PyFrag 2019—Automating the exploration and analysis of reaction mechanisms
We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment‐based activation strain analysis along a provided potential energy surface. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in terms of the intrin...
Saved in:
| Published in: | Journal of computational chemistry Vol. 40; no. 25; pp. 2227 - 2233 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
30.09.2019
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0192-8651, 1096-987X, 1096-987X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment‐based activation strain analysis along a provided potential energy surface. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in terms of the intrinsic properties, such as strain and interaction, of the reactants. The new PyFrag 2019 program has automated and reduced the time‐consuming and laborious task of setting up, running, analyzing, and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019 resolves three main challenges associated with the automated computational exploration of reaction mechanisms: it (1) computes the reaction path by carrying out multiple parallel calculations using initial coordinates provided by the user; (2) monitors the entire workflow process; and (3) tabulates and visualizes the final data in a clear way. The activation strain and canonical energy decomposition results that are generated relate the characteristics of the reaction profile in terms of intrinsic properties (strain, interaction, orbital overlaps, orbital energies, populations) of the reactant species. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
PyFrag 2019 is a user‐friendly python program that resolves three main challenges associated with the automatized computational exploration of reaction mechanisms: (1) the management of multiple parallel calculations to automatically find a reaction path; (2) the real‐time monitoring of the entire computational process; and (3) the analysis and presentation of these data in a clear and informative way to rationalize the characteristics of the reaction profile in terms of intrinsic properties of the reactant species by means of the activation strain model (ASM) and an energy decomposition analysis (EDA, when using ADF). |
|---|---|
| AbstractList | We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment‐based activation strain analysis along a provided potential energy surface. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in terms of the intrinsic properties, such as strain and interaction, of the reactants. The new PyFrag 2019 program has automated and reduced the time‐consuming and laborious task of setting up, running, analyzing, and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019 resolves three main challenges associated with the automated computational exploration of reaction mechanisms: it (1) computes the reaction path by carrying out multiple parallel calculations using initial coordinates provided by the user; (2) monitors the entire workflow process; and (3) tabulates and visualizes the final data in a clear way. The activation strain and canonical energy decomposition results that are generated relate the characteristics of the reaction profile in terms of intrinsic properties (strain, interaction, orbital overlaps, orbital energies, populations) of the reactant species. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment-based activation strain analysis along a provided potential energy surface. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in terms of the intrinsic properties, such as strain and interaction, of the reactants. The new PyFrag 2019 program has automated and reduced the time-consuming and laborious task of setting up, running, analyzing, and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019 resolves three main challenges associated with the automated computational exploration of reaction mechanisms: it (1) computes the reaction path by carrying out multiple parallel calculations using initial coordinates provided by the user; (2) monitors the entire workflow process; and (3) tabulates and visualizes the final data in a clear way. The activation strain and canonical energy decomposition results that are generated relate the characteristics of the reaction profile in terms of intrinsic properties (strain, interaction, orbital overlaps, orbital energies, populations) of the reactant species. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment-based activation strain analysis along a provided potential energy surface. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in terms of the intrinsic properties, such as strain and interaction, of the reactants. The new PyFrag 2019 program has automated and reduced the time-consuming and laborious task of setting up, running, analyzing, and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019 resolves three main challenges associated with the automated computational exploration of reaction mechanisms: it (1) computes the reaction path by carrying out multiple parallel calculations using initial coordinates provided by the user; (2) monitors the entire workflow process; and (3) tabulates and visualizes the final data in a clear way. The activation strain and canonical energy decomposition results that are generated relate the characteristics of the reaction profile in terms of intrinsic properties (strain, interaction, orbital overlaps, orbital energies, populations) of the reactant species. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment‐based activation strain analysis along a provided potential energy surface. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in terms of the intrinsic properties, such as strain and interaction, of the reactants. The new PyFrag 2019 program has automated and reduced the time‐consuming and laborious task of setting up, running, analyzing, and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019 resolves three main challenges associated with the automated computational exploration of reaction mechanisms: it (1) computes the reaction path by carrying out multiple parallel calculations using initial coordinates provided by the user; (2) monitors the entire workflow process; and (3) tabulates and visualizes the final data in a clear way. The activation strain and canonical energy decomposition results that are generated relate the characteristics of the reaction profile in terms of intrinsic properties (strain, interaction, orbital overlaps, orbital energies, populations) of the reactant species. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. PyFrag 2019 is a user‐friendly python program that resolves three main challenges associated with the automatized computational exploration of reaction mechanisms: (1) the management of multiple parallel calculations to automatically find a reaction path; (2) the real‐time monitoring of the entire computational process; and (3) the analysis and presentation of these data in a clear and informative way to rationalize the characteristics of the reaction profile in terms of intrinsic properties of the reactant species by means of the activation strain model (ASM) and an energy decomposition analysis (EDA, when using ADF). We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment‐based activation strain analysis along a provided potential energy surface. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in terms of the intrinsic properties, such as strain and interaction, of the reactants. The new PyFrag 2019 program has automated and reduced the time‐consuming and laborious task of setting up, running, analyzing, and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019 resolves three main challenges associated with the automated computational exploration of reaction mechanisms: it (1) computes the reaction path by carrying out multiple parallel calculations using initial coordinates provided by the user; (2) monitors the entire workflow process; and (3) tabulates and visualizes the final data in a clear way. The activation strain and canonical energy decomposition results that are generated relate the characteristics of the reaction profile in terms of intrinsic properties (strain, interaction, orbital overlaps, orbital energies, populations) of the reactant species. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. |
| Author | Bickelhaupt, F. Matthias Soini, Thomas M. Sun, Xiaobo Poater, Jordi Hamlin, Trevor A. |
| AuthorAffiliation | 1 Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling Vrije Universiteit Amsterdam De Boelelaan 1083, 1081 HV Amsterdam Netherlands 3 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain and Departament de Química Inorgànica i Orgànica & IQTCUB Universitat de Barcelona 08028 Barcelona Catalonia Spain 4 Institute for Molecules and Materials Radboud University Heyendaalseweg 135, 6525 AJ Nijmegen Netherlands 2 Software for Chemistry & Materials B.V. De Boelelaan 1083, 1081 HV Amsterdam Netherlands |
| AuthorAffiliation_xml | – name: 2 Software for Chemistry & Materials B.V. De Boelelaan 1083, 1081 HV Amsterdam Netherlands – name: 3 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain and Departament de Química Inorgànica i Orgànica & IQTCUB Universitat de Barcelona 08028 Barcelona Catalonia Spain – name: 4 Institute for Molecules and Materials Radboud University Heyendaalseweg 135, 6525 AJ Nijmegen Netherlands – name: 1 Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling Vrije Universiteit Amsterdam De Boelelaan 1083, 1081 HV Amsterdam Netherlands |
| Author_xml | – sequence: 1 givenname: Xiaobo orcidid: 0000-0003-2483-8476 surname: Sun fullname: Sun, Xiaobo organization: Vrije Universiteit Amsterdam – sequence: 2 givenname: Thomas M. orcidid: 0000-0003-3237-3509 surname: Soini fullname: Soini, Thomas M. organization: Software for Chemistry & Materials B.V – sequence: 3 givenname: Jordi orcidid: 0000-0002-0814-5074 surname: Poater fullname: Poater, Jordi email: jordi.poater@ub.edu organization: Universitat de Barcelona – sequence: 4 givenname: Trevor A. orcidid: 0000-0002-5128-1004 surname: Hamlin fullname: Hamlin, Trevor A. email: t.a.hamlin@vu.nl organization: Vrije Universiteit Amsterdam – sequence: 5 givenname: F. Matthias orcidid: 0000-0003-4655-7747 surname: Bickelhaupt fullname: Bickelhaupt, F. Matthias email: f.m.bickelhaupt@vu.nl organization: Radboud University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31165500$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1OGzEUhS0EgoSy4AXQSGzaxRDb47_ZIKGI9EeRYNFK3VmOx5M4mrGDPUPJrg_BE_IkdRNAgAQLy7663z06vmcIdp13BoBjBM8QhHi01PoMU8HRDhggWLK8FPz3LhhAVOJcMIoOwDDGJYSwoIzsg4MCIUYphAMwvV5PgppnOLEPf-8v-s63qrNunnULk5m7VeNDqr3LlKvSUc062pj5OgtG6U2jNXqhnI1t_AT2atVEc_R4H4Jfk8uf42_59Orr9_HFNNeEFCjHGmlEak6IwsmtLgTmpCaKcVFjxkx6kapWM8ZwUaGKYKRKxiHXglaU07o4BOdb3VU_a02ljeuCauQq2FaFtfTKytcdZxdy7m8l4xzxQiSBz48Cwd_0JnaytVGbplHO-D5KjJmgyR8uE3r6Bl36PqQ9bCksaCFIok5eOnq28rToBHzZAjr4GIOpnxEE5f8QZQpRbkJM7OgNq223CSF9xjYfTfyxjVm_Ly1_jMfbiX-BFqz8 |
| CitedBy_id | crossref_primary_10_1002_slct_202300710 crossref_primary_10_1038_s41596_019_0265_0 crossref_primary_10_1002_cphc_202100090 crossref_primary_10_1002_open_202000323 crossref_primary_10_1039_D5OB00819K crossref_primary_10_1002_chem_202303185 crossref_primary_10_1002_chem_202501654 crossref_primary_10_1002_ejoc_202201144 crossref_primary_10_1063_5_0142778 crossref_primary_10_1002_ntls_20220039 crossref_primary_10_1021_jacs_4c07821 crossref_primary_10_1002_ejoc_202201028 crossref_primary_10_3390_ijms24054938 crossref_primary_10_1002_cplu_202100436 crossref_primary_10_1002_chem_202004496 crossref_primary_10_1002_cplu_202500081 crossref_primary_10_3390_ph15080935 crossref_primary_10_1021_acs_inorgchem_5c00581 crossref_primary_10_1039_D3SC06215E crossref_primary_10_1002_chem_202000857 crossref_primary_10_1002_chem_202301308 crossref_primary_10_1002_chem_202103544 crossref_primary_10_1002_cphc_202100505 crossref_primary_10_1016_j_comptc_2019_112640 crossref_primary_10_1007_s41061_024_00461_0 crossref_primary_10_1039_D4RA00066H crossref_primary_10_3390_ijms24097754 crossref_primary_10_1002_chem_202200987 crossref_primary_10_1063_5_0258496 crossref_primary_10_1002_chem_202201649 crossref_primary_10_1021_acs_joc_5c01157 crossref_primary_10_1002_ejoc_202101107 crossref_primary_10_1039_D5CP01533B crossref_primary_10_1002_ejoc_202200722 crossref_primary_10_1002_chem_202300345 crossref_primary_10_1002_chem_202103953 crossref_primary_10_1002_qua_27194 crossref_primary_10_1002_chem_202100522 crossref_primary_10_1002_chem_202203121 crossref_primary_10_1039_D4SC04211E crossref_primary_10_1063_5_0245218 crossref_primary_10_1002_ejoc_202000590 crossref_primary_10_1002_chem_202004906 crossref_primary_10_1002_ceur_202300072 crossref_primary_10_1002_cphc_202300480 crossref_primary_10_1515_pac_2022_1004 crossref_primary_10_1002_chem_201905359 |
| Cites_doi | 10.1021/ja411699u 10.1002/wcms.81 10.1007/s002140050021 10.1073/pnas.0501965102 10.1021/acs.joc.6b02524 10.1039/C8CC00700D 10.1021/ct100466k 10.1039/C8CP06031B 10.1002/chem.201801187 10.1007/s00214-007-0310-x 10.1021/ic50196a034 10.1002/jcc.20786 10.1063/1.1742724 10.1002/chem.201900295 10.1002/chem.200900367 10.1021/ar300204y 10.1002/jcc.25546 10.1002/jcc.25731 10.1021/ar700111a 10.1021/ja034490h 10.1002/anie.200705456 10.1021/ja00102a034 10.1021/ja0734086 10.1002/wcms.1162 10.1063/1.1388040 10.1002/wcms.1345 10.1021/acs.joc.7b01449 10.26434/chemrxiv.7789940.v1 10.1021/jo801215z 10.1002/anie.200501633 10.1002/anie.198208013 10.1063/1.4790598 10.1039/C8CP07671E 10.1039/C5RA10345B 10.1021/ja9003624 10.1021/ar00094a001 10.1021/acs.joc.7b01928 10.1021/acscatal.8b03843 10.1016/B978-044451719-7/50084-6 10.1002/9781118558409 10.1021/ja800009z 10.1002/cphc.200700092 10.1021/ar00072a001 10.1002/chem.201403237 10.1016/j.cpc.2010.04.018 10.1038/s41598-018-28998-3 10.1002/chem.201500758 10.1002/anie.201701486 10.1002/anie.198207113 10.1016/0040-4039(78)80116-6 10.1002/cphc.201701363 10.1063/1.2126975 10.1021/ct700214v 10.1080/00268976.2014.952696 10.1002/jcc.1056 10.1002/chem.200204408 10.1002/anie.201101380 10.1021/jo00865a001 10.1103/PhysRevB.75.155109 10.1063/1.1742723 10.1063/1.466129 10.1063/1.4869598 10.1039/b901970g 10.1002/jcc.540141112 10.1002/anie.201101379 10.1002/ejoc.201800572 10.1021/ma061592u 10.1021/ic50197a006 10.1021/bk-1996-0629.ch002 10.1021/la0362977 10.1021/acs.jctc.7b00118 10.1002/ejoc.201800100 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. – notice: 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
| DBID | 24P AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1002/jcc.25871 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | ProQuest Computer Science Collection MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| DocumentTitleAlternate | PyFrag 2019—Automating the Exploration and Analysis of Reaction Mechanisms |
| EISSN | 1096-987X |
| EndPage | 2233 |
| ExternalDocumentID | PMC6771738 31165500 10_1002_jcc_25871 JCC25871 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: China Scholarship Council (CSC) – fundername: the Spanish MINECO funderid: CTQ2016‐77558‐R; MDM‐2017‐0767 – fundername: Generalitat de Catalunya funderid: 2017SGR348 – fundername: Generalitat de Catalunya grantid: 2017SGR348 – fundername: the Spanish MINECO grantid: CTQ2016‐77558‐R; MDM‐2017‐0767 |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c4431-2c1c14f744a2096c38274f4a678f266e4a64dfab6623d1d421a96707c85d575f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482149500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0192-8651 1096-987X |
| IngestDate | Tue Nov 04 01:51:31 EST 2025 Fri Jul 11 07:45:52 EDT 2025 Fri Jul 25 19:23:16 EDT 2025 Mon Jul 21 05:41:00 EDT 2025 Tue Nov 18 22:13:37 EST 2025 Sat Nov 29 03:23:40 EST 2025 Wed Jan 22 16:39:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | energy decomposition analysis reaction mechanisms density functional calculations automation program activation strain model |
| Language | English |
| License | Attribution-NonCommercial 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4431-2c1c14f744a2096c38274f4a678f266e4a64dfab6623d1d421a96707c85d575f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5128-1004 0000-0003-2483-8476 0000-0003-4655-7747 0000-0003-3237-3509 0000-0002-0814-5074 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.25871 |
| PMID | 31165500 |
| PQID | 2268285384 |
| PQPubID | 48816 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771738 proquest_miscellaneous_2268574429 proquest_journals_2268285384 pubmed_primary_31165500 crossref_primary_10_1002_jcc_25871 crossref_citationtrail_10_1002_jcc_25871 wiley_primary_10_1002_jcc_25871_JCC25871 |
| PublicationCentury | 2000 |
| PublicationDate | September 30, 2019 |
| PublicationDateYYYYMMDD | 2019-09-30 |
| PublicationDate_xml | – month: 09 year: 2019 text: September 30, 2019 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
| PublicationTitle | Journal of computational chemistry |
| PublicationTitleAlternate | J Comput Chem |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2004; 20 2017; 82 2006; 39 2009; 113 2010; 181 2008; 4 2007; 75 2008; 73 1983; 16 2014; 136 2014; 20 2018; 39 2018; 8 2014; 4 2000; 15 2019; 21 2005; 102 2008; 29 1982; 21 2019; 25 2003; 9 2007; 8 2003; 125 2009; 15 1998; 99 2014; 118 1976; 41 2019; 9 1979; 18 2007; 129 1994; 116 2015; 5 2013; 46 2010 2010; 39 2009 1978; 19 1996 2005 2009; 131 2001; 22 2008; 120 2018; 20 2011; 7 2018; 24 1993; 14 2018; 19 2012; 2 2019; 40 2006; 45 2005; 123 2015; 113 2013; 138 1993; 99 2017; 13 2017; 56 2015; 21 2011; 50 1981; 14 2008; 47 1956; 24 2019 2018 2014; 140 2008; 41 2013 2018; 54 2008; 130 2001; 115 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Luschtinetz R. (e_1_2_7_83_1) 2009; 113 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Piela L. (e_1_2_7_2_1) 2013 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_46_1 e_1_2_7_67_1 Smith M. B. (e_1_2_7_66_1) 2013 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Baerends E. J. (e_1_2_7_10_1) 1996 e_1_2_7_72_1 Liu S. (e_1_2_7_30_1) 2014; 118 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 Gordon M. S. (e_1_2_7_60_1) 2005 e_1_2_7_38_1 Bickelhaupt F. M. (e_1_2_7_12_1) 2000 Hartwig J. F. (e_1_2_7_65_1) 2010 |
| References_xml | – volume: 131 start-page: 8121 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 10980 year: 2017 publication-title: J. Org. Chem. – year: 2009 – volume: 24 start-page: 979 year: 1956 publication-title: J. Chem. Phys. – volume: 56 start-page: 10070 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2173 year: 2003 publication-title: Chem. Eur. J. – volume: 140 start-page: 18A301 year: 2014 publication-title: J. Chem. Phys. – start-page: 20 year: 1996 – volume: 102 start-page: 5926 year: 2005 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 9312 year: 2015 publication-title: Chem. Eur. J. – start-page: 2477 year: 2018 publication-title: Eur. J. Org. Chem. – volume: 130 start-page: 10187 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 215 year: 2008 publication-title: Theor. Chem. Acc. – volume: 41 start-page: 157 year: 2008 publication-title: Acc. Chem. Res. – volume: 45 start-page: 823 year: 2006 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 363 year: 1983 publication-title: Acc. Chem. Res. – volume: 8 year: 2018 publication-title: WIRES Comput. Mol. Sci. – volume: 15 year: 2000 – volume: 8 start-page: 10729 year: 2018 publication-title: Sci. Rep. – volume: 21 start-page: 801 year: 1982 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 21 start-page: 9651 year: 2019 publication-title: Phys. Chem. Chem. Phys. – start-page: 1167 year: 2005 – volume: 7 start-page: 291 year: 2011 publication-title: J. Chem. Theory Comput. – volume: 138 start-page: 074109 year: 2013 publication-title: J. Chem. Phys. – volume: 18 start-page: 1558 year: 1979 publication-title: Inorg. Chem. – volume: 116 start-page: 10645 year: 1994 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 6112 year: 2009 publication-title: Chem. Eur. J. – volume: 29 start-page: 312 year: 2008 publication-title: J. Comput. Chem. – volume: 14 start-page: 1347 year: 1993 publication-title: J. Comput. Chem. – volume: 50 start-page: 6722 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 28011 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 40 start-page: 619 year: 2019 publication-title: J. Comput. Chem. – volume: 18 start-page: 1755 year: 1979 publication-title: Inorg. Chem. – volume: 20 start-page: 11370 year: 2014 publication-title: Chem. Eur. J. – volume: 8 start-page: 1170 year: 2007 publication-title: ChemPhysChem – volume: 5 start-page: 61426 year: 2015 publication-title: RSC Adv. – volume: 4 start-page: 91 year: 2014 publication-title: WIREs Comput. Mol. Sci. – volume: 82 start-page: 8157 year: 2017 publication-title: J. Org. Chem. – volume: 99 start-page: 3823 year: 1993 publication-title: J. Chem. Phys. – volume: 41 start-page: 403 year: 1976 publication-title: J. Org. Chem. – year: 2019 – volume: 136 start-page: 4575 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 966 year: 1956 publication-title: J. Chem. Phys. – volume: 24 start-page: 11637 year: 2018 publication-title: Chem. Eur. J. – volume: 22 start-page: 931 year: 2001 publication-title: J. Comput. Chem. – volume: 115 start-page: 4030 year: 2001 publication-title: J. Chem. Phys. – volume: 123 start-page: 161103 year: 2005 publication-title: J. Chem. Phys. – volume: 13 start-page: 1989 year: 2017 publication-title: J. Chem. Theory Comput. – start-page: 378 year: 2019 publication-title: Eur. J. Org. Chem. – volume: 19 start-page: 1313 year: 1978 publication-title: Tetrahedron Lett. – volume: 75 start-page: 155109 year: 2007 publication-title: Phys. Rev. B – volume: 82 start-page: 1912 year: 2017 publication-title: J. Org. Chem. – volume: 181 start-page: 1477 year: 2010 publication-title: Comput. Phys. Commun. – volume: 113 start-page: 184 year: 2015 publication-title: Mol. Phys. – volume: 50 start-page: 6738 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 848 year: 2019 publication-title: ACS Catal. – volume: 129 start-page: 10646 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 391 year: 1998 publication-title: Theor. Chem. Acc. – year: 2010 – volume: 39 start-page: 1272 year: 2010 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 920 year: 2008 publication-title: J. Chem. Theory Comput. – volume: 20 start-page: 1051 year: 2004 publication-title: Langmuir – volume: 2 start-page: 73 year: 2012 publication-title: WIREs Comput. Mol. Sci. – volume: 25 start-page: 6342 year: 2019 publication-title: Chem. Eur. J. – volume: 39 start-page: 2690 year: 2018 publication-title: J. Comput. Chem. – volume: 47 start-page: 2253 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 113 start-page: 5730 year: 2009 publication-title: J. Phys. Chem. – volume: 19 start-page: 1315 year: 2018 publication-title: ChemPhysChem – volume: 14 start-page: 363 year: 1981 publication-title: Acc. Chem. Res. – volume: 54 start-page: 3448 year: 2018 publication-title: Chem. Commun. – volume: 39 start-page: 6451 year: 2006 publication-title: Macromolecules – volume: 118 start-page: 2638 year: 2014 publication-title: Chem. A – volume: 125 start-page: 4686 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 471 year: 2013 publication-title: Acc. Chem. Res. – volume: 73 start-page: 7290 year: 2008 publication-title: J. Org. Chem. – volume: 21 start-page: 711 year: 1982 publication-title: Angew. Chem. Int. Ed. Engl. – year: 2013 – ident: e_1_2_7_11_1 doi: 10.1021/ja411699u – ident: e_1_2_7_48_1 doi: 10.1002/wcms.81 – ident: e_1_2_7_43_1 doi: 10.1007/s002140050021 – volume-title: Ideas of Quantum Chemistry year: 2013 ident: e_1_2_7_2_1 – ident: e_1_2_7_74_1 doi: 10.1073/pnas.0501965102 – ident: e_1_2_7_34_1 doi: 10.1021/acs.joc.6b02524 – ident: e_1_2_7_15_1 doi: 10.1039/C8CC00700D – ident: e_1_2_7_4_1 doi: 10.1021/ct100466k – ident: e_1_2_7_33_1 doi: 10.1039/C8CP06031B – ident: e_1_2_7_39_1 doi: 10.1002/chem.201801187 – ident: e_1_2_7_5_1 doi: 10.1007/s00214-007-0310-x – ident: e_1_2_7_54_1 doi: 10.1021/ic50196a034 – ident: e_1_2_7_41_1 doi: 10.1002/jcc.20786 – ident: e_1_2_7_47_1 – volume-title: March's Advanced Organic Chemistry: Reactions, Mechanisms, Structure year: 2013 ident: e_1_2_7_66_1 – ident: e_1_2_7_20_1 doi: 10.1063/1.1742724 – ident: e_1_2_7_13_1 doi: 10.1002/chem.201900295 – ident: e_1_2_7_27_1 doi: 10.1002/chem.200900367 – volume: 118 start-page: 2638 year: 2014 ident: e_1_2_7_30_1 publication-title: Chem. A – ident: e_1_2_7_22_1 doi: 10.1021/ar300204y – ident: e_1_2_7_58_1 doi: 10.1002/jcc.25546 – ident: e_1_2_7_16_1 doi: 10.1002/jcc.25731 – ident: e_1_2_7_9_1 doi: 10.1021/ar700111a – ident: e_1_2_7_72_1 doi: 10.1021/ja034490h – ident: e_1_2_7_76_1 doi: 10.1002/anie.200705456 – ident: e_1_2_7_81_1 doi: 10.1021/ja00102a034 – ident: e_1_2_7_24_1 doi: 10.1021/ja0734086 – ident: e_1_2_7_49_1 doi: 10.1002/wcms.1162 – ident: e_1_2_7_56_1 doi: 10.1063/1.1388040 – ident: e_1_2_7_46_1 – ident: e_1_2_7_53_1 doi: 10.1002/wcms.1345 – ident: e_1_2_7_32_1 doi: 10.1021/acs.joc.7b01449 – ident: e_1_2_7_62_1 doi: 10.26434/chemrxiv.7789940.v1 – ident: e_1_2_7_38_1 doi: 10.1021/jo801215z – ident: e_1_2_7_82_1 doi: 10.1002/anie.200501633 – ident: e_1_2_7_18_1 doi: 10.1002/anie.198208013 – ident: e_1_2_7_7_1 doi: 10.1063/1.4790598 – ident: e_1_2_7_28_1 doi: 10.1039/C8CP07671E – ident: e_1_2_7_31_1 doi: 10.1039/C5RA10345B – ident: e_1_2_7_77_1 doi: 10.1021/ja9003624 – ident: e_1_2_7_21_1 doi: 10.1021/ar00094a001 – ident: e_1_2_7_35_1 doi: 10.1021/acs.joc.7b01928 – ident: e_1_2_7_37_1 doi: 10.1021/acscatal.8b03843 – start-page: 1167 volume-title: Theory and Applications of Computa‐tional Chemistry: The First Forty Years year: 2005 ident: e_1_2_7_60_1 doi: 10.1016/B978-044451719-7/50084-6 – ident: e_1_2_7_1_1 doi: 10.1002/9781118558409 – ident: e_1_2_7_25_1 doi: 10.1021/ja800009z – ident: e_1_2_7_69_1 doi: 10.1002/cphc.200700092 – ident: e_1_2_7_51_1 doi: 10.1021/ar00072a001 – ident: e_1_2_7_14_1 doi: 10.1002/chem.201403237 – ident: e_1_2_7_63_1 doi: 10.1016/j.cpc.2010.04.018 – ident: e_1_2_7_45_1 – volume-title: Organotransition Metal Chemistry‐From Bonding to Catalysis year: 2010 ident: e_1_2_7_65_1 – ident: e_1_2_7_26_1 doi: 10.1038/s41598-018-28998-3 – ident: e_1_2_7_36_1 doi: 10.1002/chem.201500758 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201701486 – ident: e_1_2_7_85_1 – ident: e_1_2_7_17_1 doi: 10.1002/anie.198207113 – ident: e_1_2_7_79_1 doi: 10.1016/0040-4039(78)80116-6 – ident: e_1_2_7_80_1 doi: 10.1002/cphc.201701363 – volume: 113 start-page: 5730 year: 2009 ident: e_1_2_7_83_1 publication-title: J. Phys. Chem. – ident: e_1_2_7_8_1 doi: 10.1063/1.2126975 – ident: e_1_2_7_57_1 doi: 10.1021/ct700214v – ident: e_1_2_7_64_1 doi: 10.1080/00268976.2014.952696 – volume-title: Reviews in Computational Chemistry year: 2000 ident: e_1_2_7_12_1 – ident: e_1_2_7_44_1 doi: 10.1002/jcc.1056 – ident: e_1_2_7_86_1 – ident: e_1_2_7_40_1 doi: 10.1002/chem.200204408 – ident: e_1_2_7_67_1 doi: 10.1002/anie.201101380 – ident: e_1_2_7_70_1 doi: 10.1021/jo00865a001 – ident: e_1_2_7_6_1 doi: 10.1103/PhysRevB.75.155109 – ident: e_1_2_7_19_1 doi: 10.1063/1.1742723 – ident: e_1_2_7_52_1 doi: 10.1063/1.466129 – ident: e_1_2_7_3_1 doi: 10.1063/1.4869598 – ident: e_1_2_7_61_1 – ident: e_1_2_7_75_1 doi: 10.1039/b901970g – ident: e_1_2_7_59_1 doi: 10.1002/jcc.540141112 – ident: e_1_2_7_68_1 doi: 10.1002/anie.201101379 – ident: e_1_2_7_50_1 – ident: e_1_2_7_29_1 doi: 10.1002/ejoc.201800572 – ident: e_1_2_7_42_1 – ident: e_1_2_7_73_1 doi: 10.1021/ma061592u – ident: e_1_2_7_55_1 doi: 10.1021/ic50197a006 – start-page: 20 volume-title: Chemical Applications in Density Functional Theory year: 1996 ident: e_1_2_7_10_1 doi: 10.1021/bk-1996-0629.ch002 – ident: e_1_2_7_71_1 doi: 10.1021/la0362977 – ident: e_1_2_7_84_1 doi: 10.1021/acs.jctc.7b00118 – ident: e_1_2_7_78_1 doi: 10.1002/ejoc.201800100 |
| SSID | ssj0003564 |
| Score | 2.544227 |
| Snippet | We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment‐based activation strain analysis along a... We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment-based activation strain analysis along a... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2227 |
| SubjectTerms | activation strain model Automation Computational chemistry Decomposition reactions density functional calculations energy decomposition analysis Exploration Organic chemistry Potential energy program Reaction mechanisms Software and Updates Strain analysis Workflow |
| Title | PyFrag 2019—Automating the exploration and analysis of reaction mechanisms |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.25871 https://www.ncbi.nlm.nih.gov/pubmed/31165500 https://www.proquest.com/docview/2268285384 https://www.proquest.com/docview/2268574429 https://pubmed.ncbi.nlm.nih.gov/PMC6771738 |
| Volume | 40 |
| WOSCitedRecordID | wos000482149500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-987X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003564 issn: 0192-8651 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5CUkgu_clP6zYNSskhFye2LFkyPYVtlxJCWEoDezOyLCUbGm-Jdwu99SH6hH2SjqS10yUtBHKwEWiMpdFI88nWfANwkIqq4omuYtx9mJhVnMcqyerYciOLWqIDUdonmxDn53I8LkYr8L6LhQn8EP0HNzcz_HrtJriq2uM70tBrrY8oly5-fC1NM-nyNlA26pfhjAfuKIQwscx52tEKJfS4f3TZGd1DmPcPSv4NYL0HGj57VNufw9MF8CQnwVJewIppNmF90OV724Kz0Q9EsZcEfXXx--evk_ls6tBsc0kQIxLjz-r5YSSqqfEKZCZkagniTh8dQW6MiyOetDftNlwMP34ZfIoXuRZizRBDxFSnOmVWMKYo7mp0JnG7aplCX2bRhxsssdqqKke4VKc1o6kqcpEILXmNiM9mO7DaTBvzCgjTVCc6Y1xXgqkKIQGiCGulZblizNQRHHZKL_WCiNzlw_haBgplWqJ6Sq-eCN71ot8C-8a_hHa7kSsXE7AtEVU6br5Msgj2-2rUqPsfohoznQcZjj2mRQQvw0D3b8kcLRFPkgjEkgn0Ao6We7mmmVx5eu5cuJMNErvpTeD_DS9PBwNfeP1w0Tew4cwgnFjZhdXZ7dy8hSf6-2zS3u75GYB3MZZ7sPbh8_Di7A-pkwuI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VpVK5FFp-GlqKQRy4hCbOOHEkLtWKqsCy2kOReoscxy6LaBZ1d5G48RA8YZ-Esb1JWZVKSBwiWfJEscczns-O_Q3Ay7Soa5HoOqbVh4mxFiJWSdbEVhhZNpICiNI-2UQxGsmzs3K8Bm-6uzCBH6LfcHOe4edr5-BuQ_rwmjX0i9avuZDuAvkdpCjjrJzjuJ-HMxHIowjDxDIXaccrlPDD_tXVaHQDYt48KfkngvUh6Pje_zX-PmwtoSc7CrayDWum3YHNQZfx7QEMxz8Ix54zitbl1c9fR4v51OHZ9pwRSmTGn9bzA8lU29AT6EzY1DJCnv5-BLsw7ibxZHYxewifjt-eDk7iZbaFWCOhiJjrVKdoC0TFaV2jM0kLVouKopmlKG6ohI1VdU6AqUkb5Kkq8yIptBQNYT6bPYL1dtqaXWCouU50hkLXBaqaQAHhCGulxVwhmiaCV53WK72kIncZMb5WgUSZV6Seyqsnghe96LfAv_E3of1u6KqlC84qwpWOnS-TGMHzvpo06v6IqNZMF0FGUI95GcHjMNL9VzJHTCSSJIJixQZ6AUfMvVrTTj57gu68cGcbJHXT28DtDa_eDwa-8OTfRZ_B5snpx2E1fDf6sAd3nUmE8yv7sD6_XJinsKG_zyezywPvDr8B4_8M6w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CprS5NEnbtG6TRi099OLED8mWIZew6dLHsiylgdyMrEeyJfGG7G6ht_6I_ML8ko4k28mSFgo9GAQaY2s0o_lkj74BeBfnVcUiWYW4-9AhrRgLRZSq0DDNC8UxgAjpik3koxE_OSnGK3DQnoXx_BDdBzfrGW69tg6uL5XZv2UN_S7lXsK4PUC-Sm0RmR6sHn0dHA-7lThlnj4KUUzIMxa3zEJRst_dvByP7oHM-7mSdzGsC0KD9f97_Q143IBPcuitZRNWdP0EHvXbmm9PYTj-iUj2lGC8Lm5-XR8u5lOLaOtTgjiRaJev56aSiFrh5QlNyNQQxJ7uhAS50PYs8WR2MXsGx4MP3_ofw6beQigp4ogwkbGMqckpFQnubGTKcctqqMB4ZjCOa2xRZUSVIWRSsaJJLIosj3LJmULUZ9It6NXTWr8AQmUiI5lSJqucigphASIJY7ihmaBUqwDet1ovZUNGbmtinJeeRjkpUT2lU08AbzvRS8_A8Seh7XbqysYJZyUiS8vPl3IawJuuGzVq_4mIWk8XXobhiJMigOd-prunpJaaiEVRAPmSDXQClpp7uaeenDmK7iy32Q0ch-ls4O8vXn7u913j5b-L7sLD8dGgHH4afXkFa9YifALLNvTmVwu9Aw_kj_lkdvW68YffQn4OAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PyFrag+2019%E2%80%94Automating+the+exploration+and+analysis+of+reaction+mechanisms&rft.jtitle=Journal+of+computational+chemistry&rft.au=Sun%2C+Xiaobo&rft.au=Soini%2C+Thomas+M.&rft.au=Poater%2C+Jordi&rft.au=Hamlin%2C+Trevor+A.&rft.date=2019-09-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=40&rft.issue=25&rft.spage=2227&rft.epage=2233&rft_id=info:doi/10.1002%2Fjcc.25871&rft_id=info%3Apmid%2F31165500&rft.externalDocID=PMC6771738 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |