Cytosolic detection of phagosomal bacteria—Mechanisms underlying PAMP exodus from the phagosome into the cytosol

The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune resp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular microbiology Ročník 116; číslo 6; s. 1420 - 1432
Hlavní autoři: Ragland, Stephanie A., Kagan, Jonathan C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.12.2021
Témata:
ISSN:0950-382X, 1365-2958, 1365-2958
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane‐oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations. The graphical illustrates the several means by which bacterial products may exit phagosomes to stimulate innate immune receptors present in the cytoplasm of eukaryotic cells. Each of these means of pathogen‐associated molecular pattern exodus is discussed in this review.
AbstractList The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented towards the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained upon phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding for how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations. The graphical abstract illustrates the several means by which bacterial products may exit phagosomes to stimulate innate immune receptors present in the cytoplasm of eukaryotic cells. Each of these means of PAMP exodus are discussion in this review. Although the phagosomal membrane separates phagosomal bacteria and their PAMPs from the cytosol, phagosomal bacteria can stimulate cytosolic PRRs.Bacteria produce factors (e.g., toxins and secretion systems) that potentiate PAMP exodus from the phagosome into the cytosol to activate cytosolic PRRs.Host cells produce PAMP transporters and membranolytic proteins that aid in PAMP exodus from the phagosome into the cytosol to activate cytosolic PRRs.
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane‐oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane‐oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations. The graphical illustrates the several means by which bacterial products may exit phagosomes to stimulate innate immune receptors present in the cytoplasm of eukaryotic cells. Each of these means of pathogen‐associated molecular pattern exodus is discussed in this review.
Author Ragland, Stephanie A.
Kagan, Jonathan C.
Author_xml – sequence: 1
  givenname: Stephanie A.
  orcidid: 0000-0003-3614-2652
  surname: Ragland
  fullname: Ragland, Stephanie A.
  organization: Boston Children’s Hospital and Harvard Medical School
– sequence: 2
  givenname: Jonathan C.
  orcidid: 0000-0003-2364-2746
  surname: Kagan
  fullname: Kagan, Jonathan C.
  email: jonathan.kagan@childrens.harvard.edu
  organization: Boston Children’s Hospital and Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34738270$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9uEzEQxi1URNPCgRdAlrjAIa29f-0LUhUVqNSIHkDiZs3a48TVrh3sXSC3PgRPyJPgNiWCSjCXkT7_5vOMviNy4INHQp5zdsJznQ6DO-GVqPgjMuNlU88LWYsDMmOyZvNSFJ8PyVFK14zxkjXlE3JYVm2WWzYjcbEdQwq909TgiHp0wdNg6WYNq6wP0NMO9IjRwc-bH0vUa_AuDYlO3mDst86v6NXZ8ori92CmRG0MAx3XuDdA6vwY7iS9--opeWyhT_jsvh-TT2_PPy7ezy8_vLtYnF3OdVWVfN5JZIbLpsVadoUFU6NtG94ya0Fbi1ygZFXRdW0thQUB0khowCC0xggB5TF5s_PdTN2ARqMfI_RqE90AcasCOPX3i3drtQpflWiEKIsmG7y6N4jhy4RpVINLGvsePIYpqaKWVSGrWrKMvnyAXocp-nyeKhrO67aSssjUiz832q_yO44MvN4BOoaUIto9wpm6jVrlqNVd1Jk9fcBqN8JtfvkY1_9v4pvrcftva7VcXuwmfgFCHr7q
CitedBy_id crossref_primary_10_1042_BCJ20210711
crossref_primary_10_3389_fimmu_2022_944142
crossref_primary_10_1016_j_immuni_2024_02_011
crossref_primary_10_1016_j_it_2024_02_003
crossref_primary_10_3390_pathogens11080863
crossref_primary_10_1016_j_celrep_2025_116002
crossref_primary_10_1089_jir_2023_0066
crossref_primary_10_1016_j_nantod_2023_102137
crossref_primary_10_1186_s13287_023_03520_3
crossref_primary_10_3389_fcimb_2022_1041682
crossref_primary_10_1038_s41586_025_08629_4
crossref_primary_10_1016_j_immuni_2023_04_001
crossref_primary_10_1016_j_cyto_2022_155875
crossref_primary_10_1186_s12964_025_02252_6
crossref_primary_10_3390_v15010052
Cites_doi 10.1126/scitranslmed.3001180
10.15252/embj.201798089
10.1016/j.chom.2015.05.004
10.1371/journal.ppat.1001345
10.1016/j.cell.2012.06.040
10.1073/pnas.1615771114
10.1016/j.molcel.2019.05.006
10.1084/jem.20100257
10.1016/j.immuni.2021.04.019
10.1371/journal.ppat.1007519
10.15252/embr.202050829
10.1016/j.cell.2018.01.034
10.1016/j.chom.2013.04.012
10.1016/j.cell.2021.05.020
10.1371/journal.ppat.1007501
10.1016/j.immuni.2018.08.016
10.1128/microbiolspec.VMBF-0012-2015
10.1126/science.aar7607
10.1016/j.celrep.2018.06.012
10.1111/cmi.12793
10.1074/jbc.M112.420869
10.3389/fmicb.2019.02242
10.1371/journal.ppat.1006829
10.1016/j.chom.2013.08.010
10.1128/IAI.00447-16
10.15252/embj.201899753
10.1016/j.molcel.2020.10.021
10.1128/mBio.01765-18
10.1016/j.ceb.2019.12.004
10.1073/pnas.1121286109
10.1128/IAI.01014-12
10.1038/nm.3813
10.1111/imr.12906
10.1182/blood-2012-01-401364
10.1074/jbc.M604933200
10.1038/s41467-020-16889-z
10.1126/science.1240248
10.1371/journal.ppat.1006496
10.1128/mBio.01188-17
10.1038/ni1346
10.1016/j.tim.2021.01.007
10.1074/jbc.M802848200
10.4049/jimmunol.1201111
10.1038/nature13133
10.1016/j.chom.2015.05.003
10.1128/IAI.00778-16
10.1016/j.immuni.2019.08.005
10.1016/j.celrep.2016.05.030
10.4049/jimmunol.1600409
10.1016/j.mib.2014.11.020
10.1038/nature13157
10.1111/j.1462-5822.2011.01646.x
10.1046/j.1365-2958.1998.00841.x
10.1016/j.chom.2015.05.005
10.1111/j.1462-5822.2009.01404.x
10.1073/pnas.1911646117
10.1016/j.cell.2015.08.027
10.1038/nrmicro2713
10.1038/ni.3119
10.1016/j.chom.2008.11.002
10.1016/j.bbadis.2021.166184
10.1007/s10875-010-9386-5
10.1016/j.immuni.2021.01.007
10.1038/s41420-018-0068-z
10.1038/ni.3118
10.1002/JLB.4RI0917-358R
10.1073/pnas.1321700111
10.1046/j.1365-2958.2002.02912.x
10.1038/s41590-020-0697-2
10.4049/jimmunol.1201055
10.1038/nature11419
10.1007/978-1-4939-2272-7_3
10.1128/IAI.00999-10
10.15252/embr.202050830
10.1556/1886.2020.00028
10.1371/journal.ppat.1003400
10.1073/pnas.1500374112
10.1038/nature06116
10.1073/pnas.0506461102
10.1371/journal.ppat.1002507
10.1038/ni1344
10.1073/pnas.1211521110
10.1016/j.ccell.2018.03.027
10.1016/j.cell.2017.09.034
10.1371/journal.ppat.1007240
10.1021/acscentsci.1c00440
10.1016/j.celrep.2020.108008
10.1128/IAI.00856-15
10.1126/science.aar5078
10.15252/embr.201846293
10.1073/pnas.1515966112
10.1038/nri.2016.58
10.15252/embj.2020104926
10.3390/cells9092042
10.1371/journal.ppat.1004650
10.1189/jlb.4MR0716-330R
10.1016/j.cell.2016.04.015
10.1126/science.1189801
10.1016/j.immuni.2012.06.009
10.1371/journal.ppat.0030051
10.1016/j.chom.2012.03.007
10.1080/21505594.2017.1321191
10.1038/nri3757
10.1016/j.cell.2007.05.059
10.3389/fmicb.2017.01503
10.1038/s41586-019-1553-0
10.1016/j.cell.2016.09.012
10.4049/jimmunol.1402764
10.15190/d.2016.17
10.1016/j.chom.2016.06.003
10.1016/j.cell.2020.02.041
10.1016/j.immuni.2020.03.016
10.1016/j.celrep.2019.03.100
10.1038/s41577-021-00524-z
10.1038/nature12025
10.3389/fimmu.2018.02061
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
2021 John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1111/mmi.14841
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 1432
ExternalDocumentID PMC8688326
34738270
10_1111_mmi_14841
MMI14841
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Jane Coffin Childs Memorial Fund for Medical Research
– fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases
  funderid: AI093589; AI116550; AI133524; P30DK34854
– fundername: Burroughs Wellcome Fund
– fundername: NIAID NIH HHS
  grantid: R56 AI093589
– fundername: NIAID NIH HHS
  grantid: R01 AI093589
– fundername: NIAID NIH HHS
  grantid: R01 AI116550
– fundername: NIAID NIH HHS
  grantid: R37 AI116550
– fundername: NIDDK NIH HHS
  grantid: P30 DK034854
– fundername: NIAID NIH HHS
  grantid: U19 AI133524
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4431-b9e0d1967e59b2fad5ef76170ffacffe18e9042bb7598fa8a9d9a6adea7dd88a3
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720975800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-382X
1365-2958
IngestDate Tue Sep 30 17:17:56 EDT 2025
Thu Jul 10 18:49:21 EDT 2025
Sun Sep 07 02:41:15 EDT 2025
Wed Feb 19 02:26:31 EST 2025
Sat Nov 29 05:41:56 EST 2025
Tue Nov 18 22:17:47 EST 2025
Wed Jan 22 16:28:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords caspase-5
cyclic dinucleotides
cGAS
STING
macrophage
phagosome
caspase-11
lipopolysaccharide
guanylate binding proteins
pathogen-associated molecular pattern
caspase-4
pattern recognition receptor
Language English
License 2021 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4431-b9e0d1967e59b2fad5ef76170ffacffe18e9042bb7598fa8a9d9a6adea7dd88a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3614-2652
0000-0003-2364-2746
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mmi.14841
PMID 34738270
PQID 2611574992
PQPubID 35968
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8688326
proquest_miscellaneous_2594294590
proquest_journals_2611574992
pubmed_primary_34738270
crossref_primary_10_1111_mmi_14841
crossref_citationtrail_10_1111_mmi_14841
wiley_primary_10_1111_mmi_14841_MMI14841
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 12
2012; 120
2017; 85
2019; 10
2020; 11
2020; 10
2012; 11
2012; 10
2018; 49
2013; 9
2018; 9
2018; 4
2018; 172
2019; 20
2020; 297
2005; 102
2015; 83
2012; 490
2019; 27
2014; 14
2013; 110
2006; 281
2007; 3
2018; 33
2010; 30
2018; 37
2007; 449
2012; 189
2010; 207
2010; 328
2018; 103
2020; 39
2016; 167
2016; 165
2011; 79
2013; 341
2020; 32
2012; 37
2011; 3
2016; 16
2016; 15
2017; 413
2011; 7
2012; 109
2018; 24
2016; 4
2015; 194
2021; 54
2015; 112
2016; 20
2013; 81
2020; 21
2019; 573
2018; 14
2018; 362
2017; 8
2021; 21
2012; 287
2019; 51
2018; 360
2020; 63
2021; 29
2011; 13
2008; 4
2017; 199
2017; 114
2013; 14
2020; 52
2013; 13
2020; 9
2002; 44
2015; 1266
2016; 84
2015; 162
2021; 7
1998; 28
2015; 17
2007; 129
2015; 16
2019; 75
2020; 180
2020; 80
2015; 11
2006; 7
2021; 184
2017; 171
2014; 111
2008; 283
2021; 14
2012; 150
2015; 23
2021; 1867
2014; 509
2017; 13
2015; 21
2013; 496
2020; 117
2017; 19
2017; 101
2012; 8
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Apel F. (e_1_2_8_7_1) 2021; 14
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
Callaghan M.M. (e_1_2_8_13_1) 2017; 413
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 189
  start-page: 4537
  issue: 9
  year: 2012
  end-page: 4545
  article-title: Failure to induce IFN‐beta production during infection contributes to pathogenicity
  publication-title: The Journal of Immunology
– volume: 281
  start-page: 35217
  issue: 46
  year: 2006
  end-page: 35223
  article-title: Regulation of maturation and infection through flagellin and host Ipaf
  publication-title: Journal of Biological Chemistry
– volume: 54
  start-page: 454
  issue: 3
  year: 2021
  end-page: 467 e456
  article-title: Heparin prevents caspase‐11‐dependent septic lethality independent of anticoagulant properties
  publication-title: Immunity
– volume: 85
  start-page: 1
  issue: 10
  year: 2017
  end-page: 16
  article-title: Guanylate binding proteins regulate inflammasome activation in response to hyperinjected Yersinia translocon components
  publication-title: Infection and Immunity
– volume: 27
  start-page: 1008
  issue: 4
  year: 2019
  end-page: 1017 e1006
  article-title: Enteropathogenic stimulates effector‐driven rapid caspase‐4 activation in human macrophages
  publication-title: Cell Reports
– volume: 360
  start-page: 265
  issue: 6384
  year: 2018
  end-page: 270
  article-title: Triggered recruitment of ESCRT machinery promotes endolysosomal repair
  publication-title: Science
– volume: 199
  start-page: 263
  issue: 1
  year: 2017
  end-page: 270
  article-title: SLC46 Family Transporters Facilitate Cytosolic Innate Immune Recognition of Monomeric Peptidoglycans
  publication-title: J Immunol
– volume: 490
  start-page: 288
  issue: 7419
  year: 2012
  end-page: 291
  article-title: Caspase‐11 increases susceptibility to Salmonella infection in the absence of caspase‐1
  publication-title: Nature
– volume: 7
  start-page: 1073
  issue: 6
  year: 2021
  end-page: 1088
  article-title: Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP‐sensing macrophages and monocytes
  publication-title: ACS Central Science
– volume: 21
  start-page: 548
  issue: 9
  year: 2021
  end-page: 569
  article-title: The cGAS‐STING pathway as a therapeutic target in inflammatory diseases
  publication-title: Nature Reviews Immunology
– volume: 8
  start-page: 1303
  issue: 7
  year: 2017
  end-page: 1315
  article-title: cGAS‐STING‐TBK1‐IRF3/7 induced interferon‐beta contributes to the clearing of non tuberculous mycobacterial infection in mice
  publication-title: Virulence
– volume: 362
  start-page: 956
  issue: 6417
  year: 2018
  end-page: 960
  article-title: ESCRT‐dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation
  publication-title: Science
– volume: 165
  start-page: 1106
  issue: 5
  year: 2016
  end-page: 1119
  article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase‐11 activation
  publication-title: Cell
– volume: 29
  start-page: 823
  issue: 9
  year: 2021
  end-page: 835
  article-title: Impact of type I interferons on susceptibility to bacterial pathogens
  publication-title: Trends in Microbiology
– volume: 20
  start-page: 49
  issue: 1
  year: 2016
  end-page: 59
  article-title: Group B Streptococcus degrades cyclic‐di‐AMP to modulate STING‐dependent type I interferon production
  publication-title: Cell Host & Microbe
– volume: 9
  start-page: 2042
  issue: 9
  year: 2020
  article-title: “Repair Me if You Can”: membrane damage, response, and control from the viral perspective
  publication-title: Cells
– volume: 21
  start-page: 880
  issue: 8
  year: 2020
  end-page: 891
  article-title: Guanylate‐binding proteins convert cytosolic bacteria into caspase‐4 signaling platforms
  publication-title: Nature Immunology
– volume: 101
  start-page: 165
  issue: 1
  year: 2017
  end-page: 181
  article-title: Bacterial secretion systems and regulation of inflammasome activation
  publication-title: Journal of Leukocyte Biology
– volume: 283
  start-page: 19879
  issue: 29
  year: 2008
  end-page: 19887
  article-title: Group A streptococcus activates type I interferon production and MyD88‐dependent signaling without involvement of TLR2, TLR4, and TLR9
  publication-title: Journal of Biological Chemistry
– volume: 21
  start-page: 401
  issue: 4
  year: 2015
  end-page: 406
  article-title: A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis
  publication-title: Nature Medicine
– volume: 3
  start-page: 73ra19
  issue: 73
  year: 2011
  article-title: Neutrophils activate plasmacytoid dendritic cells by releasing self‐DNA‐peptide complexes in systemic lupus erythematosus
  publication-title: Science Translational Medicine
– volume: 573
  start-page: 434
  issue: 7774
  year: 2019
  end-page: 438
  article-title: SLC19A1 transports immunoreactive cyclic dinucleotides
  publication-title: Nature
– volume: 14
  issue: 12
  year: 2018
  article-title: Guanylate‐binding protein 5 licenses caspase‐11 for gasdermin‐D mediated host resistance to infection
  publication-title: PLoS Path
– volume: 15
  start-page: 2438
  issue: 11
  year: 2016
  end-page: 2448
  article-title: Type I interferon induction by : dual requirement of cyclic GMP‐AMP synthase and toll‐like receptor 4
  publication-title: Cell Reports
– volume: 509
  start-page: 240
  issue: 7499
  year: 2014
  end-page: 244
  article-title: Endosomes are specialized platforms for bacterial sensing and NOD2 signalling
  publication-title: Nature
– volume: 194
  start-page: 3236
  issue: 7
  year: 2015
  end-page: 3245
  article-title: cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection
  publication-title: The Journal of Immunology
– volume: 12
  start-page: 372
  issue: 3
  year: 2010
  end-page: 385
  article-title: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells
  publication-title: Cellular Microbiology
– volume: 111
  start-page: 6046
  issue: 16
  year: 2014
  end-page: 6051
  article-title: Guanylate binding proteins promote caspase‐11‐dependent pyroptosis in response to cytoplasmic LPS
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 39
  issue: 13
  year: 2020
  article-title: Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions
  publication-title: EMBO Journal
– volume: 189
  start-page: 4040
  issue: 8
  year: 2012
  end-page: 4046
  article-title: induces type I IFN signaling in dendritic cells via TLR9
  publication-title: The Journal of Immunology
– volume: 63
  start-page: 49
  year: 2020
  end-page: 56
  article-title: Cyclic dinucleotides at the forefront of innate immunity
  publication-title: Current Opinion in Cell Biology
– volume: 4
  start-page: 543
  issue: 6
  year: 2008
  end-page: 554
  article-title: TLR‐independent type I interferon induction in response to an extracellular bacterial pathogen via intracellular recognition of its DNA
  publication-title: Cell Host & Microbe
– volume: 16
  start-page: 467
  issue: 5
  year: 2015
  end-page: 475
  article-title: The transcription factor IRF1 and guanylate‐binding proteins target activation of the AIM2 inflammasome by Francisella infection
  publication-title: Nature Immunology
– volume: 8
  issue: 2
  year: 2012
  article-title: Phagosomal rupture by results in toxicity and host cell death
  publication-title: PLoS Path
– volume: 75
  start-page: 372
  issue: 2
  year: 2019
  end-page: 381 e375
  article-title: SLC19A1 is an importer of the immunotransmitter cGAMP
  publication-title: Molecular Cell
– volume: 10
  start-page: 178
  issue: 3
  year: 2012
  end-page: 190
  article-title: A bacterial siren song: intimate interactions between Neisseria and neutrophils
  publication-title: Nature Reviews Microbiology
– volume: 14
  start-page: 821
  issue: 12
  year: 2014
  end-page: 826
  article-title: SMOCs: supramolecular organizing centres that control innate immunity
  publication-title: Nature Reviews Immunology
– volume: 129
  start-page: 1287
  issue: 7
  year: 2007
  end-page: 1298
  article-title: and translocate from the phagolysosome to the cytosol in myeloid cells
  publication-title: Cell
– volume: 16
  start-page: 476
  issue: 5
  year: 2015
  end-page: 484
  article-title: Guanylate‐binding proteins promote activation of the AIM2 inflammasome during infection with
  publication-title: Nature Immunology
– volume: 120
  start-page: 3699
  issue: 18
  year: 2012
  end-page: 3707
  article-title: Cytosolic sensing of extracellular self‐DNA transported into monocytes by the antimicrobial peptide LL37
  publication-title: Blood
– volume: 83
  start-page: 4740
  issue: 12
  year: 2015
  end-page: 4749
  article-title: Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia‐infected macrophages
  publication-title: Infection and Immunity
– volume: 112
  start-page: E5628
  issue: 41
  year: 2015
  end-page: E5637
  article-title: Ubiquitin systems mark pathogen‐containing vacuoles as targets for host defense by guanylate binding proteins
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 117
  start-page: 1160
  issue: 2
  year: 2020
  end-page: 1166
  article-title: The Mycobacterium marinum ESX‐1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 10
  start-page: 2242
  year: 2019
  article-title: internalized by skin keratinocytes evade antibiotic killing
  publication-title: Frontiers in Microbiology
– volume: 80
  start-page: 578
  issue: 4
  year: 2020
  end-page: 591 e575
  article-title: LRRC8A:C/E heteromeric channels are ubiquitous transporters of cGAMP
  publication-title: Molecular Cell
– volume: 341
  start-page: 1246
  issue: 6151
  year: 2013
  end-page: 1249
  article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4
  publication-title: Science
– volume: 4
  start-page: e70
  issue: 4
  year: 2016
  article-title: Bacterial RNA as a signal to eukaryotic cells as part of the infection process
  publication-title: Discoveries (Craiova)
– volume: 11
  issue: 2
  year: 2015
  article-title: Cytosolic access of : critical impact of phagosomal acidification control and demonstration of occurrence in vivo
  publication-title: PLoS Path
– volume: 10
  start-page: 202
  issue: 4
  year: 2020
  end-page: 209
  article-title: ESX secretion system: the gatekeepers of mycobacterial survivability and pathogenesis
  publication-title: European Journal of Microbiology and Immunology (Bp)
– volume: 16
  start-page: 407
  issue: 7
  year: 2016
  end-page: 420
  article-title: Inflammasomes: mechanism of assembly, regulation and signalling
  publication-title: Nature Reviews Immunology
– volume: 28
  start-page: 663
  issue: 3
  year: 1998
  end-page: 674
  article-title: Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake
  publication-title: Molecular Microbiology
– volume: 172
  start-page: 1306
  issue: 6
  year: 2018
  end-page: 1318
  article-title: Protein‐injection machines in bacteria
  publication-title: Cell
– volume: 449
  start-page: 564
  issue: 7162
  year: 2007
  end-page: 569
  article-title: Plasmacytoid dendritic cells sense self‐DNA coupled with antimicrobial peptide
  publication-title: Nature
– volume: 8
  start-page: 1503
  year: 2017
  article-title: DNA delivery and genomic integration into mammalian target cells through type IV A and B secretion systems of human pathogens
  publication-title: Frontiers in Microbiology
– volume: 54
  start-page: 1154
  issue: 6
  year: 2021
  end-page: 1167 e1157
  article-title: The inhibitory receptor TIM‐3 limits activation of the cGAS‐STING pathway in intra‐tumoral dendritic cells by suppressing extracellular DNA uptake
  publication-title: Immunity
– volume: 180
  start-page: 1044
  issue: 6
  year: 2020
  end-page: 1066
  article-title: Toll‐like receptors and the control of immunity
  publication-title: Cell
– volume: 297
  start-page: 67
  issue: 1
  year: 2020
  end-page: 82
  article-title: Molecular mechanisms activating the NAIP‐NLRC4 inflammasome: implications in infectious disease, autoinflammation, and cancer
  publication-title: Immunological Reviews
– volume: 37
  start-page: 302
  issue: 2
  year: 2012
  end-page: 313
  article-title: A cluster of interferon‐gamma‐inducible p65 GTPases plays a critical role in host defense against
  publication-title: Immunity
– volume: 7
  issue: 5
  year: 2011
  article-title: Type I interferon production induced by ‐derived nucleic acids is required for host protection
  publication-title: PLoS Path
– volume: 33
  start-page: 862
  issue: 5
  year: 2018
  end-page: 873 e865
  article-title: Extrinsic phagocyte‐dependent STING signaling dictates the immunogenicity of dying cells
  publication-title: Cancer Cell
– volume: 9
  start-page: 1
  issue: 6
  year: 2018
  end-page: 21
  article-title: Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response
  publication-title: MBio
– volume: 14
  start-page: 256
  issue: 3
  year: 2013
  end-page: 268
  article-title: A Rab‐centric perspective of bacterial pathogen‐occupied vacuoles
  publication-title: Cell Host & Microbe
– volume: 162
  start-page: 1309
  issue: 6
  year: 2015
  end-page: 1321
  article-title: Pathogen cell‐to‐cell variability drives heterogeneity in host immune responses
  publication-title: Cell
– volume: 150
  start-page: 803
  issue: 4
  year: 2012
  end-page: 815
  article-title: Extracellular DNA targets bacteria for autophagy by activating the host DNA‐sensing pathway
  publication-title: Cell
– volume: 287
  start-page: 44184
  issue: 53
  year: 2012
  end-page: 44191
  article-title: ESAT‐6 exhibits a unique membrane‐interacting activity that is not found in its ortholog from non‐pathogenic
  publication-title: Journal of Biological Chemistry
– volume: 8
  start-page: 1
  issue: 5
  year: 2017
  end-page: 11
  article-title: Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins
  publication-title: MBio
– volume: 110
  start-page: 1851
  issue: 5
  year: 2013
  end-page: 1856
  article-title: Caspase‐11 stimulates rapid flagellin‐independent pyroptosis in response to pneumophila
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 328
  start-page: 1703
  issue: 5986
  year: 2010
  end-page: 1705
  article-title: c‐di‐AMP secreted by intracellular activates a host type I interferon response
  publication-title: Science
– volume: 1266
  start-page: 29
  year: 2015
  end-page: 53
  article-title: Getting across the cell membrane: an overview for small molecules, peptides, and proteins
  publication-title: Methods in Molecular Biology
– volume: 4
  start-page: 3
  year: 2018
  article-title: Guanylate binding proteins facilitate caspase‐11‐dependent pyroptosis in response to type 3 secretion system‐negative
  publication-title: Cell Death Discovery
– volume: 30
  start-page: 502
  issue: 4
  year: 2010
  end-page: 506
  article-title: Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome
  publication-title: Journal of Clinical Immunology
– volume: 21
  issue: 11
  year: 2020
  article-title: Dynamin‐related Irgm proteins modulate LPS‐induced caspase‐11 activation and septic shock
  publication-title: EMBO Reports
– volume: 79
  start-page: 688
  issue: 2
  year: 2011
  end-page: 694
  article-title: The N‐ethyl‐N‐nitrosourea‐induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to and cyclic dinucleotides
  publication-title: Infection and Immunity
– volume: 13
  issue: 7
  year: 2017
  article-title: Opposing roles of toll‐like receptor and cytosolic DNA‐STING signaling pathways for cutaneous host defense
  publication-title: PLoS Path
– volume: 4
  start-page: 1
  issue: 1
  year: 2016
  end-page: 19
  article-title: Bacterial secretion systems: an overview
  publication-title: Microbiology Spectrum
– volume: 13
  start-page: 570
  issue: 5
  year: 2013
  end-page: 583
  article-title: The Shigella OspC3 effector inhibits caspase‐4, antagonizes inflammatory cell death, and promotes epithelial infection
  publication-title: Cell Host & Microbe
– volume: 32
  start-page: 108008
  issue: 6
  year: 2020
  article-title: Human GBP1 differentially targets Salmonella and toxoplasma to license recognition of microbial ligands and caspase‐mediated death
  publication-title: Cell Reports
– volume: 509
  start-page: 366
  issue: 7500
  year: 2014
  end-page: 370
  article-title: Caspase‐11 activation requires lysis of pathogen‐containing vacuoles by IFN‐induced GTPases
  publication-title: Nature
– volume: 14
  issue: 1
  year: 2018
  article-title: The common HAQ STING variant impairs cGAS‐dependent antibacterial responses and is associated with susceptibility to Legionnaires’ disease in humans
  publication-title: PLoS Path
– volume: 184
  start-page: 3794
  issue: 14
  year: 2021
  end-page: 3811 e3719
  article-title: Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota
  publication-title: Cell
– volume: 114
  start-page: E1698
  issue: 9
  year: 2017
  end-page: E1706
  article-title: Galectin‐3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 24
  start-page: 155
  issue: 1
  year: 2018
  end-page: 168 e155
  article-title: Constitutive interferon maintains GBP expression required for release of bacterial components upstream of pyroptosis and anti‐DNA responses
  publication-title: Cell Reports
– volume: 20
  start-page: 1
  issue: 4
  year: 2019
  end-page: 18
  article-title: cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity
  publication-title: EMBO Reports
– volume: 14
  issue: 12
  year: 2018
  article-title: The ESCRT and autophagy machineries cooperate to repair ESX‐1‐dependent damage at the Mycobacterium‐containing vacuole but have opposite impact on containing the infection
  publication-title: PLoS Path
– volume: 7
  start-page: 569
  issue: 6
  year: 2006
  end-page: 575
  article-title: Cytoplasmic flagellin activates caspase‐1 and secretion of interleukin 1beta via Ipaf
  publication-title: Nature Immunology
– volume: 207
  start-page: 1745
  issue: 8
  year: 2010
  end-page: 1755
  article-title: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella
  publication-title: Journal of Experimental Medicine
– volume: 109
  start-page: 3481
  issue: 9
  year: 2012
  end-page: 3486
  article-title: The protein SdhA maintains the integrity of the ‐containing vacuole
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 103
  start-page: 35
  issue: 1
  year: 2018
  end-page: 51
  article-title: For when bacterial infections persist: toll‐like receptor‐inducible direct antimicrobial pathways in macrophages
  publication-title: Journal of Leukocyte Biology
– volume: 112
  start-page: E871
  issue: 8
  year: 2015
  end-page: E880
  article-title: Dysregulation of alpha‐hemolysin expression alters the course of acute and persistent urinary tract infection
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 21
  issue: 11
  year: 2020
  article-title: Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response
  publication-title: EMBO Reports
– volume: 3
  start-page: e51
  issue: 3
  year: 2007
  article-title: Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system
  publication-title: PLoS Path
– volume: 17
  start-page: 811
  issue: 6
  year: 2015
  end-page: 819
  article-title: The cytosolic sensor cGAS detects DNA to induce type I interferons and activate autophagy
  publication-title: Cell Host & Microbe
– volume: 14
  issue: 8
  year: 2018
  article-title: Dysregulated hemolysin liberates bacterial outer membrane vesicles for cytosolic lipopolysaccharide sensing
  publication-title: PLoS Path
– volume: 171
  start-page: 809
  issue: 4
  year: 2017
  end-page: 823 e813
  article-title: STING senses microbial viability to orchestrate stress‐mediated autophagy of the endoplasmic reticulum
  publication-title: Cell
– volume: 11
  start-page: 469
  issue: 5
  year: 2012
  end-page: 480
  article-title: Mycobacterium tuberculosis activates the DNA‐dependent cytosolic surveillance pathway within macrophages
  publication-title: Cell Host & Microbe
– volume: 11
  start-page: 3276
  issue: 1
  year: 2020
  article-title: Human GBP1 binds LPS to initiate assembly of a caspase‐4 activating platform on cytosolic bacteria
  publication-title: Nature Communications
– volume: 14
  start-page: 1
  issue: 673
  year: 2021
  end-page: 16
  article-title: The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps
  publication-title: Science Signalling
– volume: 19
  start-page: 1
  issue: 12
  year: 2017
  end-page: 17
  article-title: Sweet host revenge: galectins and GBPs join forces at broken membranes
  publication-title: Cellular Microbiology
– volume: 1867
  start-page: 166184
  issue: 10
  year: 2021
  article-title: Extracellular HMGB1 augments macrophage inflammation by facilitating the endosomal accumulation of ALD‐DNA via TLR2/4‐mediated endocytosis
  publication-title: Biochimica et Biophysica Acta (BBA) ‐ Molecular Basis of Disease
– volume: 52
  start-page: 767
  issue: 5
  year: 2020
  end-page: 781 e766
  article-title: Transfer of cGAMP into bystander cells via LRRC8 volume‐regulated anion channels augments STING‐mediated interferon responses and anti‐viral immunity
  publication-title: Immunity
– volume: 51
  start-page: 609
  issue: 4
  year: 2019
  end-page: 624
  article-title: Inflammasomes: threat‐assessment organelles of the innate immune system
  publication-title: Immunity
– volume: 496
  start-page: 233
  issue: 7444
  year: 2013
  end-page: 237
  article-title: Manipulation of small Rho GTPases is a pathogen‐induced process detected by NOD1
  publication-title: Nature
– volume: 17
  start-page: 799
  issue: 6
  year: 2015
  end-page: 810
  article-title: Mycobacterium tuberculosis differentially activates cGAS‐ and inflammasome‐dependent intracellular immune responses through ESX‐1
  publication-title: Cell Host & Microbe
– volume: 413
  start-page: 323
  year: 2017
  end-page: 345
  article-title: Secretion of chromosomal DNA by the type IV secretion system
  publication-title: Current Topics in Microbiology and Immunology
– volume: 23
  start-page: 163
  year: 2015
  end-page: 170
  article-title: Emerging themes in bacterial autophagy
  publication-title: Current Opinion in Microbiology
– volume: 102
  start-page: 13646
  issue: 38
  year: 2005
  end-page: 13651
  article-title: Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 7
  start-page: 576
  issue: 6
  year: 2006
  end-page: 582
  article-title: Cytosolic flagellin requires Ipaf for activation of caspase‐1 and interleukin 1beta in salmonella‐infected macrophages
  publication-title: Nature Immunology
– volume: 81
  start-page: 905
  issue: 3
  year: 2013
  end-page: 914
  article-title: Impact of host membrane pore formation by the type III secretion system on the macrophage innate immune response
  publication-title: Infection and Immunity
– volume: 49
  start-page: 740
  issue: 4
  year: 2018
  end-page: 753 e747
  article-title: The endotoxin delivery protein HMGB1 mediates caspase‐11‐dependent lethality in sepsis
  publication-title: Immunity
– volume: 13
  start-page: 1668
  issue: 11
  year: 2011
  end-page: 1682
  article-title: Dissection of a type I interferon pathway in controlling bacterial intracellular infection in mice
  publication-title: Cellular Microbiology
– volume: 167
  start-page: 382
  issue: 2
  year: 2016
  end-page: 396 e317
  article-title: IRGB10 liberates bacterial ligands for sensing by the AIM2 and CASPASE‐11‐NLRP3 inflammasomes
  publication-title: Cell
– volume: 37
  start-page: 1
  issue: 21
  year: 2018
  end-page: 15
  article-title: ESCRT‐mediated lysosome repair precedes lysophagy and promotes cell survival
  publication-title: EMBO Journal
– volume: 44
  start-page: 645
  issue: 3
  year: 2002
  end-page: 661
  article-title: Complementary activities of SseJ and SifA regulate dynamics of the vacuolar membrane
  publication-title: Molecular Microbiology
– volume: 9
  issue: 6
  year: 2013
  article-title: Caspase‐11 activation in response to bacterial secretion systems that access the host cytosol
  publication-title: PLoS Path
– volume: 17
  start-page: 820
  issue: 6
  year: 2015
  end-page: 828
  article-title: Cyclic GMP‐AMP synthase is an innate immune DNA sensor for
  publication-title: Cell Host & Microbe
– volume: 84
  start-page: 3564
  issue: 12
  year: 2016
  end-page: 3574
  article-title: Cyclic di‐AMP released from biofilm induces a macrophage type i interferon response
  publication-title: Infection and Immunity
– volume: 9
  start-page: 2061
  year: 2018
  article-title: The dual nature of type I and type II interferons
  publication-title: Frontiers in Immunology
– volume: 37
  start-page: 1
  issue: 6
  year: 2018
  end-page: 19
  article-title: LPS targets host guanylate‐binding proteins to the bacterial outer membrane for non‐canonical inflammasome activation
  publication-title: EMBO Journal
– ident: e_1_2_8_60_1
  doi: 10.1126/scitranslmed.3001180
– ident: e_1_2_8_96_1
  doi: 10.15252/embj.201798089
– ident: e_1_2_8_112_1
  doi: 10.1016/j.chom.2015.05.004
– ident: e_1_2_8_43_1
  doi: 10.1371/journal.ppat.1001345
– ident: e_1_2_8_113_1
  doi: 10.1016/j.cell.2012.06.040
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1615771114
– ident: e_1_2_8_88_1
  doi: 10.1016/j.molcel.2019.05.006
– ident: e_1_2_8_11_1
  doi: 10.1084/jem.20100257
– ident: e_1_2_8_28_1
  doi: 10.1016/j.immuni.2021.04.019
– ident: e_1_2_8_16_1
  doi: 10.1371/journal.ppat.1007519
– ident: e_1_2_8_32_1
  doi: 10.15252/embr.202050829
– ident: e_1_2_8_41_1
  doi: 10.1016/j.cell.2018.01.034
– ident: e_1_2_8_56_1
  doi: 10.1016/j.chom.2013.04.012
– ident: e_1_2_8_64_1
  doi: 10.1016/j.cell.2021.05.020
– ident: e_1_2_8_68_1
  doi: 10.1371/journal.ppat.1007501
– ident: e_1_2_8_30_1
  doi: 10.1016/j.immuni.2018.08.016
– ident: e_1_2_8_45_1
  doi: 10.1128/microbiolspec.VMBF-0012-2015
– ident: e_1_2_8_92_1
  doi: 10.1126/science.aar7607
– ident: e_1_2_8_66_1
  doi: 10.1016/j.celrep.2018.06.012
– ident: e_1_2_8_21_1
  doi: 10.1111/cmi.12793
– ident: e_1_2_8_27_1
  doi: 10.1074/jbc.M112.420869
– ident: e_1_2_8_3_1
  doi: 10.3389/fmicb.2019.02242
– ident: e_1_2_8_94_1
  doi: 10.1371/journal.ppat.1006829
– ident: e_1_2_8_99_1
  doi: 10.1016/j.chom.2013.08.010
– ident: e_1_2_8_46_1
  doi: 10.1128/IAI.00447-16
– ident: e_1_2_8_86_1
  doi: 10.15252/embj.201899753
– ident: e_1_2_8_59_1
  doi: 10.1016/j.molcel.2020.10.021
– ident: e_1_2_8_78_1
  doi: 10.1128/mBio.01765-18
– ident: e_1_2_8_117_1
  doi: 10.1016/j.ceb.2019.12.004
– ident: e_1_2_8_24_1
  doi: 10.1073/pnas.1121286109
– ident: e_1_2_8_58_1
  doi: 10.1128/IAI.01014-12
– ident: e_1_2_8_31_1
  doi: 10.1038/nm.3813
– ident: e_1_2_8_53_1
  doi: 10.1111/imr.12906
– ident: e_1_2_8_17_1
  doi: 10.1182/blood-2012-01-401364
– ident: e_1_2_8_4_1
  doi: 10.1074/jbc.M604933200
– ident: e_1_2_8_95_1
  doi: 10.1038/s41467-020-16889-z
– ident: e_1_2_8_54_1
  doi: 10.1126/science.1240248
– ident: e_1_2_8_98_1
  doi: 10.1371/journal.ppat.1006496
– ident: e_1_2_8_37_1
  doi: 10.1128/mBio.01188-17
– ident: e_1_2_8_40_1
  doi: 10.1038/ni1346
– ident: e_1_2_8_84_1
  doi: 10.1016/j.tim.2021.01.007
– ident: e_1_2_8_44_1
  doi: 10.1074/jbc.M802848200
– ident: e_1_2_8_52_1
  doi: 10.4049/jimmunol.1201111
– ident: e_1_2_8_81_1
  doi: 10.1038/nature13133
– ident: e_1_2_8_111_1
  doi: 10.1016/j.chom.2015.05.003
– ident: e_1_2_8_119_1
  doi: 10.1128/IAI.00778-16
– ident: e_1_2_8_33_1
  doi: 10.1016/j.immuni.2019.08.005
– ident: e_1_2_8_5_1
  doi: 10.1016/j.celrep.2016.05.030
– ident: e_1_2_8_82_1
  doi: 10.4049/jimmunol.1600409
– ident: e_1_2_8_104_1
  doi: 10.1016/j.mib.2014.11.020
– ident: e_1_2_8_74_1
  doi: 10.1038/nature13157
– ident: e_1_2_8_65_1
  doi: 10.1111/j.1462-5822.2011.01646.x
– ident: e_1_2_8_89_1
  doi: 10.1046/j.1365-2958.1998.00841.x
– ident: e_1_2_8_22_1
  doi: 10.1016/j.chom.2015.05.005
– ident: e_1_2_8_51_1
  doi: 10.1111/j.1462-5822.2009.01404.x
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.1911646117
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cell.2015.08.027
– ident: e_1_2_8_25_1
  doi: 10.1038/nrmicro2713
– ident: e_1_2_8_75_1
  doi: 10.1038/ni.3119
– ident: e_1_2_8_18_1
  doi: 10.1016/j.chom.2008.11.002
– ident: e_1_2_8_69_1
  doi: 10.1016/j.bbadis.2021.166184
– ident: e_1_2_8_77_1
  doi: 10.1007/s10875-010-9386-5
– ident: e_1_2_8_107_1
  doi: 10.1016/j.immuni.2021.01.007
– ident: e_1_2_8_9_1
  doi: 10.1038/s41420-018-0068-z
– ident: e_1_2_8_71_1
  doi: 10.1038/ni.3118
– ident: e_1_2_8_105_1
  doi: 10.1002/JLB.4RI0917-358R
– ident: e_1_2_8_85_1
  doi: 10.1073/pnas.1321700111
– ident: e_1_2_8_93_1
  doi: 10.1046/j.1365-2958.2002.02912.x
– ident: e_1_2_8_110_1
  doi: 10.1038/s41590-020-0697-2
– ident: e_1_2_8_83_1
  doi: 10.4049/jimmunol.1201055
– volume: 14
  start-page: 1
  issue: 673
  year: 2021
  ident: e_1_2_8_7_1
  article-title: The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps
  publication-title: Science Signalling
– ident: e_1_2_8_12_1
  doi: 10.1038/nature11419
– ident: e_1_2_8_116_1
  doi: 10.1007/978-1-4939-2272-7_3
– ident: e_1_2_8_97_1
  doi: 10.1128/IAI.00999-10
– ident: e_1_2_8_35_1
  doi: 10.15252/embr.202050830
– ident: e_1_2_8_90_1
  doi: 10.1556/1886.2020.00028
– ident: e_1_2_8_15_1
  doi: 10.1371/journal.ppat.1003400
– ident: e_1_2_8_80_1
  doi: 10.1073/pnas.1500374112
– ident: e_1_2_8_61_1
  doi: 10.1038/nature06116
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.0506461102
– ident: e_1_2_8_100_1
  doi: 10.1371/journal.ppat.1002507
– ident: e_1_2_8_76_1
  doi: 10.1038/ni1344
– ident: e_1_2_8_14_1
  doi: 10.1073/pnas.1211521110
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ccell.2018.03.027
– ident: e_1_2_8_79_1
  doi: 10.1016/j.cell.2017.09.034
– ident: e_1_2_8_19_1
  doi: 10.1371/journal.ppat.1007240
– ident: e_1_2_8_23_1
  doi: 10.1021/acscentsci.1c00440
– ident: e_1_2_8_38_1
  doi: 10.1016/j.celrep.2020.108008
– ident: e_1_2_8_36_1
  doi: 10.1128/IAI.00856-15
– ident: e_1_2_8_103_1
  doi: 10.1126/science.aar5078
– ident: e_1_2_8_67_1
  doi: 10.15252/embr.201846293
– ident: e_1_2_8_48_1
  doi: 10.1073/pnas.1515966112
– ident: e_1_2_8_10_1
  doi: 10.1038/nri.2016.58
– ident: e_1_2_8_57_1
  doi: 10.15252/embj.2020104926
– ident: e_1_2_8_26_1
  doi: 10.3390/cells9092042
– ident: e_1_2_8_101_1
  doi: 10.1371/journal.ppat.1004650
– ident: e_1_2_8_87_1
  doi: 10.1189/jlb.4MR0716-330R
– ident: e_1_2_8_109_1
  doi: 10.1016/j.cell.2016.04.015
– ident: e_1_2_8_114_1
  doi: 10.1126/science.1189801
– volume: 413
  start-page: 323
  year: 2017
  ident: e_1_2_8_13_1
  article-title: Secretion of chromosomal DNA by the Neisseria gonorrhoeae type IV secretion system
  publication-title: Current Topics in Microbiology and Immunology
– ident: e_1_2_8_115_1
  doi: 10.1016/j.immuni.2012.06.009
– ident: e_1_2_8_49_1
  doi: 10.1371/journal.ppat.0030051
– ident: e_1_2_8_73_1
  doi: 10.1016/j.chom.2012.03.007
– ident: e_1_2_8_91_1
  doi: 10.1080/21505594.2017.1321191
– ident: e_1_2_8_50_1
  doi: 10.1038/nri3757
– ident: e_1_2_8_108_1
  doi: 10.1016/j.cell.2007.05.059
– ident: e_1_2_8_47_1
  doi: 10.3389/fmicb.2017.01503
– ident: e_1_2_8_70_1
  doi: 10.1038/s41586-019-1553-0
– ident: e_1_2_8_72_1
  doi: 10.1016/j.cell.2016.09.012
– ident: e_1_2_8_106_1
  doi: 10.4049/jimmunol.1402764
– ident: e_1_2_8_102_1
  doi: 10.15190/d.2016.17
– ident: e_1_2_8_6_1
  doi: 10.1016/j.chom.2016.06.003
– ident: e_1_2_8_39_1
  doi: 10.1016/j.cell.2020.02.041
– ident: e_1_2_8_118_1
  doi: 10.1016/j.immuni.2020.03.016
– ident: e_1_2_8_42_1
  doi: 10.1016/j.celrep.2019.03.100
– ident: e_1_2_8_29_1
  doi: 10.1038/s41577-021-00524-z
– ident: e_1_2_8_55_1
  doi: 10.1038/nature12025
– ident: e_1_2_8_62_1
  doi: 10.3389/fimmu.2018.02061
SSID ssj0013063
Score 2.4543757
SecondaryResourceType review_article
Snippet The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen‐associated molecular patterns...
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1420
SubjectTerms Animals
Bacteria
Bacteria - genetics
Bacteria - metabolism
Bacterial diseases
Bacterial infections
Bacterial Infections - genetics
Bacterial Infections - metabolism
Bacterial Infections - microbiology
Bacterial Infections - physiopathology
caspase‐11
caspase‐4
caspase‐5
cGAS
cyclic dinucleotides
Cytosol
Cytosol - metabolism
Cytosol - microbiology
guanylate binding proteins
Humans
Immune response
Immune system
Innate immunity
lipopolysaccharide
macrophage
Membranes
Pathogen-Associated Molecular Pattern Molecules - metabolism
pathogen‐associated molecular pattern
Pattern recognition
pattern recognition receptor
Pattern recognition receptors
Phagocytes
Phagocytosis
phagosome
Phagosomes
Phagosomes - genetics
Phagosomes - metabolism
Phagosomes - microbiology
Receptor mechanisms
Receptors, Pattern Recognition - genetics
Receptors, Pattern Recognition - metabolism
STING
Title Cytosolic detection of phagosomal bacteria—Mechanisms underlying PAMP exodus from the phagosome into the cytosol
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmmi.14841
https://www.ncbi.nlm.nih.gov/pubmed/34738270
https://www.proquest.com/docview/2611574992
https://www.proquest.com/docview/2594294590
https://pubmed.ncbi.nlm.nih.gov/PMC8688326
Volume 116
WOSCitedRecordID wos000720975800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2958
  dateEnd: 20240614
  omitProxy: false
  ssIdentifier: ssj0013063
  issn: 0950-382X
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2958
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013063
  issn: 0950-382X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKCxIX_n8WSmUQBy6RNokd2-JUFVZUYlcrRMXeIju220jdpNpkEb3xEDwhT8KMkw1dFSQkbkk8jh17ZjyOZ74h5LVLYo3IUVHMTBaxJBGRFoxFNrMa1WMh0y7ZhJjN5GKh5jvk7SYWpsOHGH64oWQEfY0Crk1zRciXyxLEXGLQ-h4GVcHOa-_dp8nJx9-HCH0iNcURQjZZ9MBC6MgzVN5ejq7ZmNddJa-asGENmtz9r97fI3d605Medrxyn-y46gG51SWjvHxIVkeXbd0gTDC1rg0eWhWtPb0406fwfAlVTQftrH9-_zF1GDJcNsuGYhja6hzDpej8cDqn7ltt1w3FwBUK5uXwAkfLqq3Do6Jr6hE5mbz_fPQh6jMyRAUDSyMyyo0tyKxwXJnEa8udFwjp7r0uvHexdAq0gDGCK-m11MoqnWnrtLBWSp0-JrtVXbmnhIIdaWIzThl3YwY2qHJZxn2qfWJSsPKKEXmzmZi86OHKMWvGeb7ZtsAQ5mEIR-TVQHrRYXT8iWh_M7t5L6ZNDtvHmEPbKhmRl0MxCBiemujK1Wug4QrWbMbVeESedMwwtJIyAYwloERssclAgODd2yVVeRZAvGUmQZlm8JmBTf7e8Xw6PQ4Xz_6d9Dm5naDvTXC72Se77WrtXpCbxde2bFYH5IZYyINeWuDuy_HsF-QmHB4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NHYi98J-tMMAgHniJ1CR2bEt7mQbVJpqqQpvUt8iJbRZpTaYmndgbH4JPyCfZOUnDqoGExFtkX2LHvjuf7bvfAXwwga8ccpTn0zTyaBBwT3FKPR1p5dRjJsI22QSfTsV8LmdbcLCOhWnxIfoDNycZjb52Au4OpG9J-WKRo5wLF7W-TaOQiwFsf_o6Ppv8vkXoMqlJ5jBkg3mHLOQ8efqXN9ejO0bmXV_J2zZsswiNH_1f9x_Dw874JIcttzyBLVM8hfttOsrrZ7A8uq7LygEFE23qxkerIKUll-fqG5Yv8NW0BXdWv378jI0LGs6rRUVcINrywgVMkdlhPCPme6lXFXGhKwQNzP4DhuRFXTZFWdvUczgbfz49Ova6nAxeRtHW8FJpRhqllhsm08AqzYzlDtTdWpVZa3xhJOqBNOVMCquEklqqSGmjuNZCqPAFDIqyMHtA0JJM_XQUUmZGFK1QaaKI2VDZIA3RzsuG8HE9M0nWAZa7vBkXyXrjgkOYNEM4hPc96WWL0vEnov319CadoFYJbiB9hm3LYAjv-moUMXdvogpTrpCGSVy1KZOjIey23NC3ElKOnMWxhm_wSU_g4Ls3a4r8vIHxFpFAdRrhbzZ88veOJ3F80jy8_HfSt_Dg-DSeJJOT6ZdXsBM4T5zGCWcfBvVyZV7Dveyqzqvlm05obgBrOx4X
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqFhCX8g8LBQziwCXSJrFjW-qlKqxYwa72AGJvkRPbbaRustpkq_bGQ_CEPElnnGzoqiAhcYviSewkM-PP8cw3hLyzUaiROSoIWZYELIpEoAVjgUmMRveYy7gtNiGmUzmfq9kOOdzkwrT8EP0PN7QM76_RwO3SuGtWvlgUYOcSs9b3GOBwDOj6Pp7-3kPo6qgpjgyy0bzjFcI4nv7S7dnoBsS8GSl5HcH6KWh07_8Gf5_sd9CTHrW68oDs2PIhud0Wo7x8RFbHl01VI00wNbbxEVolrRxdnuoTOL-AS7OW2ln_-vFzYjFluKgXNcU0tNUZpkvR2dFkRu1FZdY1xcQVCvCyv4GlRdlU_lTedvWYfBt9_Hr8KegqMgQ5A6QRZMoODdissFxlkdOGWyeQ0t05nTtnQ2kVeIEsE1xJp6VWRulEG6uFMVLq-AnZLavSPiMUcGQWZsOYcTtkgEGVTRLuYu2iLAaUlw_I-82XSfOOrhyrZpylm2ULvMLUv8IBeduLLluOjj8JHWw-b9qZaZ3C8jHk0LeKBuRN3wwGhrsmurTVGmS4gjmbcTUckKetNvS9xEyAZgloEVt60gsgefd2S1mcehJvmUhwpgk8pteTvw88nUzG_uD5v4u-JndmH0bpl_H08wtyN8IwHB-Bc0B2m9XaviS38vOmqFevvMVcAXU8HG0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytosolic+detection+of+phagosomal+bacteria%E2%80%94Mechanisms+underlying+PAMP+exodus+from+the+phagosome+into+the+cytosol&rft.jtitle=Molecular+microbiology&rft.au=Ragland%2C+Stephanie+A.&rft.au=Kagan%2C+Jonathan+C.&rft.date=2021-12-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=116&rft.issue=6&rft.spage=1420&rft.epage=1432&rft_id=info:doi/10.1111%2Fmmi.14841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mmi_14841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon