAI.01014-12 10.1038/nm.3813 10.1111/imr.12906 10.1182/blood-2012-01-401364 10.1074/jbc.M604933200 10.1038/s41467-020-16889-z 10.1126/science.1240248 10.1371/journal.ppat.1006496 10.1128/mBio.01188-17 10.1038/ni1346 10.1016/j.tim.2021.01.007 10.1074/jbc.M802848200 10.4049/jimmunol.1201111 10.1038/nature13133 10.1016/j.chom.2015.05.003 10.1128/IAI.00778-16 10.1016/j.immuni.2019.08.005 10.1016/j.celrep.2016.05.030 10.4049/jimmunol.1600409 10.1016/j.mib.2014.11.020 10.1038/nature13157 10.1111/j.1462-5822.2011.01646.x 10.1046/j.1365-2958.1998.00841.x 10.1016/j.chom.2015.05.005 10.1111/j.1462-5822.2009.01404.x 10.1073/pnas.1911646117 10.1016/j.cell.2015.08.027 10.1038/nrmicro2713 10.1038/ni.3119 10.1016/j.chom.2008.11.002 10.1016/j.bbadis.2021.166184 10.1007/s10875-010-9386-5 10.1016/j.immuni.2021.01.007 10.1038/s41420-018-0068-z 10.1038/ni.3118 10.1002/JLB.4RI0917-358R 10.1073/pnas.1321700111 10.1046/j.1365-2958.2002.02912.x 10.1038/s41590-020-0697-2 10.4049/jimmunol.1201055 10.1038/nature11419 10.1007/978-1-4939-2272-7_3 10.1128/IAI.00999-10 10.15252/embr.202050830 10.1556/1886.2020.00028 10.1371/journal.ppat.1003400 10.1073/pnas.1500374112 10.1038/nature06116 10.1073/pnas.0506461102 10.1371/journal.ppat.1002507 10.1038/ni1344 10.1073/pnas.1211521110 10.1016/j.ccell.2018.03.027 10.1016/j.cell.2017.09.034 10.1371/journal.ppat.1007240 10.1021/acscentsci.1c00440 10.1016/j.celrep.2020.108008 10.1128/IAI.00856-15 10.1126/science.aar5078 10.15252/embr.201846293 10.1073/pnas.1515966112 10.1038/nri.2016.58 10.15252/embj.2020104926 10.3390/cells9092042 10.1371/journal.ppat.1004650 10.1189/jlb.4MR0716-330R 10.1016/j.cell.2016.04.015 10.1126/science.1189801 10.1016/j.immuni.2012.06.009 10.1371/journal.ppat.0030051 10.1016/j.chom.2012.03.007 10.1080/21505594.2017.1321191 10.1038/nri3757 10.1016/j.cell.2007.05.059 10.3389/fmicb.2017.01503 10.1038/s41586-019-1553-0 10.1016/j.cell.2016.09.012 10.4049/jimmunol.1402764 10.15190/d.2016.17 10.1016/j.chom.2016.06.003 10.1016/j.cell.2020.02.041 10.1016/j.immuni.2020.03.016 10.1016/j.celrep.2019.03.100 10.1038/s41577-021-00524-z 10.1038/nature12025 10.3389/fimmu.2018.02061 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd 2021 John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
| DOI | 10.1111/mmi.14841 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1365-2958 |
| EndPage | 1432 |
| ExternalDocumentID | PMC8688326 34738270 10_1111_mmi_14841 MMI14841 |
| Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Jane Coffin Childs Memorial Fund for Medical Research – fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases funderid: AI093589; AI116550; AI133524; P30DK34854 – fundername: Burroughs Wellcome Fund – fundername: NIAID NIH HHS grantid: R56 AI093589 – fundername: NIAID NIH HHS grantid: R01 AI093589 – fundername: NIAID NIH HHS grantid: R01 AI116550 – fundername: NIAID NIH HHS grantid: R37 AI116550 – fundername: NIDDK NIH HHS grantid: P30 DK034854 – fundername: NIAID NIH HHS grantid: U19 AI133524 |
| GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c4431-b9e0d1967e59b2fad5ef76170ffacffe18e9042bb7598fa8a9d9a6adea7dd88a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720975800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-382X 1365-2958 |
| IngestDate | Tue Sep 30 17:17:56 EDT 2025 Thu Jul 10 18:49:21 EDT 2025 Sun Sep 07 02:41:15 EDT 2025 Wed Feb 19 02:26:31 EST 2025 Sat Nov 29 05:41:56 EST 2025 Tue Nov 18 22:17:47 EST 2025 Wed Jan 22 16:28:01 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | caspase-5 cyclic dinucleotides cGAS STING macrophage phagosome caspase-11 lipopolysaccharide guanylate binding proteins pathogen-associated molecular pattern caspase-4 pattern recognition receptor |
| Language | English |
| License | 2021 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4431-b9e0d1967e59b2fad5ef76170ffacffe18e9042bb7598fa8a9d9a6adea7dd88a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-3614-2652 0000-0003-2364-2746 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mmi.14841 |
| PMID | 34738270 |
| PQID | 2611574992 |
| PQPubID | 35968 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8688326 proquest_miscellaneous_2594294590 proquest_journals_2611574992 pubmed_primary_34738270 crossref_primary_10_1111_mmi_14841 crossref_citationtrail_10_1111_mmi_14841 wiley_primary_10_1111_mmi_14841_MMI14841 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Molecular microbiology |
| PublicationTitleAlternate | Mol Microbiol |
| PublicationYear | 2021 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2010; 12 2012; 120 2017; 85 2019; 10 2020; 11 2020; 10 2012; 11 2012; 10 2018; 49 2013; 9 2018; 9 2018; 4 2018; 172 2019; 20 2020; 297 2005; 102 2015; 83 2012; 490 2019; 27 2014; 14 2013; 110 2006; 281 2007; 3 2018; 33 2010; 30 2018; 37 2007; 449 2012; 189 2010; 207 2010; 328 2018; 103 2020; 39 2016; 167 2016; 165 2011; 79 2013; 341 2020; 32 2012; 37 2011; 3 2016; 16 2016; 15 2017; 413 2011; 7 2012; 109 2018; 24 2016; 4 2015; 194 2021; 54 2015; 112 2016; 20 2013; 81 2020; 21 2019; 573 2018; 14 2018; 362 2017; 8 2021; 21 2012; 287 2019; 51 2018; 360 2020; 63 2021; 29 2011; 13 2008; 4 2017; 199 2017; 114 2013; 14 2020; 52 2013; 13 2020; 9 2002; 44 2015; 1266 2016; 84 2015; 162 2021; 7 1998; 28 2015; 17 2007; 129 2015; 16 2019; 75 2020; 180 2020; 80 2015; 11 2006; 7 2021; 184 2017; 171 2014; 111 2008; 283 2021; 14 2012; 150 2015; 23 2021; 1867 2014; 509 2017; 13 2015; 21 2013; 496 2020; 117 2017; 19 2017; 101 2012; 8 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Apel F. (e_1_2_8_7_1) 2021; 14 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 Callaghan M.M. (e_1_2_8_13_1) 2017; 413 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 189 start-page: 4537 issue: 9 year: 2012 end-page: 4545 article-title: Failure to induce IFN‐beta production during infection contributes to pathogenicity publication-title: The Journal of Immunology – volume: 281 start-page: 35217 issue: 46 year: 2006 end-page: 35223 article-title: Regulation of maturation and infection through flagellin and host Ipaf publication-title: Journal of Biological Chemistry – volume: 54 start-page: 454 issue: 3 year: 2021 end-page: 467 e456 article-title: Heparin prevents caspase‐11‐dependent septic lethality independent of anticoagulant properties publication-title: Immunity – volume: 85 start-page: 1 issue: 10 year: 2017 end-page: 16 article-title: Guanylate binding proteins regulate inflammasome activation in response to hyperinjected Yersinia translocon components publication-title: Infection and Immunity – volume: 27 start-page: 1008 issue: 4 year: 2019 end-page: 1017 e1006 article-title: Enteropathogenic stimulates effector‐driven rapid caspase‐4 activation in human macrophages publication-title: Cell Reports – volume: 360 start-page: 265 issue: 6384 year: 2018 end-page: 270 article-title: Triggered recruitment of ESCRT machinery promotes endolysosomal repair publication-title: Science – volume: 199 start-page: 263 issue: 1 year: 2017 end-page: 270 article-title: SLC46 Family Transporters Facilitate Cytosolic Innate Immune Recognition of Monomeric Peptidoglycans publication-title: J Immunol – volume: 490 start-page: 288 issue: 7419 year: 2012 end-page: 291 article-title: Caspase‐11 increases susceptibility to Salmonella infection in the absence of caspase‐1 publication-title: Nature – volume: 7 start-page: 1073 issue: 6 year: 2021 end-page: 1088 article-title: Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP‐sensing macrophages and monocytes publication-title: ACS Central Science – volume: 21 start-page: 548 issue: 9 year: 2021 end-page: 569 article-title: The cGAS‐STING pathway as a therapeutic target in inflammatory diseases publication-title: Nature Reviews Immunology – volume: 8 start-page: 1303 issue: 7 year: 2017 end-page: 1315 article-title: cGAS‐STING‐TBK1‐IRF3/7 induced interferon‐beta contributes to the clearing of non tuberculous mycobacterial infection in mice publication-title: Virulence – volume: 362 start-page: 956 issue: 6417 year: 2018 end-page: 960 article-title: ESCRT‐dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation publication-title: Science – volume: 165 start-page: 1106 issue: 5 year: 2016 end-page: 1119 article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase‐11 activation publication-title: Cell – volume: 29 start-page: 823 issue: 9 year: 2021 end-page: 835 article-title: Impact of type I interferons on susceptibility to bacterial pathogens publication-title: Trends in Microbiology – volume: 20 start-page: 49 issue: 1 year: 2016 end-page: 59 article-title: Group B Streptococcus degrades cyclic‐di‐AMP to modulate STING‐dependent type I interferon production publication-title: Cell Host & Microbe – volume: 9 start-page: 2042 issue: 9 year: 2020 article-title: “Repair Me if You Can”: membrane damage, response, and control from the viral perspective publication-title: Cells – volume: 21 start-page: 880 issue: 8 year: 2020 end-page: 891 article-title: Guanylate‐binding proteins convert cytosolic bacteria into caspase‐4 signaling platforms publication-title: Nature Immunology – volume: 101 start-page: 165 issue: 1 year: 2017 end-page: 181 article-title: Bacterial secretion systems and regulation of inflammasome activation publication-title: Journal of Leukocyte Biology – volume: 283 start-page: 19879 issue: 29 year: 2008 end-page: 19887 article-title: Group A streptococcus activates type I interferon production and MyD88‐dependent signaling without involvement of TLR2, TLR4, and TLR9 publication-title: Journal of Biological Chemistry – volume: 21 start-page: 401 issue: 4 year: 2015 end-page: 406 article-title: A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis publication-title: Nature Medicine – volume: 3 start-page: 73ra19 issue: 73 year: 2011 article-title: Neutrophils activate plasmacytoid dendritic cells by releasing self‐DNA‐peptide complexes in systemic lupus erythematosus publication-title: Science Translational Medicine – volume: 573 start-page: 434 issue: 7774 year: 2019 end-page: 438 article-title: SLC19A1 transports immunoreactive cyclic dinucleotides publication-title: Nature – volume: 14 issue: 12 year: 2018 article-title: Guanylate‐binding protein 5 licenses caspase‐11 for gasdermin‐D mediated host resistance to infection publication-title: PLoS Path – volume: 15 start-page: 2438 issue: 11 year: 2016 end-page: 2448 article-title: Type I interferon induction by : dual requirement of cyclic GMP‐AMP synthase and toll‐like receptor 4 publication-title: Cell Reports – volume: 509 start-page: 240 issue: 7499 year: 2014 end-page: 244 article-title: Endosomes are specialized platforms for bacterial sensing and NOD2 signalling publication-title: Nature – volume: 194 start-page: 3236 issue: 7 year: 2015 end-page: 3245 article-title: cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection publication-title: The Journal of Immunology – volume: 12 start-page: 372 issue: 3 year: 2010 end-page: 385 article-title: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells publication-title: Cellular Microbiology – volume: 111 start-page: 6046 issue: 16 year: 2014 end-page: 6051 article-title: Guanylate binding proteins promote caspase‐11‐dependent pyroptosis in response to cytoplasmic LPS publication-title: Proceedings of the National Academy of Sciences USA – volume: 39 issue: 13 year: 2020 article-title: Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions publication-title: EMBO Journal – volume: 189 start-page: 4040 issue: 8 year: 2012 end-page: 4046 article-title: induces type I IFN signaling in dendritic cells via TLR9 publication-title: The Journal of Immunology – volume: 63 start-page: 49 year: 2020 end-page: 56 article-title: Cyclic dinucleotides at the forefront of innate immunity publication-title: Current Opinion in Cell Biology – volume: 4 start-page: 543 issue: 6 year: 2008 end-page: 554 article-title: TLR‐independent type I interferon induction in response to an extracellular bacterial pathogen via intracellular recognition of its DNA publication-title: Cell Host & Microbe – volume: 16 start-page: 467 issue: 5 year: 2015 end-page: 475 article-title: The transcription factor IRF1 and guanylate‐binding proteins target activation of the AIM2 inflammasome by Francisella infection publication-title: Nature Immunology – volume: 8 issue: 2 year: 2012 article-title: Phagosomal rupture by results in toxicity and host cell death publication-title: PLoS Path – volume: 75 start-page: 372 issue: 2 year: 2019 end-page: 381 e375 article-title: SLC19A1 is an importer of the immunotransmitter cGAMP publication-title: Molecular Cell – volume: 10 start-page: 178 issue: 3 year: 2012 end-page: 190 article-title: A bacterial siren song: intimate interactions between Neisseria and neutrophils publication-title: Nature Reviews Microbiology – volume: 14 start-page: 821 issue: 12 year: 2014 end-page: 826 article-title: SMOCs: supramolecular organizing centres that control innate immunity publication-title: Nature Reviews Immunology – volume: 129 start-page: 1287 issue: 7 year: 2007 end-page: 1298 article-title: and translocate from the phagolysosome to the cytosol in myeloid cells publication-title: Cell – volume: 16 start-page: 476 issue: 5 year: 2015 end-page: 484 article-title: Guanylate‐binding proteins promote activation of the AIM2 inflammasome during infection with publication-title: Nature Immunology – volume: 120 start-page: 3699 issue: 18 year: 2012 end-page: 3707 article-title: Cytosolic sensing of extracellular self‐DNA transported into monocytes by the antimicrobial peptide LL37 publication-title: Blood – volume: 83 start-page: 4740 issue: 12 year: 2015 end-page: 4749 article-title: Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia‐infected macrophages publication-title: Infection and Immunity – volume: 112 start-page: E5628 issue: 41 year: 2015 end-page: E5637 article-title: Ubiquitin systems mark pathogen‐containing vacuoles as targets for host defense by guanylate binding proteins publication-title: Proceedings of the National Academy of Sciences USA – volume: 117 start-page: 1160 issue: 2 year: 2020 end-page: 1166 article-title: The Mycobacterium marinum ESX‐1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms publication-title: Proceedings of the National Academy of Sciences USA – volume: 10 start-page: 2242 year: 2019 article-title: internalized by skin keratinocytes evade antibiotic killing publication-title: Frontiers in Microbiology – volume: 80 start-page: 578 issue: 4 year: 2020 end-page: 591 e575 article-title: LRRC8A:C/E heteromeric channels are ubiquitous transporters of cGAMP publication-title: Molecular Cell – volume: 341 start-page: 1246 issue: 6151 year: 2013 end-page: 1249 article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4 publication-title: Science – volume: 4 start-page: e70 issue: 4 year: 2016 article-title: Bacterial RNA as a signal to eukaryotic cells as part of the infection process publication-title: Discoveries (Craiova) – volume: 11 issue: 2 year: 2015 article-title: Cytosolic access of : critical impact of phagosomal acidification control and demonstration of occurrence in vivo publication-title: PLoS Path – volume: 10 start-page: 202 issue: 4 year: 2020 end-page: 209 article-title: ESX secretion system: the gatekeepers of mycobacterial survivability and pathogenesis publication-title: European Journal of Microbiology and Immunology (Bp) – volume: 16 start-page: 407 issue: 7 year: 2016 end-page: 420 article-title: Inflammasomes: mechanism of assembly, regulation and signalling publication-title: Nature Reviews Immunology – volume: 28 start-page: 663 issue: 3 year: 1998 end-page: 674 article-title: Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake publication-title: Molecular Microbiology – volume: 172 start-page: 1306 issue: 6 year: 2018 end-page: 1318 article-title: Protein‐injection machines in bacteria publication-title: Cell – volume: 449 start-page: 564 issue: 7162 year: 2007 end-page: 569 article-title: Plasmacytoid dendritic cells sense self‐DNA coupled with antimicrobial peptide publication-title: Nature – volume: 8 start-page: 1503 year: 2017 article-title: DNA delivery and genomic integration into mammalian target cells through type IV A and B secretion systems of human pathogens publication-title: Frontiers in Microbiology – volume: 54 start-page: 1154 issue: 6 year: 2021 end-page: 1167 e1157 article-title: The inhibitory receptor TIM‐3 limits activation of the cGAS‐STING pathway in intra‐tumoral dendritic cells by suppressing extracellular DNA uptake publication-title: Immunity – volume: 180 start-page: 1044 issue: 6 year: 2020 end-page: 1066 article-title: Toll‐like receptors and the control of immunity publication-title: Cell – volume: 297 start-page: 67 issue: 1 year: 2020 end-page: 82 article-title: Molecular mechanisms activating the NAIP‐NLRC4 inflammasome: implications in infectious disease, autoinflammation, and cancer publication-title: Immunological Reviews – volume: 37 start-page: 302 issue: 2 year: 2012 end-page: 313 article-title: A cluster of interferon‐gamma‐inducible p65 GTPases plays a critical role in host defense against publication-title: Immunity – volume: 7 issue: 5 year: 2011 article-title: Type I interferon production induced by ‐derived nucleic acids is required for host protection publication-title: PLoS Path – volume: 33 start-page: 862 issue: 5 year: 2018 end-page: 873 e865 article-title: Extrinsic phagocyte‐dependent STING signaling dictates the immunogenicity of dying cells publication-title: Cancer Cell – volume: 9 start-page: 1 issue: 6 year: 2018 end-page: 21 article-title: Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response publication-title: MBio – volume: 14 start-page: 256 issue: 3 year: 2013 end-page: 268 article-title: A Rab‐centric perspective of bacterial pathogen‐occupied vacuoles publication-title: Cell Host & Microbe – volume: 162 start-page: 1309 issue: 6 year: 2015 end-page: 1321 article-title: Pathogen cell‐to‐cell variability drives heterogeneity in host immune responses publication-title: Cell – volume: 150 start-page: 803 issue: 4 year: 2012 end-page: 815 article-title: Extracellular DNA targets bacteria for autophagy by activating the host DNA‐sensing pathway publication-title: Cell – volume: 287 start-page: 44184 issue: 53 year: 2012 end-page: 44191 article-title: ESAT‐6 exhibits a unique membrane‐interacting activity that is not found in its ortholog from non‐pathogenic publication-title: Journal of Biological Chemistry – volume: 8 start-page: 1 issue: 5 year: 2017 end-page: 11 article-title: Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins publication-title: MBio – volume: 110 start-page: 1851 issue: 5 year: 2013 end-page: 1856 article-title: Caspase‐11 stimulates rapid flagellin‐independent pyroptosis in response to pneumophila publication-title: Proceedings of the National Academy of Sciences USA – volume: 328 start-page: 1703 issue: 5986 year: 2010 end-page: 1705 article-title: c‐di‐AMP secreted by intracellular activates a host type I interferon response publication-title: Science – volume: 1266 start-page: 29 year: 2015 end-page: 53 article-title: Getting across the cell membrane: an overview for small molecules, peptides, and proteins publication-title: Methods in Molecular Biology – volume: 4 start-page: 3 year: 2018 article-title: Guanylate binding proteins facilitate caspase‐11‐dependent pyroptosis in response to type 3 secretion system‐negative publication-title: Cell Death Discovery – volume: 30 start-page: 502 issue: 4 year: 2010 end-page: 506 article-title: Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome publication-title: Journal of Clinical Immunology – volume: 21 issue: 11 year: 2020 article-title: Dynamin‐related Irgm proteins modulate LPS‐induced caspase‐11 activation and septic shock publication-title: EMBO Reports – volume: 79 start-page: 688 issue: 2 year: 2011 end-page: 694 article-title: The N‐ethyl‐N‐nitrosourea‐induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to and cyclic dinucleotides publication-title: Infection and Immunity – volume: 13 issue: 7 year: 2017 article-title: Opposing roles of toll‐like receptor and cytosolic DNA‐STING signaling pathways for cutaneous host defense publication-title: PLoS Path – volume: 4 start-page: 1 issue: 1 year: 2016 end-page: 19 article-title: Bacterial secretion systems: an overview publication-title: Microbiology Spectrum – volume: 13 start-page: 570 issue: 5 year: 2013 end-page: 583 article-title: The Shigella OspC3 effector inhibits caspase‐4, antagonizes inflammatory cell death, and promotes epithelial infection publication-title: Cell Host & Microbe – volume: 32 start-page: 108008 issue: 6 year: 2020 article-title: Human GBP1 differentially targets Salmonella and toxoplasma to license recognition of microbial ligands and caspase‐mediated death publication-title: Cell Reports – volume: 509 start-page: 366 issue: 7500 year: 2014 end-page: 370 article-title: Caspase‐11 activation requires lysis of pathogen‐containing vacuoles by IFN‐induced GTPases publication-title: Nature – volume: 14 issue: 1 year: 2018 article-title: The common HAQ STING variant impairs cGAS‐dependent antibacterial responses and is associated with susceptibility to Legionnaires’ disease in humans publication-title: PLoS Path – volume: 184 start-page: 3794 issue: 14 year: 2021 end-page: 3811 e3719 article-title: Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota publication-title: Cell – volume: 114 start-page: E1698 issue: 9 year: 2017 end-page: E1706 article-title: Galectin‐3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems publication-title: Proceedings of the National Academy of Sciences USA – volume: 24 start-page: 155 issue: 1 year: 2018 end-page: 168 e155 article-title: Constitutive interferon maintains GBP expression required for release of bacterial components upstream of pyroptosis and anti‐DNA responses publication-title: Cell Reports – volume: 20 start-page: 1 issue: 4 year: 2019 end-page: 18 article-title: cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity publication-title: EMBO Reports – volume: 14 issue: 12 year: 2018 article-title: The ESCRT and autophagy machineries cooperate to repair ESX‐1‐dependent damage at the Mycobacterium‐containing vacuole but have opposite impact on containing the infection publication-title: PLoS Path – volume: 7 start-page: 569 issue: 6 year: 2006 end-page: 575 article-title: Cytoplasmic flagellin activates caspase‐1 and secretion of interleukin 1beta via Ipaf publication-title: Nature Immunology – volume: 207 start-page: 1745 issue: 8 year: 2010 end-page: 1755 article-title: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella publication-title: Journal of Experimental Medicine – volume: 109 start-page: 3481 issue: 9 year: 2012 end-page: 3486 article-title: The protein SdhA maintains the integrity of the ‐containing vacuole publication-title: Proceedings of the National Academy of Sciences USA – volume: 103 start-page: 35 issue: 1 year: 2018 end-page: 51 article-title: For when bacterial infections persist: toll‐like receptor‐inducible direct antimicrobial pathways in macrophages publication-title: Journal of Leukocyte Biology – volume: 112 start-page: E871 issue: 8 year: 2015 end-page: E880 article-title: Dysregulation of alpha‐hemolysin expression alters the course of acute and persistent urinary tract infection publication-title: Proceedings of the National Academy of Sciences USA – volume: 21 issue: 11 year: 2020 article-title: Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response publication-title: EMBO Reports – volume: 3 start-page: e51 issue: 3 year: 2007 article-title: Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system publication-title: PLoS Path – volume: 17 start-page: 811 issue: 6 year: 2015 end-page: 819 article-title: The cytosolic sensor cGAS detects DNA to induce type I interferons and activate autophagy publication-title: Cell Host & Microbe – volume: 14 issue: 8 year: 2018 article-title: Dysregulated hemolysin liberates bacterial outer membrane vesicles for cytosolic lipopolysaccharide sensing publication-title: PLoS Path – volume: 171 start-page: 809 issue: 4 year: 2017 end-page: 823 e813 article-title: STING senses microbial viability to orchestrate stress‐mediated autophagy of the endoplasmic reticulum publication-title: Cell – volume: 11 start-page: 469 issue: 5 year: 2012 end-page: 480 article-title: Mycobacterium tuberculosis activates the DNA‐dependent cytosolic surveillance pathway within macrophages publication-title: Cell Host & Microbe – volume: 11 start-page: 3276 issue: 1 year: 2020 article-title: Human GBP1 binds LPS to initiate assembly of a caspase‐4 activating platform on cytosolic bacteria publication-title: Nature Communications – volume: 14 start-page: 1 issue: 673 year: 2021 end-page: 16 article-title: The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps publication-title: Science Signalling – volume: 19 start-page: 1 issue: 12 year: 2017 end-page: 17 article-title: Sweet host revenge: galectins and GBPs join forces at broken membranes publication-title: Cellular Microbiology – volume: 1867 start-page: 166184 issue: 10 year: 2021 article-title: Extracellular HMGB1 augments macrophage inflammation by facilitating the endosomal accumulation of ALD‐DNA via TLR2/4‐mediated endocytosis publication-title: Biochimica et Biophysica Acta (BBA) ‐ Molecular Basis of Disease – volume: 52 start-page: 767 issue: 5 year: 2020 end-page: 781 e766 article-title: Transfer of cGAMP into bystander cells via LRRC8 volume‐regulated anion channels augments STING‐mediated interferon responses and anti‐viral immunity publication-title: Immunity – volume: 51 start-page: 609 issue: 4 year: 2019 end-page: 624 article-title: Inflammasomes: threat‐assessment organelles of the innate immune system publication-title: Immunity – volume: 496 start-page: 233 issue: 7444 year: 2013 end-page: 237 article-title: Manipulation of small Rho GTPases is a pathogen‐induced process detected by NOD1 publication-title: Nature – volume: 17 start-page: 799 issue: 6 year: 2015 end-page: 810 article-title: Mycobacterium tuberculosis differentially activates cGAS‐ and inflammasome‐dependent intracellular immune responses through ESX‐1 publication-title: Cell Host & Microbe – volume: 413 start-page: 323 year: 2017 end-page: 345 article-title: Secretion of chromosomal DNA by the type IV secretion system publication-title: Current Topics in Microbiology and Immunology – volume: 23 start-page: 163 year: 2015 end-page: 170 article-title: Emerging themes in bacterial autophagy publication-title: Current Opinion in Microbiology – volume: 102 start-page: 13646 issue: 38 year: 2005 end-page: 13651 article-title: Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen publication-title: Proceedings of the National Academy of Sciences USA – volume: 7 start-page: 576 issue: 6 year: 2006 end-page: 582 article-title: Cytosolic flagellin requires Ipaf for activation of caspase‐1 and interleukin 1beta in salmonella‐infected macrophages publication-title: Nature Immunology – volume: 81 start-page: 905 issue: 3 year: 2013 end-page: 914 article-title: Impact of host membrane pore formation by the type III secretion system on the macrophage innate immune response publication-title: Infection and Immunity – volume: 49 start-page: 740 issue: 4 year: 2018 end-page: 753 e747 article-title: The endotoxin delivery protein HMGB1 mediates caspase‐11‐dependent lethality in sepsis publication-title: Immunity – volume: 13 start-page: 1668 issue: 11 year: 2011 end-page: 1682 article-title: Dissection of a type I interferon pathway in controlling bacterial intracellular infection in mice publication-title: Cellular Microbiology – volume: 167 start-page: 382 issue: 2 year: 2016 end-page: 396 e317 article-title: IRGB10 liberates bacterial ligands for sensing by the AIM2 and CASPASE‐11‐NLRP3 inflammasomes publication-title: Cell – volume: 37 start-page: 1 issue: 21 year: 2018 end-page: 15 article-title: ESCRT‐mediated lysosome repair precedes lysophagy and promotes cell survival publication-title: EMBO Journal – volume: 44 start-page: 645 issue: 3 year: 2002 end-page: 661 article-title: Complementary activities of SseJ and SifA regulate dynamics of the vacuolar membrane publication-title: Molecular Microbiology – volume: 9 issue: 6 year: 2013 article-title: Caspase‐11 activation in response to bacterial secretion systems that access the host cytosol publication-title: PLoS Path – volume: 17 start-page: 820 issue: 6 year: 2015 end-page: 828 article-title: Cyclic GMP‐AMP synthase is an innate immune DNA sensor for publication-title: Cell Host & Microbe – volume: 84 start-page: 3564 issue: 12 year: 2016 end-page: 3574 article-title: Cyclic di‐AMP released from biofilm induces a macrophage type i interferon response publication-title: Infection and Immunity – volume: 9 start-page: 2061 year: 2018 article-title: The dual nature of type I and type II interferons publication-title: Frontiers in Immunology – volume: 37 start-page: 1 issue: 6 year: 2018 end-page: 19 article-title: LPS targets host guanylate‐binding proteins to the bacterial outer membrane for non‐canonical inflammasome activation publication-title: EMBO Journal – ident: e_1_2_8_60_1 doi: 10.1126/scitranslmed.3001180 – ident: e_1_2_8_96_1 doi: 10.15252/embj.201798089 – ident: e_1_2_8_112_1 doi: 10.1016/j.chom.2015.05.004 – ident: e_1_2_8_43_1 doi: 10.1371/journal.ppat.1001345 – ident: e_1_2_8_113_1 doi: 10.1016/j.cell.2012.06.040 – ident: e_1_2_8_34_1 doi: 10.1073/pnas.1615771114 – ident: e_1_2_8_88_1 doi: 10.1016/j.molcel.2019.05.006 – ident: e_1_2_8_11_1 doi: 10.1084/jem.20100257 – ident: e_1_2_8_28_1 doi: 10.1016/j.immuni.2021.04.019 – ident: e_1_2_8_16_1 doi: 10.1371/journal.ppat.1007519 – ident: e_1_2_8_32_1 doi: 10.15252/embr.202050829 – ident: e_1_2_8_41_1 doi: 10.1016/j.cell.2018.01.034 – ident: e_1_2_8_56_1 doi: 10.1016/j.chom.2013.04.012 – ident: e_1_2_8_64_1 doi: 10.1016/j.cell.2021.05.020 – ident: e_1_2_8_68_1 doi: 10.1371/journal.ppat.1007501 – ident: e_1_2_8_30_1 doi: 10.1016/j.immuni.2018.08.016 – ident: e_1_2_8_45_1 doi: 10.1128/microbiolspec.VMBF-0012-2015 – ident: e_1_2_8_92_1 doi: 10.1126/science.aar7607 – ident: e_1_2_8_66_1 doi: 10.1016/j.celrep.2018.06.012 – ident: e_1_2_8_21_1 doi: 10.1111/cmi.12793 – ident: e_1_2_8_27_1 doi: 10.1074/jbc.M112.420869 – ident: e_1_2_8_3_1 doi: 10.3389/fmicb.2019.02242 – ident: e_1_2_8_94_1 doi: 10.1371/journal.ppat.1006829 – ident: e_1_2_8_99_1 doi: 10.1016/j.chom.2013.08.010 – ident: e_1_2_8_46_1 doi: 10.1128/IAI.00447-16 – ident: e_1_2_8_86_1 doi: 10.15252/embj.201899753 – ident: e_1_2_8_59_1 doi: 10.1016/j.molcel.2020.10.021 – ident: e_1_2_8_78_1 doi: 10.1128/mBio.01765-18 – ident: e_1_2_8_117_1 doi: 10.1016/j.ceb.2019.12.004 – ident: e_1_2_8_24_1 doi: 10.1073/pnas.1121286109 – ident: e_1_2_8_58_1 doi: 10.1128/IAI.01014-12 – ident: e_1_2_8_31_1 doi: 10.1038/nm.3813 – ident: e_1_2_8_53_1 doi: 10.1111/imr.12906 – ident: e_1_2_8_17_1 doi: 10.1182/blood-2012-01-401364 – ident: e_1_2_8_4_1 doi: 10.1074/jbc.M604933200 – ident: e_1_2_8_95_1 doi: 10.1038/s41467-020-16889-z – ident: e_1_2_8_54_1 doi: 10.1126/science.1240248 – ident: e_1_2_8_98_1 doi: 10.1371/journal.ppat.1006496 – ident: e_1_2_8_37_1 doi: 10.1128/mBio.01188-17 – ident: e_1_2_8_40_1 doi: 10.1038/ni1346 – ident: e_1_2_8_84_1 doi: 10.1016/j.tim.2021.01.007 – ident: e_1_2_8_44_1 doi: 10.1074/jbc.M802848200 – ident: e_1_2_8_52_1 doi: 10.4049/jimmunol.1201111 – ident: e_1_2_8_81_1 doi: 10.1038/nature13133 – ident: e_1_2_8_111_1 doi: 10.1016/j.chom.2015.05.003 – ident: e_1_2_8_119_1 doi: 10.1128/IAI.00778-16 – ident: e_1_2_8_33_1 doi: 10.1016/j.immuni.2019.08.005 – ident: e_1_2_8_5_1 doi: 10.1016/j.celrep.2016.05.030 – ident: e_1_2_8_82_1 doi: 10.4049/jimmunol.1600409 – ident: e_1_2_8_104_1 doi: 10.1016/j.mib.2014.11.020 – ident: e_1_2_8_74_1 doi: 10.1038/nature13157 – ident: e_1_2_8_65_1 doi: 10.1111/j.1462-5822.2011.01646.x – ident: e_1_2_8_89_1 doi: 10.1046/j.1365-2958.1998.00841.x – ident: e_1_2_8_22_1 doi: 10.1016/j.chom.2015.05.005 – ident: e_1_2_8_51_1 doi: 10.1111/j.1462-5822.2009.01404.x – ident: e_1_2_8_63_1 doi: 10.1073/pnas.1911646117 – ident: e_1_2_8_8_1 doi: 10.1016/j.cell.2015.08.027 – ident: e_1_2_8_25_1 doi: 10.1038/nrmicro2713 – ident: e_1_2_8_75_1 doi: 10.1038/ni.3119 – ident: e_1_2_8_18_1 doi: 10.1016/j.chom.2008.11.002 – ident: e_1_2_8_69_1 doi: 10.1016/j.bbadis.2021.166184 – ident: e_1_2_8_77_1 doi: 10.1007/s10875-010-9386-5 – ident: e_1_2_8_107_1 doi: 10.1016/j.immuni.2021.01.007 – ident: e_1_2_8_9_1 doi: 10.1038/s41420-018-0068-z – ident: e_1_2_8_71_1 doi: 10.1038/ni.3118 – ident: e_1_2_8_105_1 doi: 10.1002/JLB.4RI0917-358R – ident: e_1_2_8_85_1 doi: 10.1073/pnas.1321700111 – ident: e_1_2_8_93_1 doi: 10.1046/j.1365-2958.2002.02912.x – ident: e_1_2_8_110_1 doi: 10.1038/s41590-020-0697-2 – ident: e_1_2_8_83_1 doi: 10.4049/jimmunol.1201055 – volume: 14 start-page: 1 issue: 673 year: 2021 ident: e_1_2_8_7_1 article-title: The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps publication-title: Science Signalling – ident: e_1_2_8_12_1 doi: 10.1038/nature11419 – ident: e_1_2_8_116_1 doi: 10.1007/978-1-4939-2272-7_3 – ident: e_1_2_8_97_1 doi: 10.1128/IAI.00999-10 – ident: e_1_2_8_35_1 doi: 10.15252/embr.202050830 – ident: e_1_2_8_90_1 doi: 10.1556/1886.2020.00028 – ident: e_1_2_8_15_1 doi: 10.1371/journal.ppat.1003400 – ident: e_1_2_8_80_1 doi: 10.1073/pnas.1500374112 – ident: e_1_2_8_61_1 doi: 10.1038/nature06116 – ident: e_1_2_8_20_1 doi: 10.1073/pnas.0506461102 – ident: e_1_2_8_100_1 doi: 10.1371/journal.ppat.1002507 – ident: e_1_2_8_76_1 doi: 10.1038/ni1344 – ident: e_1_2_8_14_1 doi: 10.1073/pnas.1211521110 – ident: e_1_2_8_2_1 doi: 10.1016/j.ccell.2018.03.027 – ident: e_1_2_8_79_1 doi: 10.1016/j.cell.2017.09.034 – ident: e_1_2_8_19_1 doi: 10.1371/journal.ppat.1007240 – ident: e_1_2_8_23_1 doi: 10.1021/acscentsci.1c00440 – ident: e_1_2_8_38_1 doi: 10.1016/j.celrep.2020.108008 – ident: e_1_2_8_36_1 doi: 10.1128/IAI.00856-15 – ident: e_1_2_8_103_1 doi: 10.1126/science.aar5078 – ident: e_1_2_8_67_1 doi: 10.15252/embr.201846293 – ident: e_1_2_8_48_1 doi: 10.1073/pnas.1515966112 – ident: e_1_2_8_10_1 doi: 10.1038/nri.2016.58 – ident: e_1_2_8_57_1 doi: 10.15252/embj.2020104926 – ident: e_1_2_8_26_1 doi: 10.3390/cells9092042 – ident: e_1_2_8_101_1 doi: 10.1371/journal.ppat.1004650 – ident: e_1_2_8_87_1 doi: 10.1189/jlb.4MR0716-330R – ident: e_1_2_8_109_1 doi: 10.1016/j.cell.2016.04.015 – ident: e_1_2_8_114_1 doi: 10.1126/science.1189801 – volume: 413 start-page: 323 year: 2017 ident: e_1_2_8_13_1 article-title: Secretion of chromosomal DNA by the Neisseria gonorrhoeae type IV secretion system publication-title: Current Topics in Microbiology and Immunology – ident: e_1_2_8_115_1 doi: 10.1016/j.immuni.2012.06.009 – ident: e_1_2_8_49_1 doi: 10.1371/journal.ppat.0030051 – ident: e_1_2_8_73_1 doi: 10.1016/j.chom.2012.03.007 – ident: e_1_2_8_91_1 doi: 10.1080/21505594.2017.1321191 – ident: e_1_2_8_50_1 doi: 10.1038/nri3757 – ident: e_1_2_8_108_1 doi: 10.1016/j.cell.2007.05.059 – ident: e_1_2_8_47_1 doi: 10.3389/fmicb.2017.01503 – ident: e_1_2_8_70_1 doi: 10.1038/s41586-019-1553-0 – ident: e_1_2_8_72_1 doi: 10.1016/j.cell.2016.09.012 – ident: e_1_2_8_106_1 doi: 10.4049/jimmunol.1402764 – ident: e_1_2_8_102_1 doi: 10.15190/d.2016.17 – ident: e_1_2_8_6_1 doi: 10.1016/j.chom.2016.06.003 – ident: e_1_2_8_39_1 doi: 10.1016/j.cell.2020.02.041 – ident: e_1_2_8_118_1 doi: 10.1016/j.immuni.2020.03.016 – ident: e_1_2_8_42_1 doi: 10.1016/j.celrep.2019.03.100 – ident: e_1_2_8_29_1 doi: 10.1038/s41577-021-00524-z – ident: e_1_2_8_55_1 doi: 10.1038/nature12025 – ident: e_1_2_8_62_1 doi: 10.3389/fimmu.2018.02061 |
| SSID | ssj0013063 |
| Score | 2.4543757 |
| SecondaryResourceType | review_article |
| Snippet | The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns... The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1420 |
| SubjectTerms | Animals Bacteria Bacteria - genetics Bacteria - metabolism Bacterial diseases Bacterial infections Bacterial Infections - genetics Bacterial Infections - metabolism Bacterial Infections - microbiology Bacterial Infections - physiopathology caspase‐11 caspase‐4 caspase‐5 cGAS cyclic dinucleotides Cytosol Cytosol - metabolism Cytosol - microbiology guanylate binding proteins Humans Immune response Immune system Innate immunity lipopolysaccharide macrophage Membranes Pathogen-Associated Molecular Pattern Molecules - metabolism pathogen‐associated molecular pattern Pattern recognition pattern recognition receptor Pattern recognition receptors Phagocytes Phagocytosis phagosome Phagosomes Phagosomes - genetics Phagosomes - metabolism Phagosomes - microbiology Receptor mechanisms Receptors, Pattern Recognition - genetics Receptors, Pattern Recognition - metabolism STING |
| Title | Cytosolic detection of phagosomal bacteria—Mechanisms underlying PAMP exodus from the phagosome into the cytosol |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmmi.14841 https://www.ncbi.nlm.nih.gov/pubmed/34738270 https://www.proquest.com/docview/2611574992 https://www.proquest.com/docview/2594294590 https://pubmed.ncbi.nlm.nih.gov/PMC8688326 |
| Volume | 116 |
| WOSCitedRecordID | wos000720975800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-2958 dateEnd: 20240614 omitProxy: false ssIdentifier: ssj0013063 issn: 0950-382X databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2958 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013063 issn: 0950-382X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKCxIX_n8WSmUQBy6RNokd2-JUFVZUYlcrRMXeIju220jdpNpkEb3xEDwhT8KMkw1dFSQkbkk8jh17ZjyOZ74h5LVLYo3IUVHMTBaxJBGRFoxFNrMa1WMh0y7ZhJjN5GKh5jvk7SYWpsOHGH64oWQEfY0Crk1zRciXyxLEXGLQ-h4GVcHOa-_dp8nJx9-HCH0iNcURQjZZ9MBC6MgzVN5ejq7ZmNddJa-asGENmtz9r97fI3d605Medrxyn-y46gG51SWjvHxIVkeXbd0gTDC1rg0eWhWtPb0406fwfAlVTQftrH9-_zF1GDJcNsuGYhja6hzDpej8cDqn7ltt1w3FwBUK5uXwAkfLqq3Do6Jr6hE5mbz_fPQh6jMyRAUDSyMyyo0tyKxwXJnEa8udFwjp7r0uvHexdAq0gDGCK-m11MoqnWnrtLBWSp0-JrtVXbmnhIIdaWIzThl3YwY2qHJZxn2qfWJSsPKKEXmzmZi86OHKMWvGeb7ZtsAQ5mEIR-TVQHrRYXT8iWh_M7t5L6ZNDtvHmEPbKhmRl0MxCBiemujK1Wug4QrWbMbVeESedMwwtJIyAYwloERssclAgODd2yVVeRZAvGUmQZlm8JmBTf7e8Xw6PQ4Xz_6d9Dm5naDvTXC72Se77WrtXpCbxde2bFYH5IZYyINeWuDuy_HsF-QmHB4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NHYi98J-tMMAgHniJ1CR2bEt7mQbVJpqqQpvUt8iJbRZpTaYmndgbH4JPyCfZOUnDqoGExFtkX2LHvjuf7bvfAXwwga8ccpTn0zTyaBBwT3FKPR1p5dRjJsI22QSfTsV8LmdbcLCOhWnxIfoDNycZjb52Au4OpG9J-WKRo5wLF7W-TaOQiwFsf_o6Ppv8vkXoMqlJ5jBkg3mHLOQ8efqXN9ejO0bmXV_J2zZsswiNH_1f9x_Dw874JIcttzyBLVM8hfttOsrrZ7A8uq7LygEFE23qxkerIKUll-fqG5Yv8NW0BXdWv378jI0LGs6rRUVcINrywgVMkdlhPCPme6lXFXGhKwQNzP4DhuRFXTZFWdvUczgbfz49Ova6nAxeRtHW8FJpRhqllhsm08AqzYzlDtTdWpVZa3xhJOqBNOVMCquEklqqSGmjuNZCqPAFDIqyMHtA0JJM_XQUUmZGFK1QaaKI2VDZIA3RzsuG8HE9M0nWAZa7vBkXyXrjgkOYNEM4hPc96WWL0vEnov319CadoFYJbiB9hm3LYAjv-moUMXdvogpTrpCGSVy1KZOjIey23NC3ElKOnMWxhm_wSU_g4Ls3a4r8vIHxFpFAdRrhbzZ88veOJ3F80jy8_HfSt_Dg-DSeJJOT6ZdXsBM4T5zGCWcfBvVyZV7Dveyqzqvlm05obgBrOx4X |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqFhCX8g8LBQziwCXSJrFjW-qlKqxYwa72AGJvkRPbbaRustpkq_bGQ_CEPElnnGzoqiAhcYviSewkM-PP8cw3hLyzUaiROSoIWZYELIpEoAVjgUmMRveYy7gtNiGmUzmfq9kOOdzkwrT8EP0PN7QM76_RwO3SuGtWvlgUYOcSs9b3GOBwDOj6Pp7-3kPo6qgpjgyy0bzjFcI4nv7S7dnoBsS8GSl5HcH6KWh07_8Gf5_sd9CTHrW68oDs2PIhud0Wo7x8RFbHl01VI00wNbbxEVolrRxdnuoTOL-AS7OW2ln_-vFzYjFluKgXNcU0tNUZpkvR2dFkRu1FZdY1xcQVCvCyv4GlRdlU_lTedvWYfBt9_Hr8KegqMgQ5A6QRZMoODdissFxlkdOGWyeQ0t05nTtnQ2kVeIEsE1xJp6VWRulEG6uFMVLq-AnZLavSPiMUcGQWZsOYcTtkgEGVTRLuYu2iLAaUlw_I-82XSfOOrhyrZpylm2ULvMLUv8IBeduLLluOjj8JHWw-b9qZaZ3C8jHk0LeKBuRN3wwGhrsmurTVGmS4gjmbcTUckKetNvS9xEyAZgloEVt60gsgefd2S1mcehJvmUhwpgk8pteTvw88nUzG_uD5v4u-JndmH0bpl_H08wtyN8IwHB-Bc0B2m9XaviS38vOmqFevvMVcAXU8HG0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytosolic+detection+of+phagosomal+bacteria%E2%80%94Mechanisms+underlying+PAMP+exodus+from+the+phagosome+into+the+cytosol&rft.jtitle=Molecular+microbiology&rft.au=Ragland%2C+Stephanie+A.&rft.au=Kagan%2C+Jonathan+C.&rft.date=2021-12-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=116&rft.issue=6&rft.spage=1420&rft.epage=1432&rft_id=info:doi/10.1111%2Fmmi.14841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mmi_14841 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |