Apparent propagator anisotropy from single‐shell diffusion MRI acquisitions
Purpose The apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA) compared to the fractional anisotropy (FA), can be estimated from single‐shell data. Theory and Methods Computation of the full PA re...
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 85; číslo 5; s. 2869 - 2881 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.05.2021
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose
The apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA) compared to the fractional anisotropy (FA), can be estimated from single‐shell data.
Theory and Methods
Computation of the full PA requires acquisition of large datasets with many diffusion directions and different b‐values, and results in extremely long processing times. This has hindered adoption of the PA by the community, despite evidence that it provides meaningful information beyond the FA. Calculation of the complete propagator can be avoided under the hypothesis that a similar sensitivity/specificity may be achieved from apparent measurements at a given shell. Assuming that diffusion anisotropy (DiA) is nondependent on the b‐value, a closed‐form expression using information from one single shell (ie, b‐value) is reported.
Results
Publicly available databases with healthy and diseased subjects are used to compare the APA against other anisotropy measures. The structural information provided by the APA correlates with that provided by the PA for healthy subjects, while it also reveals statistically relevant differences in white matter regions for two pathologies, with a higher reliability than the FA. Additionally, APA has a computational complexity similar to the FA, with processing‐times several orders of magnitude below the PA.
Conclusions
The APA can extract more relevant white matter information than the FA, without any additional demands on data acquisition. This makes APA an attractive option for adoption into existing diffusion MRI analysis pipelines. |
|---|---|
| AbstractList | Purpose
The apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA) compared to the fractional anisotropy (FA), can be estimated from single‐shell data.
Theory and Methods
Computation of the full PA requires acquisition of large datasets with many diffusion directions and different b‐values, and results in extremely long processing times. This has hindered adoption of the PA by the community, despite evidence that it provides meaningful information beyond the FA. Calculation of the complete propagator can be avoided under the hypothesis that a similar sensitivity/specificity may be achieved from apparent measurements at a given shell. Assuming that diffusion anisotropy (DiA) is nondependent on the b‐value, a closed‐form expression using information from one single shell (ie, b‐value) is reported.
Results
Publicly available databases with healthy and diseased subjects are used to compare the APA against other anisotropy measures. The structural information provided by the APA correlates with that provided by the PA for healthy subjects, while it also reveals statistically relevant differences in white matter regions for two pathologies, with a higher reliability than the FA. Additionally, APA has a computational complexity similar to the FA, with processing‐times several orders of magnitude below the PA.
Conclusions
The APA can extract more relevant white matter information than the FA, without any additional demands on data acquisition. This makes APA an attractive option for adoption into existing diffusion MRI analysis pipelines. PurposeThe apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA) compared to the fractional anisotropy (FA), can be estimated from single‐shell data.Theory and MethodsComputation of the full PA requires acquisition of large datasets with many diffusion directions and different b‐values, and results in extremely long processing times. This has hindered adoption of the PA by the community, despite evidence that it provides meaningful information beyond the FA. Calculation of the complete propagator can be avoided under the hypothesis that a similar sensitivity/specificity may be achieved from apparent measurements at a given shell. Assuming that diffusion anisotropy (DiA) is nondependent on the b‐value, a closed‐form expression using information from one single shell (ie, b‐value) is reported.ResultsPublicly available databases with healthy and diseased subjects are used to compare the APA against other anisotropy measures. The structural information provided by the APA correlates with that provided by the PA for healthy subjects, while it also reveals statistically relevant differences in white matter regions for two pathologies, with a higher reliability than the FA. Additionally, APA has a computational complexity similar to the FA, with processing‐times several orders of magnitude below the PA.ConclusionsThe APA can extract more relevant white matter information than the FA, without any additional demands on data acquisition. This makes APA an attractive option for adoption into existing diffusion MRI analysis pipelines. The apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA) compared to the fractional anisotropy (FA), can be estimated from single-shell data. Computation of the full PA requires acquisition of large datasets with many diffusion directions and different b-values, and results in extremely long processing times. This has hindered adoption of the PA by the community, despite evidence that it provides meaningful information beyond the FA. Calculation of the complete propagator can be avoided under the hypothesis that a similar sensitivity/specificity may be achieved from apparent measurements at a given shell. Assuming that diffusion anisotropy (DiA) is nondependent on the b-value, a closed-form expression using information from one single shell (ie, b-value) is reported. Publicly available databases with healthy and diseased subjects are used to compare the APA against other anisotropy measures. The structural information provided by the APA correlates with that provided by the PA for healthy subjects, while it also reveals statistically relevant differences in white matter regions for two pathologies, with a higher reliability than the FA. Additionally, APA has a computational complexity similar to the FA, with processing-times several orders of magnitude below the PA. The APA can extract more relevant white matter information than the FA, without any additional demands on data acquisition. This makes APA an attractive option for adoption into existing diffusion MRI analysis pipelines. The apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA) compared to the fractional anisotropy (FA), can be estimated from single-shell data.PURPOSEThe apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA) compared to the fractional anisotropy (FA), can be estimated from single-shell data.Computation of the full PA requires acquisition of large datasets with many diffusion directions and different b-values, and results in extremely long processing times. This has hindered adoption of the PA by the community, despite evidence that it provides meaningful information beyond the FA. Calculation of the complete propagator can be avoided under the hypothesis that a similar sensitivity/specificity may be achieved from apparent measurements at a given shell. Assuming that diffusion anisotropy (DiA) is nondependent on the b-value, a closed-form expression using information from one single shell (ie, b-value) is reported.THEORY AND METHODSComputation of the full PA requires acquisition of large datasets with many diffusion directions and different b-values, and results in extremely long processing times. This has hindered adoption of the PA by the community, despite evidence that it provides meaningful information beyond the FA. Calculation of the complete propagator can be avoided under the hypothesis that a similar sensitivity/specificity may be achieved from apparent measurements at a given shell. Assuming that diffusion anisotropy (DiA) is nondependent on the b-value, a closed-form expression using information from one single shell (ie, b-value) is reported.Publicly available databases with healthy and diseased subjects are used to compare the APA against other anisotropy measures. The structural information provided by the APA correlates with that provided by the PA for healthy subjects, while it also reveals statistically relevant differences in white matter regions for two pathologies, with a higher reliability than the FA. Additionally, APA has a computational complexity similar to the FA, with processing-times several orders of magnitude below the PA.RESULTSPublicly available databases with healthy and diseased subjects are used to compare the APA against other anisotropy measures. The structural information provided by the APA correlates with that provided by the PA for healthy subjects, while it also reveals statistically relevant differences in white matter regions for two pathologies, with a higher reliability than the FA. Additionally, APA has a computational complexity similar to the FA, with processing-times several orders of magnitude below the PA.The APA can extract more relevant white matter information than the FA, without any additional demands on data acquisition. This makes APA an attractive option for adoption into existing diffusion MRI analysis pipelines.CONCLUSIONSThe APA can extract more relevant white matter information than the FA, without any additional demands on data acquisition. This makes APA an attractive option for adoption into existing diffusion MRI analysis pipelines. |
| Author | Tristán‐Vega, Antonio Aja‐Fernández, Santiago Jones, Derek K. |
| AuthorAffiliation | 1 Laboratorio de Procesado de Imagen Universidad de Valladolid Valladolid Spain 2 Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology Cardiff University Cardiff UK |
| AuthorAffiliation_xml | – name: 2 Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology Cardiff University Cardiff UK – name: 1 Laboratorio de Procesado de Imagen Universidad de Valladolid Valladolid Spain |
| Author_xml | – sequence: 1 givenname: Santiago orcidid: 0000-0002-5337-5071 surname: Aja‐Fernández fullname: Aja‐Fernández, Santiago email: sanaja@tel.uva.es organization: Universidad de Valladolid – sequence: 2 givenname: Antonio surname: Tristán‐Vega fullname: Tristán‐Vega, Antonio organization: Universidad de Valladolid – sequence: 3 givenname: Derek K. surname: Jones fullname: Jones, Derek K. organization: Cardiff University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33314330$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1O3DAUha2KqgzQRV8AReqmXQRsXzuJN5UQ6g8SIyTE3rqTsQejxA52AppdH6HPyJNgOkPVIrqyrvydo3PP3SM7PnhDyAdGjxil_LiP_RFvKk7fkBmTnJdcKrFDZrQWtASmxC7ZS-mGUqpULd6RXQBgAoDOyPxkGDAaPxZDDAOucAyxQO9SGPO8LmwMfZGcX3Xm4eevdG26rlg6a6fkgi_ml2cFtreTS27Mczogby12ybzfvvvk6tvXq9Mf5fnF97PTk_OyFQJoKQ1bCrC1tA0aqHFJDZiW16AUVmYhOVjeUKyktUwYwIVaAGWAQqGsWoR98mVjO0yL3izbHD9ip4foeoxrHdDpf3-8u9arcKcbRoHVkA0-bQ1iuJ1MGnXvUpt3Q2_ClDQXde5Vciky-vEFehOm6PN2mWoEq1klVaYO_070J8pz0Rk43gBtDClFY3XrRnwqLQd0nWZUP51S51Pq36fMis8vFM-mr7Fb93vXmfX_QT2_nG8Uj6NVr7I |
| CitedBy_id | crossref_primary_10_1016_j_media_2022_102728 crossref_primary_10_1016_j_mri_2022_01_014 crossref_primary_10_1016_j_media_2022_102356 crossref_primary_10_3389_fnins_2023_1106350 crossref_primary_10_1007_s10792_023_02809_9 |
| Cites_doi | 10.1007/978-3-642-33418-4_35 10.1109/TMI.2015.2418674 10.1016/j.neuroimage.2006.02.024 10.1109/TMI.2008.922696 10.1006/jmrb.1996.0086 10.1038/srep23999 10.1016/j.nicl.2017.07.011 10.1016/j.neuroimage.2013.04.016 10.3389/fninf.2019.00002 10.1017/CBO9780511813498 10.2174/156720509788929273 10.1016/j.neuroimage.2019.116137 10.1016/B978-044451741-8/50003-2 10.1016/j.neuroimage.2006.01.024 10.1016/j.neuroimage.2007.02.050 10.1016/S0006-3495(94)80775-1 10.1007/978-3-642-02498-6_1 10.1016/j.neuroimage.2016.03.046 10.1002/mrm.20411 10.1016/S0896-6273(03)00758-X 10.1016/j.neuroimage.2015.11.027 10.1002/mrm.20279 10.1016/j.neuroimage.2012.08.072 10.1002/mrm.20948 10.1016/j.media.2010.07.001 10.1002/mrm.10052 10.1371/journal.pone.0229526 10.1088/0022-3735/21/8/017 10.1371/journal.pone.0137905 10.1016/j.neuroimage.2014.06.033 10.1002/mrm.20642 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.28620 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | AJA‐FERNÁNDEZ et al |
| EISSN | 1522-2594 |
| EndPage | 2881 |
| ExternalDocumentID | PMC8103173 33314330 10_1002_mrm_28620 MRM28620 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Spanish Ministerio de Ciencia e Innovación funderid: RTI2018‐094569‐B‐I00; PRX18/00253 – fundername: Wellcome Trust Strategic Award funderid: 104943/Z/14/Z – fundername: Wellcome Trust Investigator Award funderid: 096646/Z/11/Z – fundername: Wellcome Trust grantid: 096646/Z/11/Z – fundername: Wellcome Trust grantid: 104943/Z/14/Z – fundername: CIHR – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: Wellcome Trust Investigator Award grantid: 096646/Z/11/Z – fundername: Wellcome Trust Strategic Award grantid: 104943/Z/14/Z – fundername: Spanish Ministerio de Ciencia e Innovación grantid: RTI2018‐094569‐B‐I00; PRX18/00253 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4430-5e1d43f75f8ae37ad0e3ec27399a6eb523f280a65ff14e3ab9b3013a49a56ca3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598053100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Nov 04 01:58:20 EST 2025 Thu Oct 02 06:15:23 EDT 2025 Sat Nov 29 14:41:11 EST 2025 Mon Jul 21 06:09:39 EDT 2025 Sat Nov 29 06:34:31 EST 2025 Tue Nov 18 22:03:39 EST 2025 Wed Jan 22 16:32:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | diffusion MRI microstructure HARDI propagator anisotropy EAP |
| Language | English |
| License | Attribution 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4430-5e1d43f75f8ae37ad0e3ec27399a6eb523f280a65ff14e3ab9b3013a49a56ca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp‐content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. |
| ORCID | 0000-0002-5337-5071 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28620 |
| PMID | 33314330 |
| PQID | 2484171659 |
| PQPubID | 1016391 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8103173 proquest_miscellaneous_2470025254 proquest_journals_2484171659 pubmed_primary_33314330 crossref_citationtrail_10_1002_mrm_28620 crossref_primary_10_1002_mrm_28620 wiley_primary_10_1002_mrm_28620_MRM28620 |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2015; 34 2006; 31 2006; 56 2019; 13 2013; 64 2019; 15 2015; 10 2009 1994; 66 2008 2019; 202 2005 2016; 127 2011; 15 2007; 36 2016; 6 2002; 47 2004; 52 2012; 7511 2013; 78 2017; 16 2008; 27 1988; 21 2016; 134 2019 2005; 53 2005; 54 1996; 111 2016 2009; 6 2003; 40 2018; 53 2014; 99 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_36_1 e_1_2_9_16_1 Aja‐Fernández S (e_1_2_9_19_1) 2019; 15 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 Fick RH (e_1_2_9_17_1) 2016 Tristán‐Vega A (e_1_2_9_26_1) 2009 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Aja‐Fernández S (e_1_2_9_25_1) 2018; 53 e_1_2_9_9_1 Bernstein AS (e_1_2_9_18_1) 2019 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 15 start-page: 603 year: 2011 end-page: 621 article-title: Multiple q‐shell diffusion propagator imaging publication-title: Med Image Anal – volume: 34 start-page: 2058 year: 2015 end-page: 2078 article-title: Estimating diffusion propagator and its moments using directional radial basis functions publication-title: IEEE Trans Med Imaging – year: 2009 – volume: 6 start-page: 347 year: 2009 end-page: 361 article-title: Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort publication-title: Curr Alzheimer Res – year: 2005 – start-page: 187 year: 2016 end-page: 199 – volume: 111 start-page: 209 year: 1996 end-page: 219 article-title: Microstructural features measured using diffusion tensor imaging publication-title: J Magn Reson B – volume: 36 start-page: 617 year: 2007 end-page: 629 article-title: Hybrid diffusion imaging publication-title: NeuroImage – volume: 31 start-page: 1487 year: 2006 end-page: 1505 article-title: Tract‐based spatial statistics: voxelwise analysis of multi‐subject diffusion data publication-title: Neuroimage – volume: 53 start-page: 866 year: 2005 end-page: 876 article-title: Generalized scalar measures for diffusion MRI using trace, variance, and entropy publication-title: Magn Reson Med – volume: 52 start-page: 1358 year: 2004 end-page: 1372 article-title: Q‐ball imaging publication-title: Magn Reson Med – volume: 66 start-page: 259 year: 1994 end-page: 267 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys J – volume: 127 start-page: 422 year: 2016 end-page: 434 article-title: Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure publication-title: NeuroImage – volume: 78 start-page: 16 year: 2013 end-page: 32 article-title: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure publication-title: NeuroImage – start-page: 1 year: 2009 end-page: 13 – volume: 64 start-page: 650 year: 2013 end-page: 670 article-title: Bessel Fourier orientation reconstruction (BFOR): an analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q‐space indices publication-title: NeuroImage – volume: 6 start-page: 23999 year: 2016 article-title: Kurtosis fractional anisotropy, its contrast and estimation by proxy publication-title: Sci Rep – volume: 47 start-page: 392 year: 2002 end-page: 397 article-title: Relationships between diffusion tensor and q‐space MRI publication-title: Magn Reson Med – volume: 16 start-page: 98 year: 2017 end-page: 110 article-title: Diffusion tensor imaging in Parkinson's disease: review and meta‐analysis publication-title: Neuroimage – volume: 40 start-page: 885 year: 2003 end-page: 895 article-title: Diffusion MRI of complex neural architecture publication-title: Neuron – year: 2008 – volume: 13 start-page: 2 year: 2019 article-title: Diffusion MRI indices and their relation to cognitive impairment in brain aging: the updated multi‐protocol approach in ADNI3 publication-title: Front Neuroinform – volume: 7511 start-page: 280 year: 2012 end-page: 287 – volume: 53 start-page: 123 year: 2018 end-page: 133 article-title: Scalar diffusion‐MRI measures invariant to acquisition parameters: a first step towards imaging biomarkers publication-title: Magn Reson Imaging – volume: 10 year: 2015 article-title: Impact of MR acquisition parameters on DTI scalar indexes: a tractography based approach publication-title: PLoS ONE – volume: 56 start-page: 395 year: 2006 end-page: 410 article-title: Apparent diffusion profile estimation from high angular resolution diffusion images: estimation and applications publication-title: Magn Reson Med – volume: 99 start-page: 498 year: 2014 end-page: 508 article-title: Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson's disease publication-title: Neuroimage – volume: 31 start-page: 1086 year: 2006 end-page: 1103 article-title: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) publication-title: NeuroImage – volume: 15 year: 2019 article-title: Micro‐structure diffusion scalar measures from reduced MRI acquisitions publication-title: PLoS ONE – volume: 134 start-page: 365 year: 2016 end-page: 385 article-title: MAPL: tissue microstructure estimation using Laplacian‐regularized MAP‐MRI and its application to HCP data publication-title: NeuroImage – year: 2019 – volume: 21 start-page: 820 year: 1988 article-title: NMR microscopy of dynamic displacements: k‐space and q‐space imaging publication-title: J Phys E – volume: 54 start-page: 1377 year: 2005 end-page: 1386 article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging publication-title: Magn Reson Med – volume: 27 start-page: 858 year: 2008 end-page: 865 article-title: Computation of diffusion function measures in q‐space using magnetic resonance hybrid diffusion imaging publication-title: IEEE Trans Med Imaging – volume: 202 start-page: 116137 year: 2019 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: NeuroImage – ident: e_1_2_9_16_1 doi: 10.1007/978-3-642-33418-4_35 – ident: e_1_2_9_13_1 doi: 10.1109/TMI.2015.2418674 – ident: e_1_2_9_34_1 doi: 10.1016/j.neuroimage.2006.02.024 – ident: e_1_2_9_9_1 doi: 10.1109/TMI.2008.922696 – ident: e_1_2_9_2_1 doi: 10.1006/jmrb.1996.0086 – ident: e_1_2_9_3_1 doi: 10.1038/srep23999 – ident: e_1_2_9_32_1 doi: 10.1016/j.nicl.2017.07.011 – ident: e_1_2_9_6_1 doi: 10.1016/j.neuroimage.2013.04.016 – ident: e_1_2_9_31_1 doi: 10.3389/fninf.2019.00002 – ident: e_1_2_9_23_1 doi: 10.1017/CBO9780511813498 – ident: e_1_2_9_30_1 doi: 10.2174/156720509788929273 – ident: e_1_2_9_33_1 doi: 10.1016/j.neuroimage.2019.116137 – volume: 53 start-page: 123 year: 2018 ident: e_1_2_9_25_1 article-title: Scalar diffusion‐MRI measures invariant to acquisition parameters: a first step towards imaging biomarkers publication-title: Magn Reson Imaging – ident: e_1_2_9_35_1 doi: 10.1016/B978-044451741-8/50003-2 – ident: e_1_2_9_5_1 doi: 10.1016/j.neuroimage.2006.01.024 – ident: e_1_2_9_8_1 doi: 10.1016/j.neuroimage.2007.02.050 – ident: e_1_2_9_21_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_9_10_1 doi: 10.1007/978-3-642-02498-6_1 – ident: e_1_2_9_15_1 doi: 10.1016/j.neuroimage.2016.03.046 – ident: e_1_2_9_27_1 doi: 10.1002/mrm.20411 – ident: e_1_2_9_4_1 doi: 10.1016/S0896-6273(03)00758-X – ident: e_1_2_9_14_1 doi: 10.1016/j.neuroimage.2015.11.027 – ident: e_1_2_9_28_1 doi: 10.1002/mrm.20279 – volume-title: Advanced diffusion MRI techniques: methodological development and clinical application year: 2019 ident: e_1_2_9_18_1 – ident: e_1_2_9_12_1 doi: 10.1016/j.neuroimage.2012.08.072 – start-page: 187 volume-title: International Conference on Medical Image Computing and Computer‐Assisted Intervention year: 2016 ident: e_1_2_9_17_1 – ident: e_1_2_9_24_1 doi: 10.1002/mrm.20948 – volume-title: A novel framework for the study of neural architectures in the human brain with diffusion MRI year: 2009 ident: e_1_2_9_26_1 – ident: e_1_2_9_11_1 doi: 10.1016/j.media.2010.07.001 – ident: e_1_2_9_22_1 doi: 10.1002/mrm.10052 – volume: 15 start-page: e0229526 year: 2019 ident: e_1_2_9_19_1 article-title: Micro‐structure diffusion scalar measures from reduced MRI acquisitions publication-title: PLoS ONE doi: 10.1371/journal.pone.0229526 – ident: e_1_2_9_20_1 doi: 10.1088/0022-3735/21/8/017 – ident: e_1_2_9_36_1 doi: 10.1371/journal.pone.0137905 – ident: e_1_2_9_29_1 doi: 10.1016/j.neuroimage.2014.06.033 – ident: e_1_2_9_7_1 doi: 10.1002/mrm.20642 |
| SSID | ssj0009974 |
| Score | 2.3834999 |
| Snippet | Purpose
The apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator... The apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA)... PurposeThe apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2869 |
| SubjectTerms | Anisotropy Brain - diagnostic imaging Computer applications Data acquisition Diffusion Diffusion Magnetic Resonance Imaging diffusion MRI EAP Full Papers—Computer Processing and Modeling HARDI Humans Image Processing, Computer-Assisted Magnetic resonance imaging microstructure propagator anisotropy Reproducibility of Results Substantia alba White Matter |
| Title | Apparent propagator anisotropy from single‐shell diffusion MRI acquisitions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28620 https://www.ncbi.nlm.nih.gov/pubmed/33314330 https://www.proquest.com/docview/2484171659 https://www.proquest.com/docview/2470025254 https://pubmed.ncbi.nlm.nih.gov/PMC8103173 |
| Volume | 85 |
| WOSCitedRecordID | wos000598053100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5N20B7gTFgFLbJIB54CUttp461JwSrmLRUUzWgb5HjOKLSlm5Ni8TbfsJ-I79kd06aUW1Ik3iJHPmSOLbv_J19_gzwXrksQ9urAnIuAomQP9BZWARZqFTuiJ3EM_B9P1aDQTwa6ZMVOFjshan5IdoJN9IMb69JwU1W7d-Shp5Pzz9yxOPor691u0JRl-by5JZxV9cUzEqSodFyQSsU8v320eXB6A7CvBso-TeA9SNQ_-l_lX0TnjTAk32qe8ozWHHlFjxOmqX1LXjkY0Ft9RwSRKa0RWzGsKhob8gtZ6YcV5MZ3v9mtCOF0RTDmftzdV1RJCmjc1bmNPHGkuERM_ZyPm6CwV7Aaf_w9PPXoDl1IbBSijCIXDeXolBRERsnlMlDJ5xFlKO16bkMHdeCx6HpRUXRlU6YTGdoJISR2kQ9a8RLWC0npXsFjBsrtRW9nBtNdkLHVjpMFIWLjMrDDnxY1H5qG0ZyOhjjLK25lHmK9ZT6eurAu1b0oqbhuE9oZ9GEaaOJVcplLIkSKNIdeNtmow7Rwogp3WROMoqwH_rKHdiuW7z9ihACIaXAl6ulvtAKED_3ck45_ul5umM6QkMJ_E3fF_5d8DQZJj7x-uGib2CDU3iNj73cgdXZdO52Yd3-mo2r6Z5XBbyqUbwHa1-G_W_HePfjaHADW8kRvg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-hwsZeBmP86WDMm_awl0CInTqW9oJgFWhNNVXdxFvkOI6oBCk07aS97SPwGfkku3PSsIpNmrQ3R7kkju07_-58_hngvbRpirZXeuRceAIhv6dSP_dSX8rMEjuJY-D71pP9fnRxob4swcf5XpiKH6IJuJFmOHtNCk4B6cMH1tDryfVBgIAcHfZlgcMobMHy6aD7tfdAuqsqFmYpyNYoMWcW8oPD5uHF-egRyHycK_k7hnWTUHft_6q_Ds9r8MmOq9HyApZssQFP43p5fQOeuHxQU76EGNEpbRObMqwr2hxyzZkuRuV4itc_GO1KYRRmuLL3P-9KyiZldNbKjIJvLB6cM21uZ6M6IWwTht1Pw5Mzrz55wTNCcN8L7VEmeC7DPNKWS535lluDSEcp3bEpOq95EPm6E-b5kbBcpypFQ8G1UDrsGM23oFWMC7sDLNBGKMM7WaAV2QoVGWGxkOc21DLz2_Bh3vyJqVnJ6XCMq6TiUw4SbKfEtVMb3jWiNxUVx5-E9uZ9mNTaWCaBiATRAoWqDW-b26hHtDiiCzuekYwk_If-chu2qy5vvsI5R1jJ8eVyYTA0AsTRvXinGF06ru6IjtGQHH_TDYa_VzyJB7ErvPp30TewejaMe0nvvP95F54FlG7jcjH3oDWdzOxrWDHfp6Nysl9rxi8KCBOk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5NG0x7GTDYVhhgEA-8ZE1jp44lXhBQMbFU1TShvUWOY2uVtrRr2kl720_gN_JLuHPSjGogIfHmKJfEsX3n7-zzdwDvpM1ztL0yIOciEAj5A5WHLshDKQtL7CSege_7sRwOk7MzNVqDD8uzMDU_RLvgRprh7TUpuJ0WrnvHGno5uzyMEJCjw74hYrSxxOssRneUu6rmYJaCLI0SS16hMOq2j67ORvcg5v1Iyd8RrJ-CBo_-r_KPYbuBnuxjPVaewJotd2AzbTbXd-ChjwY11VNIEZvSIbE5w7qixSHHnOlyXE3meH3D6EwKo0WGC_vz9kdFsaSMMq0saOmNpSdHTJurxbgJB3sGp4Mvp5--Bk3ehcAIwcMgtr1CcCdjl2jLpS5Cy61BnKOU7tscXVcXJaHux871hOU6VzmaCa6F0nHfaL4L6-WktPvAIm2EMrxfRFqRpVCJERYLztlYyyLswPtl82em4SSn1BgXWc2mHGXYTplvpw68bUWnNRHHn4QOln2YNbpYZZFIBJECxaoDb9rbqEW0NaJLO1mQjCT0h95yB_bqLm-_wjlHUMnx5XJlMLQCxNC9eqccn3um7oSSaEiOv-kHw98rnqUnqS88_3fR17A5-jzIjo-G317AVkSxNj4Q8wDW57OFfQkPzPV8XM1eebX4BaEnEY0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apparent+propagator+anisotropy+from+single-shell+diffusion+MRI+acquisitions&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Aja-Fern%C3%A1ndez%2C+Santiago&rft.au=Trist%C3%A1n-Vega%2C+Antonio&rft.au=Jones%2C+Derek+K&rft.date=2021-05-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=85&rft.issue=5&rft.spage=2869&rft_id=info:doi/10.1002%2Fmrm.28620&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |