Population‐based Bayesian regularization for microstructural diffusion MRI with NODDIDA

Purpose Information on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model proposed. However, the estimation of the NODDIDA param...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 82; číslo 4; s. 1553 - 1565
Hlavní autoři: Mozumder, Meghdoot, Pozo, Jose M., Coelho, Santiago, Frangi, Alejandro F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.10.2019
John Wiley and Sons Inc
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose Information on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model proposed. However, the estimation of the NODDIDA parameters from clinically plausible dMRI acquisition is ill‐posed, and different parameter sets can describe the same measurements equally well. A few approaches to resolve this problem focused on developing better optimization strategies for this non‐convex optimization. However, this fundamentally does not resolve ill‐posedness. This article introduces a Bayesian estimation framework, which is regularized through knowledge from an extensive dMRI measurement set on a population of healthy adults (henceforth population‐based prior). Methods We reformulate the problem as a Bayesian maximum a posteriori estimation, which includes as a special case previous approach using non‐informative uniform priors. A population‐based prior is estimated from 35 subjects of the MGH Adult Diffusion data (Human Connectome Project), acquired with an extensive acquisition protocol including high b‐values. The accuracy and robustness of different approaches with and without the population‐based prior is tested on subsets of the MGH dataset, and an independent dataset from a clinically comparable scanner, with only clinically plausible dMRI measurements. Results The population‐based prior produced substantially more accurate and robust parameter estimates, compared to the conventional uniform priors, for clinically feasible protocols, without introducing any evident bias. Conclusions The use of the proposed Bayesian population‐based prior can lead to clinically feasible and robust estimation of NODDIDA parameters without changing the acquisition protocol.
AbstractList Purpose Information on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model proposed. However, the estimation of the NODDIDA parameters from clinically plausible dMRI acquisition is ill‐posed, and different parameter sets can describe the same measurements equally well. A few approaches to resolve this problem focused on developing better optimization strategies for this non‐convex optimization. However, this fundamentally does not resolve ill‐posedness. This article introduces a Bayesian estimation framework, which is regularized through knowledge from an extensive dMRI measurement set on a population of healthy adults (henceforth population‐based prior). Methods We reformulate the problem as a Bayesian maximum a posteriori estimation, which includes as a special case previous approach using non‐informative uniform priors. A population‐based prior is estimated from 35 subjects of the MGH Adult Diffusion data (Human Connectome Project), acquired with an extensive acquisition protocol including high b‐values. The accuracy and robustness of different approaches with and without the population‐based prior is tested on subsets of the MGH dataset, and an independent dataset from a clinically comparable scanner, with only clinically plausible dMRI measurements. Results The population‐based prior produced substantially more accurate and robust parameter estimates, compared to the conventional uniform priors, for clinically feasible protocols, without introducing any evident bias. Conclusions The use of the proposed Bayesian population‐based prior can lead to clinically feasible and robust estimation of NODDIDA parameters without changing the acquisition protocol.
Information on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model proposed. However, the estimation of the NODDIDA parameters from clinically plausible dMRI acquisition is ill-posed, and different parameter sets can describe the same measurements equally well. A few approaches to resolve this problem focused on developing better optimization strategies for this non-convex optimization. However, this fundamentally does not resolve ill-posedness. This article introduces a Bayesian estimation framework, which is regularized through knowledge from an extensive dMRI measurement set on a population of healthy adults (henceforth population-based prior). We reformulate the problem as a Bayesian maximum a posteriori estimation, which includes as a special case previous approach using non-informative uniform priors. A population-based prior is estimated from 35 subjects of the MGH Adult Diffusion data (Human Connectome Project), acquired with an extensive acquisition protocol including high b-values. The accuracy and robustness of different approaches with and without the population-based prior is tested on subsets of the MGH dataset, and an independent dataset from a clinically comparable scanner, with only clinically plausible dMRI measurements. The population-based prior produced substantially more accurate and robust parameter estimates, compared to the conventional uniform priors, for clinically feasible protocols, without introducing any evident bias. The use of the proposed Bayesian population-based prior can lead to clinically feasible and robust estimation of NODDIDA parameters without changing the acquisition protocol.
Information on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model proposed. However, the estimation of the NODDIDA parameters from clinically plausible dMRI acquisition is ill-posed, and different parameter sets can describe the same measurements equally well. A few approaches to resolve this problem focused on developing better optimization strategies for this non-convex optimization. However, this fundamentally does not resolve ill-posedness. This article introduces a Bayesian estimation framework, which is regularized through knowledge from an extensive dMRI measurement set on a population of healthy adults (henceforth population-based prior).PURPOSEInformation on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model proposed. However, the estimation of the NODDIDA parameters from clinically plausible dMRI acquisition is ill-posed, and different parameter sets can describe the same measurements equally well. A few approaches to resolve this problem focused on developing better optimization strategies for this non-convex optimization. However, this fundamentally does not resolve ill-posedness. This article introduces a Bayesian estimation framework, which is regularized through knowledge from an extensive dMRI measurement set on a population of healthy adults (henceforth population-based prior).We reformulate the problem as a Bayesian maximum a posteriori estimation, which includes as a special case previous approach using non-informative uniform priors. A population-based prior is estimated from 35 subjects of the MGH Adult Diffusion data (Human Connectome Project), acquired with an extensive acquisition protocol including high b-values. The accuracy and robustness of different approaches with and without the population-based prior is tested on subsets of the MGH dataset, and an independent dataset from a clinically comparable scanner, with only clinically plausible dMRI measurements.METHODSWe reformulate the problem as a Bayesian maximum a posteriori estimation, which includes as a special case previous approach using non-informative uniform priors. A population-based prior is estimated from 35 subjects of the MGH Adult Diffusion data (Human Connectome Project), acquired with an extensive acquisition protocol including high b-values. The accuracy and robustness of different approaches with and without the population-based prior is tested on subsets of the MGH dataset, and an independent dataset from a clinically comparable scanner, with only clinically plausible dMRI measurements.The population-based prior produced substantially more accurate and robust parameter estimates, compared to the conventional uniform priors, for clinically feasible protocols, without introducing any evident bias.RESULTSThe population-based prior produced substantially more accurate and robust parameter estimates, compared to the conventional uniform priors, for clinically feasible protocols, without introducing any evident bias.The use of the proposed Bayesian population-based prior can lead to clinically feasible and robust estimation of NODDIDA parameters without changing the acquisition protocol.CONCLUSIONSThe use of the proposed Bayesian population-based prior can lead to clinically feasible and robust estimation of NODDIDA parameters without changing the acquisition protocol.
PurposeInformation on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model proposed. However, the estimation of the NODDIDA parameters from clinically plausible dMRI acquisition is ill‐posed, and different parameter sets can describe the same measurements equally well. A few approaches to resolve this problem focused on developing better optimization strategies for this non‐convex optimization. However, this fundamentally does not resolve ill‐posedness. This article introduces a Bayesian estimation framework, which is regularized through knowledge from an extensive dMRI measurement set on a population of healthy adults (henceforth population‐based prior).MethodsWe reformulate the problem as a Bayesian maximum a posteriori estimation, which includes as a special case previous approach using non‐informative uniform priors. A population‐based prior is estimated from 35 subjects of the MGH Adult Diffusion data (Human Connectome Project), acquired with an extensive acquisition protocol including high b‐values. The accuracy and robustness of different approaches with and without the population‐based prior is tested on subsets of the MGH dataset, and an independent dataset from a clinically comparable scanner, with only clinically plausible dMRI measurements.ResultsThe population‐based prior produced substantially more accurate and robust parameter estimates, compared to the conventional uniform priors, for clinically feasible protocols, without introducing any evident bias.ConclusionsThe use of the proposed Bayesian population‐based prior can lead to clinically feasible and robust estimation of NODDIDA parameters without changing the acquisition protocol.
Author Mozumder, Meghdoot
Pozo, Jose M.
Coelho, Santiago
Frangi, Alejandro F.
AuthorAffiliation 2 Department of Applied Physics University of Eastern Finland Kuopio Finland
3 Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine University of Leeds Leeds United Kingdom
1 Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering The University of Sheffield Sheffield United Kingdom
4 LICAMM Leeds Institute of Cardiac and Metabolic Medicine, School of Medicine University of Leeds Leeds United Kingdom
AuthorAffiliation_xml – name: 1 Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering The University of Sheffield Sheffield United Kingdom
– name: 2 Department of Applied Physics University of Eastern Finland Kuopio Finland
– name: 4 LICAMM Leeds Institute of Cardiac and Metabolic Medicine, School of Medicine University of Leeds Leeds United Kingdom
– name: 3 Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine University of Leeds Leeds United Kingdom
Author_xml – sequence: 1
  givenname: Meghdoot
  surname: Mozumder
  fullname: Mozumder, Meghdoot
  email: a.frangi@leeds.ac.uk
  organization: University of Eastern Finland
– sequence: 2
  givenname: Jose M.
  surname: Pozo
  fullname: Pozo, Jose M.
  organization: University of Leeds
– sequence: 3
  givenname: Santiago
  surname: Coelho
  fullname: Coelho, Santiago
  organization: University of Leeds
– sequence: 4
  givenname: Alejandro F.
  surname: Frangi
  fullname: Frangi, Alejandro F.
  organization: University of Leeds
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31131467$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKeFBS-AIrGBRVpf24njDVLpQBmpQ1EFC1aWk9y0rpJ4aidUw4pH4Bl5knp-WtEKVl6c7xyfe-8e2eldj4S8BHoAlLLDzncHTBYcnpAJZIylLFNih0yoFDTloMQu2QvhilKqlBTPyC4H4CByOSHfv7jF2JrBuv7Pr9-lCVgn780SgzV94vEiat7-XOtJ43zS2cq7MPixGkZv2qS2TTOGlTo_nyU3drhMPp9Np7Pp0XPytDFtwBfbd598-_jh6_Gn9PTsZHZ8dJpWQnBIuRKqlEYBwwrLnMmmFNTIrECaoeSNYRkaU6sKiqwsZV6pAkFmYFStkHHg--TdJncxlh3WFfZDLKYX3nbGL7UzVj9UenupL9wPnUsJeZ7HgDfbAO-uRwyD7myosG1Nj24MmjHOIP5Oi4i-foReudH3cbxIZTlXEtSKevV3o_sqd1uPwOEGWO0yeGx0ZYf1jmNB22qgenVXHe-q13eNjrePHHeh_2K36Te2xeX_QT0_n28ct526s58
CitedBy_id crossref_primary_10_1002_mrm_28756
crossref_primary_10_1162_imag_a_00051
crossref_primary_10_1002_mrm_28741
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1016_j_neuroimage_2022_118958
Cites_doi 10.1016/j.neuroimage.2016.09.058
10.1016/j.neuroimage.2016.11.053
10.1016/j.neuroimage.2012.03.072
10.1016/j.neuroimage.2013.05.041
10.1002/jmri.22554
10.1016/j.neuroimage.2011.01.084
10.1002/mrm.26575
10.1002/nbm.3450
10.1002/mrm.1910340618
10.1002/nbm.783
10.1002/mrm.27101
10.1016/j.neuroimage.2005.03.042
10.1073/pnas.1004841107
10.3174/ajnr.A0842
10.1148/radiol.2492071681
10.1016/j.neuroimage.2014.12.009
10.1016/j.neuroimage.2018.03.006
10.1016/j.neuroimage.2016.02.004
10.1016/j.neuroimage.2015.08.075
10.1002/mrm.22055
10.1016/j.neuroimage.2015.10.043
10.1016/j.neuroscience.2004.06.046
ContentType Journal Article
Copyright 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2019 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2019 International Society for Magnetic Resonance in Medicine
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.27831
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate MOZUMDER et al
EISSN 1522-2594
EndPage 1565
ExternalDocumentID PMC6771666
31131467
10_1002_mrm_27831
MRM27831
Genre article
Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: S10 RR023043
– fundername: NIBIB NIH HHS
  grantid: P41 EB015896
– fundername: NCRR NIH HHS
  grantid: S10 RR019307
– fundername: NCRR NIH HHS
  grantid: S10 RR023401
– fundername: NIMH NIH HHS
  grantid: U01 MH093765
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4431-3949b7a912eceb627fb40a758e05e73fa25eaad9c185bb76c98e1751a9d9e2313
IEDL.DBID 24P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483917000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:13:17 EDT 2025
Thu Oct 02 11:50:52 EDT 2025
Sat Nov 29 14:32:42 EST 2025
Wed Feb 19 02:13:16 EST 2025
Sat Nov 29 02:37:47 EST 2025
Tue Nov 18 21:38:39 EST 2025
Wed Jan 22 16:42:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords diffusion MRI
parameter estimation
microstructure imaging
modeling
biophysical tissue models
Language English
License Attribution
2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4431-3949b7a912eceb627fb40a758e05e73fa25eaad9c185bb76c98e1751a9d9e2313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27831
PMID 31131467
PQID 2256397198
PQPubID 1016391
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771666
proquest_miscellaneous_2232118508
proquest_journals_2256397198
pubmed_primary_31131467
crossref_citationtrail_10_1002_mrm_27831
crossref_primary_10_1002_mrm_27831
wiley_primary_10_1002_mrm_27831_MRM27831
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2012; 61
2018; 174
2002; 15
2009; 62
2012
2010; 107
2011
2008; 29
1995; 34
2017; 78
2016; 124
2013; 80
2011; 33
2016; 132
2008; 249
2011; 56
2013
2016; 125
2015; 107
2016; 29
2005; 27
2004; 129
2017; 147
2018; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Johansen‐Berg H (e_1_2_7_4_1) 2013
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Jones DK (e_1_2_7_2_1) 2011
References_xml – year: 2011
– volume: 125
  start-page: 739
  year: 2016
  end-page: 744
  article-title: Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of alzheimer's disease
  publication-title: NeuroImage
– volume: 62
  start-page: 717
  year: 2009
  end-page: 730
  article-title: Free water elimination and mapping from diffusion MRI
  publication-title: Magn Reson Med
– volume: 249
  start-page: 624
  year: 2008
  end-page: 630
  publication-title: Radiology
– volume: 79
  start-page: 3172
  year: 2018
  end-page: 3193
  article-title: On modeling
  publication-title: Magn Reson Med
– volume: 27
  start-page: 48
  year: 2005
  end-page: 58
  article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain
  publication-title: NeuroImage
– start-page: 465
  year: 2012
– volume: 147
  start-page: 517
  year: 2017
  end-page: 531
  article-title: Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: a model comparison using spherical tensor encoding
  publication-title: NeuroImage
– volume: 56
  start-page: 1301
  year: 2011
  end-page: 1315
  article-title: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI
  publication-title: NeuroImage
– volume: 129
  start-page: 1019
  year: 2004
  end-page: 1027
  article-title: Edema and brain trauma
  publication-title: Neuroscience
– volume: 107
  start-page: 14472
  year: 2010
  end-page: 14477
  article-title: Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke
  publication-title: Proc Nat Acad Sci
– volume: 78
  start-page: 1767
  year: 2017
  end-page: 1780
  article-title: Analysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models
  publication-title: Magn Reson Med
– volume: 33
  start-page: 1456
  year: 2011
  end-page: 1463
  article-title: Signal to noise ratio and uncertainty in diffusion tensor imaging at 1.5, 3.0, and 7.0 Tesla
  publication-title: J Magn Reson Imaging
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  article-title: The rician distribution of noisy MRI data
  publication-title: Magn Reson Med
– volume: 15
  start-page: 456
  year: 2002
  end-page: 467
  article-title: Diffusion‐tensor MRI: theory, experimental design and data analysis—a technical review
  publication-title: NMR Biomed
– volume: 29
  start-page: 33
  year: 2016
  end-page: 47
  article-title: Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue
  publication-title: NMR Biomed
– volume: 132
  start-page: 104
  year: 2016
  end-page: 114
  article-title: In vivo quantification of demyelination and recovery using compartment‐specific diffusion MRI metrics validated by electron microscopy
  publication-title: NeuroImage
– volume: 29
  start-page: 458
  year: 2008
  end-page: 463
  article-title: High b‐value diffusion (b = 3000 s/mm ) MR imaging in cerebral gliomas at 3T: visual and quantitative comparisons with b = 1000 s/mm
  publication-title: Am J Neuroradiol
– volume: 174
  start-page: 518
  year: 2018
  end-page: 538
  article-title: Rotationally‐invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI
  publication-title: NeuroImage
– volume: 107
  start-page: 242
  year: 2015
  end-page: 256
  article-title: One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI
  publication-title: NeuroImage
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: NeuroImage
– volume: 147
  start-page: 964
  year: 2017
  end-page: 975
  article-title: Disentangling micro from mesostructure by diffusion MRI: a bayesian approach
  publication-title: NeuroImage
– volume: 124
  start-page: 1108
  year: 2016
  end-page: 1114
  article-title: MGH–USC human connectome project datasets with ultra‐high b‐value diffusion MRI
  publication-title: NeuroImage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: an overview
  publication-title: NeuroImage
– year: 2013
– ident: e_1_2_7_18_1
  doi: 10.1016/j.neuroimage.2016.09.058
– ident: e_1_2_7_14_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.neuroimage.2016.11.053
– ident: e_1_2_7_25_1
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_7_23_1
  doi: 10.1002/jmri.22554
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neuroimage.2011.01.084
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.26575
– ident: e_1_2_7_12_1
  doi: 10.1002/nbm.3450
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_7_3_1
  doi: 10.1002/nbm.783
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.27101
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2005.03.042
– ident: e_1_2_7_17_1
  doi: 10.1073/pnas.1004841107
– ident: e_1_2_7_26_1
  doi: 10.3174/ajnr.A0842
– ident: e_1_2_7_27_1
  doi: 10.1148/radiol.2492071681
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neuroimage.2014.12.009
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2018.03.006
– volume-title: Diffusion MRI: From Quantitative Measurement to in Vivo Neuroanatomy
  year: 2013
  ident: e_1_2_7_4_1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.neuroimage.2016.02.004
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2015.08.075
– volume-title: Diffusion MRI Theory, Methods, and Applications
  year: 2011
  ident: e_1_2_7_2_1
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.22055
– ident: e_1_2_7_13_1
  doi: 10.1016/j.neuroimage.2015.10.043
– ident: e_1_2_7_16_1
  doi: 10.1016/j.neuroscience.2004.06.046
SSID ssj0009974
Score 2.3602319
Snippet Purpose Information on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density...
Information on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with...
PurposeInformation on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1553
SubjectTerms Adult
Bayes Theorem
Bayesian analysis
biophysical tissue models
Brain
Brain - cytology
Brain - diagnostic imaging
Convexity
Data acquisition
Datasets
Diffusion
Diffusion Magnetic Resonance Imaging - methods
diffusion MRI
Full Papers—Computer Processing and Modeling
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Medical imaging
Microstructure
microstructure imaging
Middle Aged
modeling
Neurites - physiology
Neuroimaging
NMR
Nuclear magnetic resonance
Optimization
Parameter estimation
Parameter robustness
Population
Regularization
Title Population‐based Bayesian regularization for microstructural diffusion MRI with NODDIDA
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27831
https://www.ncbi.nlm.nih.gov/pubmed/31131467
https://www.proquest.com/docview/2256397198
https://www.proquest.com/docview/2232118508
https://pubmed.ncbi.nlm.nih.gov/PMC6771666
Volume 82
WOSCitedRecordID wos000483917000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NG0y8MPYHCGyTN_Gwl6z548a2eNpWKiqtXVUxKE-R7bhiEs1Qy5B44yPwGfkk3DlpRjWQJvESJfJFcew738_2-XcAr9ICHamhNKlSm5DLogi1ikwoXWGySKfSeLLn9-diMJDjsRquwOvFWZiKH6JZcCPL8OM1Gbg289Ytaeh0Nj2mNBE49VmL41SQSid8eMu4qyoKZsFpoFF8QSsUJa3m1WVndAdh3g2U_BPAeg_U3fivuj-BxzXwZCeVpmzCiiu3YL1fb61vwUMfC2rn2_Bx2CT1-vXjJ7m5gp3q746OW7KZz10_q09vMoS8bEoxfRUPLXF4MMq5ckOLcKw_6jFa6GWDi06n1znZgcvum3dnb8M6A0NoOSKLMFVcGaFVnDjrTJaIieGRximGi9pOpBOdtJ3WhbLo9Y0RmVXSIR6JtSqUQ-SYPoXV8rp0z4EJx7VFOCWtizmWG801Twziw3YRTUQWwNGiK3Jb05NTlozPeUWsnOTYaLlvtAAOG9EvFSfH34R2F_2Z12Y5z3Hwoo3MWMkADppiNCjaJdGlu74hmRQnxRIrFsCzqvubr6SoaORaAhBLitEIEFn3ckl59cmTdmdC0A4t_qZXjH9XPO-P-v7mxf1FX8IjBHKqCjLchVXscrcHD-y3r1fz2b63C7yKsdyHtc6oe3mOTx96g98K4xYu
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V2_K4tFBegQIGceASmoc3tqVeSpdVV2yWatWi9hTZjldUYlO0S5G48RP4jf0lnXGyaVcFCYlbJE8Ux_Z4Ps-MvwF4k5ZoSA2VSZXahFyWZahVZELpSpNFOpXGkz1_HorRSB4fq4MV2Fnchan5IVqHG2mG369JwckhvX3FGjqdTd9RnQg8-6xyXEbdDqz2xv2j4RXprqpZmAWnvUbxBbNQlGy3Ly_boxsg82au5HUM641Qf-P_un8P1hvwyXbr1XIfVly1CbfzJry-Cbd8PqidP4CTg7aw18Wv32TqSvZe_3R05ZLNfP36WXODkyHsZVPK66u5aInHg1HdlXNyxLF8PGDk7GWjT73eoLf7EI76Hw739sOmCkNoOaKLMFVcGaFVnDjrTJaIieGRxmOGi7pOpBOddJ3WpbJo-Y0RmVXSISaJtSqVQ_SYPoJOdVa5J8CE49oipJLWxRzbjeaaJwYxYreMJiIL4O1iLgrbUJRTpYyvRU2unBQ4aIUftABet6Lfal6OPwltLSa0aFRzXuAGRsHMWMkAXrXNqFQUKdGVOzsnmRQPxhI7FsDjev7br6RxnJJ5CUAsrYxWgAi7l1uq0y-euDsTgqK0-Jt-Zfy940U-zv3D038XfQl39g_zYTEcjD4-g7sI7FSddLgFHZx-9xzW7I_vp_PZi0ZNLgG3ORgU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fTxQxEJ8QROKLIgouoFbjgy8r-6e3bRNewOPiRe68EDX4tOm_iyTeQu7EhDc_gp-RT-JMd2_hgiYmvm3S2Wy305n5tdP-BuBV7jCQGiqTKrWJuXQu1ioxsfTOFInOpQlkz5-PxHAoT07UaAn25ndhan6IdsONLCP4azJwf-7Gu9esoZPp5A3VicC1zx3eQR9LvM58dE25q2oOZsHJ0yg-5xVKst321cVodAti3j4peRPBhhDUe_B_nV-D-w30ZPv1XHkIS75ah9VBk1xfh7vhNKidPYIvo7as19XPXxToHDvQl54uXLJpqF4_be5vMgS9bEKn-momWmLxYFR15YK24djguM9oq5cNP3S7_e7-Y_jUO_z49l3c1GCILUdsEeeKKyO0SjNvvSkyMTY80bjI8EnHi3yss47X2imLcd8YUVglPSKSVCunPGLHfAOWq7PKPwEmPNcWAZW0PuXYbjTXPDOIEDsuGYsigtdzXZS2ISinOhnfyppaOStx0MowaBG8bEXPa1aOPwntzBVaNoY5K9F9USozVTKCF20zmhTlSXTlzy5IJsdlscSORbBZ67_9Sp6mOQWXCMTCzGgFiK57saU6_RpouwshKEeLvxlmxt87Xg6OB-Fh699Fn8PqqNsrj_rD99twD1Gdqk8c7sAyat8_hRX74_vpbPos2MhvM_wV_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population%E2%80%90based+Bayesian+regularization+for+microstructural+diffusion+MRI+with+NODDIDA&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Mozumder%2C+Meghdoot&rft.au=Pozo%2C+Jose+M&rft.au=Coelho%2C+Santiago&rft.au=Frangi%2C+Alejandro+F&rft.date=2019-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=82&rft.issue=4&rft.spage=1553&rft.epage=1565&rft_id=info:doi/10.1002%2Fmrm.27831&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon