Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow‐band imaging

Background and Aim Magnifying endoscopy with narrow‐band imaging (ME‐NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME‐NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of gastroenterology and hepatology Jg. 36; H. 2; S. 482 - 489
Hauptverfasser: Ueyama, Hiroya, Kato, Yusuke, Akazawa, Yoichi, Yatagai, Noboru, Komori, Hiroyuki, Takeda, Tsutomu, Matsumoto, Kohei, Ueda, Kumiko, Matsumoto, Kenshi, Hojo, Mariko, Yao, Takashi, Nagahara, Akihito, Tada, Tomohiro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Australia Wiley Subscription Services, Inc 01.02.2021
John Wiley and Sons Inc
Schlagworte:
ISSN:0815-9319, 1440-1746, 1440-1746
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background and Aim Magnifying endoscopy with narrow‐band imaging (ME‐NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME‐NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep learning and a convolutional neural network (CNN), has made remarkable progress in various medical fields. Here, we constructed an AI‐assisted CNN computer‐aided diagnosis (CAD) system, based on ME‐NBI images, to diagnose EGC and evaluated the diagnostic accuracy of the AI‐assisted CNN‐CAD system. Methods The AI‐assisted CNN‐CAD system (ResNet50) was trained and validated on a dataset of 5574 ME‐NBI images (3797 EGCs, 1777 non‐cancerous mucosa and lesions). To evaluate the diagnostic accuracy, a separate test dataset of 2300 ME‐NBI images (1430 EGCs, 870 non‐cancerous mucosa and lesions) was assessed using the AI‐assisted CNN‐CAD system. Results The AI‐assisted CNN‐CAD system required 60 s to analyze 2300 test images. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the CNN were 98.7%, 98%, 100%, 100%, and 96.8%, respectively. All misdiagnosed images of EGCs were of low‐quality or of superficially depressed and intestinal‐type intramucosal cancers that were difficult to distinguish from gastritis, even by experienced endoscopists. Conclusions The AI‐assisted CNN‐CAD system for ME‐NBI diagnosis of EGC could process many stored ME‐NBI images in a short period of time and had a high diagnostic ability. This system may have great potential for future application to real clinical settings, which could facilitate ME‐NBI diagnosis of EGC in practice.
AbstractList Magnifying endoscopy with narrow-band imaging (ME-NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME-NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep learning and a convolutional neural network (CNN), has made remarkable progress in various medical fields. Here, we constructed an AI-assisted CNN computer-aided diagnosis (CAD) system, based on ME-NBI images, to diagnose EGC and evaluated the diagnostic accuracy of the AI-assisted CNN-CAD system.BACKGROUND AND AIMMagnifying endoscopy with narrow-band imaging (ME-NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME-NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep learning and a convolutional neural network (CNN), has made remarkable progress in various medical fields. Here, we constructed an AI-assisted CNN computer-aided diagnosis (CAD) system, based on ME-NBI images, to diagnose EGC and evaluated the diagnostic accuracy of the AI-assisted CNN-CAD system.The AI-assisted CNN-CAD system (ResNet50) was trained and validated on a dataset of 5574 ME-NBI images (3797 EGCs, 1777 non-cancerous mucosa and lesions). To evaluate the diagnostic accuracy, a separate test dataset of 2300 ME-NBI images (1430 EGCs, 870 non-cancerous mucosa and lesions) was assessed using the AI-assisted CNN-CAD system.METHODSThe AI-assisted CNN-CAD system (ResNet50) was trained and validated on a dataset of 5574 ME-NBI images (3797 EGCs, 1777 non-cancerous mucosa and lesions). To evaluate the diagnostic accuracy, a separate test dataset of 2300 ME-NBI images (1430 EGCs, 870 non-cancerous mucosa and lesions) was assessed using the AI-assisted CNN-CAD system.The AI-assisted CNN-CAD system required 60 s to analyze 2300 test images. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the CNN were 98.7%, 98%, 100%, 100%, and 96.8%, respectively. All misdiagnosed images of EGCs were of low-quality or of superficially depressed and intestinal-type intramucosal cancers that were difficult to distinguish from gastritis, even by experienced endoscopists.RESULTSThe AI-assisted CNN-CAD system required 60 s to analyze 2300 test images. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the CNN were 98.7%, 98%, 100%, 100%, and 96.8%, respectively. All misdiagnosed images of EGCs were of low-quality or of superficially depressed and intestinal-type intramucosal cancers that were difficult to distinguish from gastritis, even by experienced endoscopists.The AI-assisted CNN-CAD system for ME-NBI diagnosis of EGC could process many stored ME-NBI images in a short period of time and had a high diagnostic ability. This system may have great potential for future application to real clinical settings, which could facilitate ME-NBI diagnosis of EGC in practice.CONCLUSIONSThe AI-assisted CNN-CAD system for ME-NBI diagnosis of EGC could process many stored ME-NBI images in a short period of time and had a high diagnostic ability. This system may have great potential for future application to real clinical settings, which could facilitate ME-NBI diagnosis of EGC in practice.
Background and Aim Magnifying endoscopy with narrow‐band imaging (ME‐NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME‐NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep learning and a convolutional neural network (CNN), has made remarkable progress in various medical fields. Here, we constructed an AI‐assisted CNN computer‐aided diagnosis (CAD) system, based on ME‐NBI images, to diagnose EGC and evaluated the diagnostic accuracy of the AI‐assisted CNN‐CAD system. Methods The AI‐assisted CNN‐CAD system (ResNet50) was trained and validated on a dataset of 5574 ME‐NBI images (3797 EGCs, 1777 non‐cancerous mucosa and lesions). To evaluate the diagnostic accuracy, a separate test dataset of 2300 ME‐NBI images (1430 EGCs, 870 non‐cancerous mucosa and lesions) was assessed using the AI‐assisted CNN‐CAD system. Results The AI‐assisted CNN‐CAD system required 60 s to analyze 2300 test images. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the CNN were 98.7%, 98%, 100%, 100%, and 96.8%, respectively. All misdiagnosed images of EGCs were of low‐quality or of superficially depressed and intestinal‐type intramucosal cancers that were difficult to distinguish from gastritis, even by experienced endoscopists. Conclusions The AI‐assisted CNN‐CAD system for ME‐NBI diagnosis of EGC could process many stored ME‐NBI images in a short period of time and had a high diagnostic ability. This system may have great potential for future application to real clinical settings, which could facilitate ME‐NBI diagnosis of EGC in practice.
Magnifying endoscopy with narrow-band imaging (ME-NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME-NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep learning and a convolutional neural network (CNN), has made remarkable progress in various medical fields. Here, we constructed an AI-assisted CNN computer-aided diagnosis (CAD) system, based on ME-NBI images, to diagnose EGC and evaluated the diagnostic accuracy of the AI-assisted CNN-CAD system. The AI-assisted CNN-CAD system (ResNet50) was trained and validated on a dataset of 5574 ME-NBI images (3797 EGCs, 1777 non-cancerous mucosa and lesions). To evaluate the diagnostic accuracy, a separate test dataset of 2300 ME-NBI images (1430 EGCs, 870 non-cancerous mucosa and lesions) was assessed using the AI-assisted CNN-CAD system. The AI-assisted CNN-CAD system required 60 s to analyze 2300 test images. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the CNN were 98.7%, 98%, 100%, 100%, and 96.8%, respectively. All misdiagnosed images of EGCs were of low-quality or of superficially depressed and intestinal-type intramucosal cancers that were difficult to distinguish from gastritis, even by experienced endoscopists. The AI-assisted CNN-CAD system for ME-NBI diagnosis of EGC could process many stored ME-NBI images in a short period of time and had a high diagnostic ability. This system may have great potential for future application to real clinical settings, which could facilitate ME-NBI diagnosis of EGC in practice.
Background and AimMagnifying endoscopy with narrow‐band imaging (ME‐NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME‐NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep learning and a convolutional neural network (CNN), has made remarkable progress in various medical fields. Here, we constructed an AI‐assisted CNN computer‐aided diagnosis (CAD) system, based on ME‐NBI images, to diagnose EGC and evaluated the diagnostic accuracy of the AI‐assisted CNN‐CAD system.MethodsThe AI‐assisted CNN‐CAD system (ResNet50) was trained and validated on a dataset of 5574 ME‐NBI images (3797 EGCs, 1777 non‐cancerous mucosa and lesions). To evaluate the diagnostic accuracy, a separate test dataset of 2300 ME‐NBI images (1430 EGCs, 870 non‐cancerous mucosa and lesions) was assessed using the AI‐assisted CNN‐CAD system.ResultsThe AI‐assisted CNN‐CAD system required 60 s to analyze 2300 test images. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the CNN were 98.7%, 98%, 100%, 100%, and 96.8%, respectively. All misdiagnosed images of EGCs were of low‐quality or of superficially depressed and intestinal‐type intramucosal cancers that were difficult to distinguish from gastritis, even by experienced endoscopists.ConclusionsThe AI‐assisted CNN‐CAD system for ME‐NBI diagnosis of EGC could process many stored ME‐NBI images in a short period of time and had a high diagnostic ability. This system may have great potential for future application to real clinical settings, which could facilitate ME‐NBI diagnosis of EGC in practice.
Author Ueda, Kumiko
Takeda, Tsutomu
Nagahara, Akihito
Hojo, Mariko
Tada, Tomohiro
Akazawa, Yoichi
Matsumoto, Kenshi
Yatagai, Noboru
Matsumoto, Kohei
Yao, Takashi
Ueyama, Hiroya
Kato, Yusuke
Komori, Hiroyuki
AuthorAffiliation 3 Department of Human Pathology Juntendo University School of Medicine Tokyo Japan
1 Department of Gastroenterology Juntendo University School of Medicine Tokyo Japan
2 AI Medical Service Inc. Tokyo Japan
4 Tada Tomohiro Institute of Gastroenterology and Proctology Saitama Japan
AuthorAffiliation_xml – name: 4 Tada Tomohiro Institute of Gastroenterology and Proctology Saitama Japan
– name: 1 Department of Gastroenterology Juntendo University School of Medicine Tokyo Japan
– name: 3 Department of Human Pathology Juntendo University School of Medicine Tokyo Japan
– name: 2 AI Medical Service Inc. Tokyo Japan
Author_xml – sequence: 1
  givenname: Hiroya
  orcidid: 0000-0002-5370-1009
  surname: Ueyama
  fullname: Ueyama, Hiroya
  email: psyro@juntendo.ac.jp
  organization: Juntendo University School of Medicine
– sequence: 2
  givenname: Yusuke
  surname: Kato
  fullname: Kato, Yusuke
  organization: AI Medical Service Inc
– sequence: 3
  givenname: Yoichi
  surname: Akazawa
  fullname: Akazawa, Yoichi
  organization: Juntendo University School of Medicine
– sequence: 4
  givenname: Noboru
  surname: Yatagai
  fullname: Yatagai, Noboru
  organization: Juntendo University School of Medicine
– sequence: 5
  givenname: Hiroyuki
  surname: Komori
  fullname: Komori, Hiroyuki
  organization: Juntendo University School of Medicine
– sequence: 6
  givenname: Tsutomu
  surname: Takeda
  fullname: Takeda, Tsutomu
  organization: Juntendo University School of Medicine
– sequence: 7
  givenname: Kohei
  surname: Matsumoto
  fullname: Matsumoto, Kohei
  organization: Juntendo University School of Medicine
– sequence: 8
  givenname: Kumiko
  surname: Ueda
  fullname: Ueda, Kumiko
  organization: Juntendo University School of Medicine
– sequence: 9
  givenname: Kenshi
  surname: Matsumoto
  fullname: Matsumoto, Kenshi
  organization: Juntendo University School of Medicine
– sequence: 10
  givenname: Mariko
  surname: Hojo
  fullname: Hojo, Mariko
  organization: Juntendo University School of Medicine
– sequence: 11
  givenname: Takashi
  surname: Yao
  fullname: Yao, Takashi
  organization: Juntendo University School of Medicine
– sequence: 12
  givenname: Akihito
  surname: Nagahara
  fullname: Nagahara, Akihito
  organization: Juntendo University School of Medicine
– sequence: 13
  givenname: Tomohiro
  surname: Tada
  fullname: Tada, Tomohiro
  organization: Tada Tomohiro Institute of Gastroenterology and Proctology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32681536$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxi1URLeFAy-ALHGBQ1r_S7K5IFUVtKBKXOBsOY6TnSVrL3bSVW48As_BY_EkTHZLBZXAlznMbz7PfDMn5MgH7wh5ztkZx3e-7lZnPOcVe0QWXCmW8VIVR2TBljzPKsmrY3KS0poxpliZPyHHUhSYksWC_LjYbnuwZoDgaWipiQO0YMH0FPzg-h46562jYwLfUUNt8LehH2ccEe_GuA_DLsQvtA2RNmA6HxKkWc2Z2E-0M2mIYKk1qBRpbZJrKH63QRLaaRZ2vgnJhu1EdzCsqDcxht3Pb99r4xsKCCL0lDxuTZ_cs7t4Sj6_e_vp8jq7-Xj1_vLiJrNKSZa5phZCNgVvGyFrlze8WeaCc1kXubCcF1yZZelkbZiaqZJJq1qD3lhVGlnKU_LmoLsd641rrPMDDqm3EfuIkw4G9N8ZDyvdhVtdVkuF7qPAqzuBGL6OLg16A8mil8a7MCYtlFBVpfJqRl8-QNdhjGjtTFUirwpR5Ei9-LOj-1Z-rxGB1wfAxpBSdO09wpmeT0Tjiej9iSB7_oC1MOz3j8NA_7-KHfRu-re0_nB1faj4BQml0iA
CitedBy_id crossref_primary_10_1016_j_gie_2021_12_042
crossref_primary_10_1371_journal_pone_0303421
crossref_primary_10_3390_cancers15184497
crossref_primary_10_3389_fonc_2024_1431912
crossref_primary_10_1016_j_oooo_2023_10_003
crossref_primary_10_3748_wjg_v27_i40_6794
crossref_primary_10_1007_s00464_023_10620_x
crossref_primary_10_3389_fonc_2023_1122247
crossref_primary_10_1002_jbio_202300276
crossref_primary_10_1186_s12957_024_03321_9
crossref_primary_10_1111_den_14523
crossref_primary_10_1007_s00432_023_04625_1
crossref_primary_10_1038_s41598_023_40179_5
crossref_primary_10_3389_fonc_2022_855175
crossref_primary_10_1002_deo2_359
crossref_primary_10_1016_j_gie_2021_11_040
crossref_primary_10_3748_wjg_v27_i22_2979
crossref_primary_10_7759_cureus_19235
crossref_primary_10_1016_j_canlet_2025_217461
crossref_primary_10_1111_jgh_16525
crossref_primary_10_1002_mog2_91
crossref_primary_10_4018_IJSWIS_352853
crossref_primary_10_1109_ACCESS_2023_3260983
crossref_primary_10_1002_ueg2_12235
crossref_primary_10_1007_s42835_023_01543_7
crossref_primary_10_1002_lpor_202401612
crossref_primary_10_3389_fmed_2021_629080
crossref_primary_10_3748_wjg_v27_i21_2681
crossref_primary_10_1055_a_2529_5025
crossref_primary_10_3390_jcm13071990
crossref_primary_10_1038_s41598_024_58361_8
crossref_primary_10_1109_ACCESS_2021_3065104
crossref_primary_10_21015_vtse_v10i3_1054
crossref_primary_10_4103_sjg_sjg_286_23
crossref_primary_10_1016_j_dld_2025_05_030
crossref_primary_10_3390_s22114079
crossref_primary_10_1053_j_gastro_2025_01_253
crossref_primary_10_1007_s00464_022_09319_2
crossref_primary_10_3389_fonc_2022_815951
crossref_primary_10_1007_s11831_022_09737_4
crossref_primary_10_1016_j_compbiomed_2022_105255
crossref_primary_10_1097_MCG_0000000000001629
crossref_primary_10_3389_fonc_2022_927868
crossref_primary_10_3389_fonc_2022_950185
crossref_primary_10_3390_ani13213305
crossref_primary_10_3389_fonc_2025_1554523
crossref_primary_10_1016_j_gie_2021_12_021
crossref_primary_10_1111_den_14146
crossref_primary_10_1177_17562848231172556
crossref_primary_10_3389_fonc_2023_1103145
crossref_primary_10_1007_s11042_022_12258_8
crossref_primary_10_1007_s10620_021_07086_z
crossref_primary_10_1007_s10120_022_01358_x
crossref_primary_10_1016_j_engappai_2023_105894
crossref_primary_10_1111_den_13890
crossref_primary_10_3389_fonc_2023_1239788
crossref_primary_10_1016_j_giec_2024_10_003
crossref_primary_10_4103_sjg_sjg_178_22
crossref_primary_10_1007_s00530_020_00722_0
crossref_primary_10_1016_j_oooo_2023_12_790
crossref_primary_10_1080_00365521_2022_2113427
crossref_primary_10_1159_000518232
crossref_primary_10_1159_000519601
crossref_primary_10_3389_fonc_2022_945904
crossref_primary_10_1002_ird3_70027
crossref_primary_10_1002_ags3_70041
crossref_primary_10_1016_j_compbiomed_2024_109261
crossref_primary_10_1007_s12553_021_00633_8
crossref_primary_10_1186_s12885_024_11962_y
crossref_primary_10_1186_s40246_023_00526_z
crossref_primary_10_3390_mi14010053
crossref_primary_10_1053_j_gastro_2021_11_040
crossref_primary_10_3390_diagnostics12123153
crossref_primary_10_3390_molecules26133835
crossref_primary_10_3389_fonc_2022_1075578
crossref_primary_10_1007_s12672_025_03392_4
crossref_primary_10_3390_cancers13215253
crossref_primary_10_1111_den_13837
crossref_primary_10_7759_cureus_79935
crossref_primary_10_3390_diagnostics13243613
crossref_primary_10_3390_app12073306
crossref_primary_10_1111_1751_2980_13154
crossref_primary_10_3390_cancers13246242
crossref_primary_10_3389_fonc_2022_1001840
crossref_primary_10_1159_000540251
Cites_doi 10.1097/PAS.0b013e3181d94d53
10.1007/s10620-019-05862-6
10.1053/j.gastro.2011.08.007
10.1055/s-0029-1214594
10.1007/s10120-018-0793-2
10.1111/jgh.12149
10.1007/s10043-003-0211-8
10.1038/s41598-018-25842-6
10.1016/j.cgh.2007.02.034
10.1007/s10120-011-0041-5
10.1016/j.gie.2010.04.041
10.1016/j.gie.2018.07.037
10.1001/jama.2017.14585
10.1007/s10120-013-0332-0
10.1055/s-0043-111888
10.1007/s10120-019-00992-2
10.1038/nature21056
10.1016/j.dld.2007.03.004
10.1016/j.gie.2013.07.008
10.1038/bmt.2012.244
10.1159/000489167
10.1111/den.12638
10.1016/j.gie.2018.11.011
10.1016/j.ebiom.2017.10.014
10.1016/j.gie.2017.11.029
10.1016/j.gie.2014.09.008
10.1002/ijc.28065
ContentType Journal Article
Copyright 2020 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd
2020 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd
– notice: 2020 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7T5
7U9
H94
K9.
7X8
5PM
DOI 10.1111/jgh.15190
DatabaseName Wiley Open Access
CrossRef
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Artificial intelligence for diagnosis of early gastric cancer based on magnifying endoscopy with narrow‐band imaging
EISSN 1440-1746
EndPage 489
ExternalDocumentID PMC7984440
32681536
10_1111_jgh_15190
JGH15190
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KMS
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7T5
7U9
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c4430-edb223d61fd23be5d1d852113b652c11614a87e3ba04d61f703c4fa004c47a373
IEDL.DBID 24P
ISICitedReferencesCount 100
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552998500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0815-9319
1440-1746
IngestDate Tue Nov 04 02:05:48 EST 2025
Wed Oct 01 13:59:54 EDT 2025
Tue Oct 07 06:48:49 EDT 2025
Thu Apr 03 07:13:28 EDT 2025
Sat Nov 29 03:02:01 EST 2025
Tue Nov 18 22:26:17 EST 2025
Wed Jan 22 17:22:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords magnifying endoscopy
convolutional neural network
artificial intelligence
narrow-band imaging
early gastric cancer
Language English
License Attribution-NonCommercial
2020 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4430-edb223d61fd23be5d1d852113b652c11614a87e3ba04d61f703c4fa004c47a373
Notes Author contribution
Ueyama H, Nagahara A, and Tada T conceived and designed the study and wrote, edited, and reviewed the manuscript. Yao T performed all histopathological diagnosis. Akazawa Y, Yatagai N, Komori H, Takeda T, Matsumoto K, Ueda K, Matsumoto K, and Hojo M gathered ME‐NBI images and patients' clinical information. Kato Y provided valuable advice regarding the technical information and managed the AI‐assisted CNN‐CAD system and analyzed the data in this manuscript. All authors gave final approval for publication. Ueyama H, Nagahara A, and Tada T take full responsibility for the work as a whole, including the study design, access to data, and the decision to submit and publish the manuscript.
No author has a financial relationship relevant to this publication. Aoyama K and Kato Y are technical staff of AI Medical Service. Tada T is a shareholder of AI Medical Service.
Declaration of conflict of interest
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Declaration of conflict of interest: No author has a financial relationship relevant to this publication. Aoyama K and Kato Y are technical staff of AI Medical Service. Tada T is a shareholder of AI Medical Service.
Author contribution: Ueyama H, Nagahara A, and Tada T conceived and designed the study and wrote, edited, and reviewed the manuscript. Yao T performed all histopathological diagnosis. Akazawa Y, Yatagai N, Komori H, Takeda T, Matsumoto K, Ueda K, Matsumoto K, and Hojo M gathered ME‐NBI images and patients' clinical information. Kato Y provided valuable advice regarding the technical information and managed the AI‐assisted CNN‐CAD system and analyzed the data in this manuscript. All authors gave final approval for publication. Ueyama H, Nagahara A, and Tada T take full responsibility for the work as a whole, including the study design, access to data, and the decision to submit and publish the manuscript.
ORCID 0000-0002-5370-1009
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjgh.15190
PMID 32681536
PQID 2492596265
PQPubID 2045136
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7984440
proquest_miscellaneous_2424994590
proquest_journals_2492596265
pubmed_primary_32681536
crossref_primary_10_1111_jgh_15190
crossref_citationtrail_10_1111_jgh_15190
wiley_primary_10_1111_jgh_15190_JGH15190
PublicationCentury 2000
PublicationDate February 2021
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Richmond
– name: Hoboken
PublicationTitle Journal of gastroenterology and hepatology
PublicationTitleAlternate J Gastroenterol Hepatol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2007; 39
2010; 34
2017; 318
2009; 41
2013; 48
2013; 28
2017; 25
2017; 49
2014; 46
2011; 14
2018; 87
2018; 21
2003; 10
2018; 8
2015; 81
2020
2019; 89
2013; 133
2014; 79
2017
2007; 5
2020; 23
2014; 17
2020; 65
2011; 141
2016; 28
2017; 542
2018; 98
2018; 31
2018; 53
2010; 72
e_1_2_5_27_1
Matumoto K (e_1_2_5_34_1) 2020
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_15_1
e_1_2_5_14_1
Shichijo S (e_1_2_5_31_1) 2018; 53
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Nakashima H (e_1_2_5_20_1) 2018; 31
Ueyama H (e_1_2_5_25_1) 2014; 46
e_1_2_5_30_1
References_xml – volume: 79
  start-page: 55
  year: 2014
  end-page: 63
  article-title: An efficient diagnostic strategy for small, depressed early gastric cancer with magnifying narrow‐band imaging: a post‐hoc analysis of a prospective randomized controlled trial
  publication-title: Gastrointest. Endosc.
– volume: 98
  start-page: 175
  year: 2018
  end-page: 184
  article-title: Usefulness of demarcation of differentiated‐type early gastric cancers after eradication by magnifying endoscopy with narrow‐band imaging
  publication-title: Digestion
– volume: 133
  start-page: 653
  year: 2013
  end-page: 659
  article-title: Sensitivity ofendoscopic screening for gastric cancer by the incidence method
  publication-title: Int. J. Cancer
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  article-title: Dermatologist‐level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 65
  start-page: 1355
  year: 2020
  end-page: 1363
  article-title: Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging
  publication-title: Dig. Dis. Sci.
– volume: 21
  start-page: 653
  year: 2018
  end-page: 660
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastric Cancer
– volume: 81
  start-page: 621
  year: 2015
  end-page: 629
  article-title: Novel computer‐aided diagnostic system for colorectal lesions by using endocytoscopy (with videos)
  publication-title: Gastrointest. Endosc.
– volume: 34
  start-page: 609
  year: 2010
  end-page: 619
  article-title: Gastric adenocarcinoma of fundic gland type (chief cell predominant type) proposal for a new entity of gastric adenocarcinoma
  publication-title: Am. J. Surg. Pathol.
– volume: 53
  start-page: 940
  year: 2018
  end-page: 946
  article-title: Application of convolutional neural networks for evaluating infection status on the basis of endoscopic images
  publication-title: Scand. J. Gastroenterol.
– volume: 28
  start-page: 379
  year: 2016
  end-page: 393
  article-title: Magnifying endoscopy simplediagnostic algorithm for early gastric cancer (MESDA‐G)
  publication-title: Dig. Endosc.
– volume: 31
  start-page: 462
  year: 2018
  end-page: 468
  article-title: Artificial intelligence diagnosis of infection using blue laser imaging‐bright and linked color imaging: a singlecenter prospective study
  publication-title: Ann. Gastroenterol.
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
– volume: 89
  start-page: 806
  year: 2019
  end-page: 815
  article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy
  publication-title: Gastrointest. Endosc.
– volume: 25
  start-page: 106
  year: 2017
  end-page: 111
  article-title: Application of convolutional neural networks in the diagnosis of infection based on endoscopic images
  publication-title: EBioMedicine
– volume: 72
  start-page: 523
  year: 2010
  end-page: 529
  article-title: Magnifying endoscopy with narrow‐band imaging achieves superior accuracy in the differential diagnosis of superficial gastric lesions identified with white‐light endoscopy: a prospective study
  publication-title: Gastrointest. Endosc.
– volume: 5
  start-page: 869
  year: 2007
  end-page: 878
  article-title: Novel zoom endoscopy technique for diagnosis of small flat gastric cancer: a prospective, blind study
  publication-title: Clin. Gastroenterol. Hepatol.
– volume: 23
  start-page: 126
  year: 2020
  end-page: 132
  article-title: Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging
  publication-title: Gastric Cancer
– volume: 17
  start-page: 669
  year: 2014
  end-page: 679
  article-title: Diagnostic performance and limitations of magnifying narrow‐band imaging in screening endoscopy of early gastric cancer: a prospective multicenter feasibility study
  publication-title: Gastric Cancer
– volume: 48
  start-page: 452
  year: 2013
  end-page: 458
  article-title: Investigation of the freely available easy‐to‐use software “EZR” for medical statistics
  publication-title: Bone Marrow Transplant.
– volume: 49
  start-page: 957
  year: 2017
  end-page: 967
  article-title: Evaluation of an e‐learning system for diagnosis of gastric lesions using magnifying narrow‐band imaging: a multicenter randomized controlled study
  publication-title: Endoscopy
– volume: 8
  start-page: 7497
  year: 2018
  article-title: Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
  publication-title: Scientific Reports
– volume: 89
  start-page: 25
  year: 2019
  end-page: 32
  article-title: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks
  publication-title: Gastrointest. Endosc.
– volume: 46
  start-page: 153
  year: 2014
  end-page: 157
  article-title: Gastric adenocarcinoma of the fundic gland type (chief cell predominant type)
  publication-title: Endoscopy
– volume: 39
  start-page: 762
  year: 2007
  end-page: 766
  article-title: Ex vivo pilot study using computed analysis of endo‐cytoscopic images to differentiate normal and malignant squamous cell epithelia in the oesophagus
  publication-title: Dig. Liver Dis.
– volume: 87
  start-page: 1339
  year: 2018
  end-page: 1344
  article-title: Computer‐aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow‐band imaging
  publication-title: Gastrointest. Endosc.
– volume: 28
  start-page: 841
  year: 2013
  end-page: 847
  article-title: Quantitative identification of mucosal gastric cancer under magnifying endoscopy with flexible spectral imaging color enhancement
  publication-title: J. Gastroenterol. Hepatol.
– volume: 14
  start-page: 101
  year: 2011
  end-page: 112
  article-title: Japaneses classification of gastric carcinoma: 3rd English edition
  publication-title: Gastric Cancer
– volume: 41
  start-page: 462
  year: 2009
  end-page: 467
  article-title: Magnifying endoscopy for diagnosing and delineating early gastric cancer
  publication-title: Endoscopy
– year: 2017
– year: 2020
  article-title: Diagnostic limitations of magnifying endoscopy with narrow band imaging in early gastric cancer
  publication-title: Endosc Int Open
– volume: 10
  start-page: 211
  year: 2003
  end-page: 215
  article-title: Endoscopic observation of tissue by narrow band illumination
  publication-title: Optical Review
– volume: 141
  start-page: 2017
  year: 2011
  end-page: 2025
  article-title: Magnifying narrowband imaging is more accurate than conventional white‐light imaging in diagnosis of gastric mucosal cancer
  publication-title: Gastroenterology
– ident: e_1_2_5_24_1
  doi: 10.1097/PAS.0b013e3181d94d53
– volume: 53
  start-page: 940
  year: 2018
  ident: e_1_2_5_31_1
  article-title: Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images
  publication-title: Scand. J. Gastroenterol.
– ident: e_1_2_5_21_1
  doi: 10.1007/s10620-019-05862-6
– year: 2020
  ident: e_1_2_5_34_1
  article-title: Diagnostic limitations of magnifying endoscopy with narrow band imaging in early gastric cancer
  publication-title: Endosc Int Open
– ident: e_1_2_5_7_1
  doi: 10.1053/j.gastro.2011.08.007
– ident: e_1_2_5_4_1
  doi: 10.1055/s-0029-1214594
– ident: e_1_2_5_18_1
  doi: 10.1007/s10120-018-0793-2
– ident: e_1_2_5_16_1
  doi: 10.1111/jgh.12149
– ident: e_1_2_5_3_1
  doi: 10.1007/s10043-003-0211-8
– ident: e_1_2_5_32_1
  doi: 10.1038/s41598-018-25842-6
– ident: e_1_2_5_5_1
  doi: 10.1016/j.cgh.2007.02.034
– volume: 31
  start-page: 462
  year: 2018
  ident: e_1_2_5_20_1
  article-title: Artificial intelligence diagnosis of Helicobacter pylori infection using blue laser imaging‐bright and linked color imaging: a singlecenter prospective study
  publication-title: Ann. Gastroenterol.
– ident: e_1_2_5_26_1
  doi: 10.1007/s10120-011-0041-5
– ident: e_1_2_5_28_1
– ident: e_1_2_5_6_1
  doi: 10.1016/j.gie.2010.04.041
– ident: e_1_2_5_15_1
  doi: 10.1016/j.gie.2018.07.037
– ident: e_1_2_5_13_1
  doi: 10.1001/jama.2017.14585
– ident: e_1_2_5_8_1
  doi: 10.1007/s10120-013-0332-0
– ident: e_1_2_5_11_1
  doi: 10.1055/s-0043-111888
– ident: e_1_2_5_22_1
  doi: 10.1007/s10120-019-00992-2
– ident: e_1_2_5_12_1
  doi: 10.1038/nature21056
– ident: e_1_2_5_14_1
  doi: 10.1016/j.dld.2007.03.004
– ident: e_1_2_5_9_1
  doi: 10.1016/j.gie.2013.07.008
– ident: e_1_2_5_29_1
  doi: 10.1038/bmt.2012.244
– ident: e_1_2_5_23_1
  doi: 10.1159/000489167
– ident: e_1_2_5_10_1
  doi: 10.1111/den.12638
– ident: e_1_2_5_30_1
  doi: 10.1016/j.gie.2018.11.011
– ident: e_1_2_5_19_1
  doi: 10.1016/j.ebiom.2017.10.014
– volume: 46
  start-page: 153
  year: 2014
  ident: e_1_2_5_25_1
  article-title: Gastric adenocarcinoma of the fundic gland type (chief cell predominant type)
  publication-title: Endoscopy
– ident: e_1_2_5_17_1
  doi: 10.1016/j.gie.2017.11.029
– ident: e_1_2_5_33_1
  doi: 10.1016/j.gie.2014.09.008
– ident: e_1_2_5_27_1
– ident: e_1_2_5_2_1
  doi: 10.1002/ijc.28065
SSID ssj0004075
Score 2.609158
Snippet Background and Aim Magnifying endoscopy with narrow‐band imaging (ME‐NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME‐NBI...
Magnifying endoscopy with narrow-band imaging (ME-NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME-NBI diagnosis of early...
Background and AimMagnifying endoscopy with narrow‐band imaging (ME‐NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME‐NBI...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 482
SubjectTerms Accuracy
Artificial intelligence
convolutional neural network
Deep learning
Diagnosis
early gastric cancer
Endoscopy
Gastric cancer
Gastritis
Intestine
magnifying endoscopy
Mucosa
narrow‐band imaging
Neural networks
Regular
Title Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow‐band imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjgh.15190
https://www.ncbi.nlm.nih.gov/pubmed/32681536
https://www.proquest.com/docview/2492596265
https://www.proquest.com/docview/2424994590
https://pubmed.ncbi.nlm.nih.gov/PMC7984440
Volume 36
WOSCitedRecordID wos000552998500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1440-1746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004075
  issn: 0815-9319
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datRAFD6UVsSbWn-7WstRvOhNZJOZ_AxelepapJYiFvYuzF92AzYru63gnY_gc_hYPonnTLLpLlUQvEkC-TITku_knMmc-Q7AS01e28lMRLlTNpJq6CJNfikqqiIha0qEc6FqyUl-elqMx-psA14v18K0-hD9Dze2jPC9ZgPXZrFq5JPpK3JXisbrW3EsCq7bkMiz60WRrcouubw0UkS0TlYopPEsL113RjcizJuJkqsBbPBAo7v_de87sN0FnnjYMuUebPjmPtz-0E2tP4Cfh9dT2TirkCnVqktgvSLbiZwoP0GNnK7e0ZYgLIsZdiGpHCkSRtcm8dULbs2zjjJONFcJsWiZanNkD-qQursgZB0WXKFv3IxXynxD_kOMTdCI_PX9h9GNw_oi1FR6COejt5-OjqOukENkpRTDyDtDUYjL4solwvjUxa6gsCEWJksTG1PQKXWRe2H0UDKKvkJWVpreoZW5Frl4BJvNrPG7gF4KVyUmMalyNJIVRkmpWUROVN6kNh3AwfKNlrZTOediG5_LfrQzmZbh2Q_gRQ_90kp7_Am0t6RF2Vn3omSVRa5alFF3z_vTZJc82aIbP7tiDKGUTLmJxy2L-l4oZCZWimwA-Rq_egBrfq-faepp0P7OVSGlpDYPAr_-fuPl-3fH4eDJv0Ofwp2EU3ZCUvoebF7Or_wzuGW_XtaL-X4wL9rm42Iftt58HJ2f_AZ8Fy_v
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1VLQJeuF8CBQbEQ1-MEu_6shIvFRACpBFCrdQ3a29OLFEHJS0Sb3wC38Fn8SXMrB03UUFC4smWfLxr2Wc8s7uzZwCea_LaTqYiypyykVR9F2nyS1Fe5jFZUyycC1VLxtlkkh8fq49b8HK1F6bRh-gm3Ngywv-aDZwnpNetfDp7Qf5K0YB9h3rLid87rz8Nj8bn-yIboV3yekmkiGutslDI5FndvOmPLgSZF3Ml12PY4ISG1__v8W_AtTb4xP2GLTdhy9e34PJBu7x-G37uny9n47xEplWjMIHVmnQncrL8FDVyynpLXYKwNGY4hMRypGgYXZPIVy25Nc9ayjjVXCnEomW6LZC9qEPq7oSQVdh0hb52c94t8w15lhjroBP56_sPo2uH1Umoq3QHjoZvDl-NoraYQ2SlFP3IO0ORiEsHpYuF8YkbuJxCh4EwaRLbAQWeUueZF0b3JaPoT2RlqekjWplpkYm7sF3Pa38f0EvhytjEJlGORrPCKCk1C8mJ0pvEJj3YW33SwrZK51xw43PRjXimsyK8-x4866BfGnmPP4F2V7woWgtfFqy0yJWLUuruaXeZbJMXXHTt52eMIZSSCTdxr6FR1wuFzURLkfYg2yBYB2Dd780rdTUL-t-ZyqWU1OZeINjfH7x4_3YUTh78O_QJXBkdHoyL8bvJh4dwNeYUnpCkvgvbp4sz_wgu2a-n1XLxuLW230d1Mu0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5VKaq4UH5LoMCAOPRilHjXf1IvFSUUCFGFqNSbtX9OLFGnStpK3HgEnqOP1SfpzNpxExUkJE625M-7lv2NZ3Z39huAt4q8tpWxCBKbmUBmPRso8ktBWqQhWVMorPVVS4bJaJQeH2eHa7C72AtT60O0E25sGf5_zQbuTm2xbOXjyTvyVxkN2NclF5HpwPr-t8HR8GZfZC20S14vCjLiWqMs5DN5Fjev-qNbQebtXMnlGNY7ocHm_z3-fbjXBJ-4V7PlAay56iFsfG2W1x_B5d7NcjZOC2Ra1QoTWC5JdyIny49RIaesN9QlCEtj-oNPLEeKhtHWiXzlnFtzrKWMY8WVQgwaptsM2YtapO5OCFn6TVfoKjvl3TI_kWeJsfI6kVe_fmtVWSxPfF2lx3A0-PD9_UHQFHMIjJSiFzirKRKxcb-wodAusn2bUujQFzqOQtOnwFOqNHFCq55kFP2JjCwUfUQjEyUS8QQ61bRyTwGdFLYIdaijzNJoVuhMSsVCcqJwOjJRF3YWnzQ3jdI5F9z4kbcjnvEk9---C29a6Gkt7_En0PaCF3lj4fOclRaZdDF197q9TLbJCy6qctNzxhAqI25SE1s1jdpeKGwmWoq4C8kKwVoA636vXqnKidf_TrJUSklt7niC_f3B888fD_zJs3-HvoKNw_1BPvw0-vIc7oacweNz1LehczY7dy_gjrk4K-ezl42xXQOLozJo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+intelligence+using+a+convolutional+neural+network+for+diagnosis+of+early+gastric+cancer+based+on+magnifying+endoscopy+with+narrow%E2%80%90band+imaging&rft.jtitle=Journal+of+gastroenterology+and+hepatology&rft.au=Ueyama%2C+Hiroya&rft.au=Kato%2C+Yusuke&rft.au=Akazawa%2C+Yoichi&rft.au=Yatagai%2C+Noboru&rft.date=2021-02-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0815-9319&rft.eissn=1440-1746&rft.volume=36&rft.issue=2&rft.spage=482&rft.epage=489&rft_id=info:doi/10.1111%2Fjgh.15190&rft_id=info%3Apmid%2F32681536&rft.externalDocID=PMC7984440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0815-9319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0815-9319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0815-9319&client=summon