Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies

Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost‐effectiveness. Recently, several computer‐aided photo‐matching algorithms have been developed to more efficiently match images of unique individuals...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ecology and evolution Ročník 7; číslo 15; s. 5861 - 5872
Hlavní autoři: Matthé, Maximilian, Sannolo, Marco, Winiarski, Kristopher, Spitzen ‐ van der Sluijs, Annemarieke, Goedbloed, Daniel, Steinfartz, Sebastian, Stachow, Ulrich
Médium: Journal Article
Jazyk:angličtina
Vydáno: England John Wiley & Sons, Inc 01.08.2017
John Wiley and Sons Inc
Témata:
ISSN:2045-7758, 2045-7758
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost‐effectiveness. Recently, several computer‐aided photo‐matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state‐of‐the‐art photo‐matching algorithms prior to implementation in capture–recapture studies involving possibly thousands of images. Here, we compared the performance of four photo‐matching algorithms; Wild‐ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel‐based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match “by eye” can be easily translated to accurate individual capture histories necessary for robust demographic estimates. The manuscript addresses the question of accuracy of different photo‐matching algorithms for individual identification of wildlife, namely Wild‐ID, I3S Pattern+, APHIS, and AmphIdent. We compare the recognition rate of the four softwares in five different amphibian image databases, which contain between 2,197 and 12,488 images. We found that most softwares yielded an unacceptably low identification rate for the investigated databases, which emphasizes the importance of carefully choosing and checking a matching algorithm before using it for capture–mark–recapture studies.
AbstractList Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture–recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match “by eye” can be easily translated to accurate individual capture histories necessary for robust demographic estimates.
Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost‐effectiveness. Recently, several computer‐aided photo‐matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state‐of‐the‐art photo‐matching algorithms prior to implementation in capture–recapture studies involving possibly thousands of images. Here, we compared the performance of four photo‐matching algorithms; Wild‐ ID , I3S Pattern+, APHIS , and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel‐based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match “by eye” can be easily translated to accurate individual capture histories necessary for robust demographic estimates.
Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture-recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match "by eye" can be easily translated to accurate individual capture histories necessary for robust demographic estimates.Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture-recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match "by eye" can be easily translated to accurate individual capture histories necessary for robust demographic estimates.
Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost‐effectiveness. Recently, several computer‐aided photo‐matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state‐of‐the‐art photo‐matching algorithms prior to implementation in capture–recapture studies involving possibly thousands of images. Here, we compared the performance of four photo‐matching algorithms; Wild‐ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel‐based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match “by eye” can be easily translated to accurate individual capture histories necessary for robust demographic estimates. The manuscript addresses the question of accuracy of different photo‐matching algorithms for individual identification of wildlife, namely Wild‐ID, I3S Pattern+, APHIS, and AmphIdent. We compare the recognition rate of the four softwares in five different amphibian image databases, which contain between 2,197 and 12,488 images. We found that most softwares yielded an unacceptably low identification rate for the investigated databases, which emphasizes the importance of carefully choosing and checking a matching algorithm before using it for capture–mark–recapture studies.
Author Steinfartz, Sebastian
Matthé, Maximilian
Goedbloed, Daniel
Spitzen ‐ van der Sluijs, Annemarieke
Winiarski, Kristopher
Sannolo, Marco
Stachow, Ulrich
AuthorAffiliation 6 Leibniz Centre for Agricultural Landscape Research ZALF Müncheberg Germany
4 Reptile, Amphibian and Fish Conservation the Netherlands Nijmegen the Netherlands
5 Department of Evolutionary Biology Zoological Institute Technische Universität Braunschweig Braunschweig Germany
1 Vodafone Chair Mobile Communication Systems Technical University Dresden Dresden Germany
3 Department of Environmental Conservation University of Massachusetts Amherst MA USA
2 CIBIO, Research Centre in Biodiversity and Genetic Resources InBIO Universidade do Porto Campus de Vairão Vila do Conde Portugal
AuthorAffiliation_xml – name: 6 Leibniz Centre for Agricultural Landscape Research ZALF Müncheberg Germany
– name: 5 Department of Evolutionary Biology Zoological Institute Technische Universität Braunschweig Braunschweig Germany
– name: 1 Vodafone Chair Mobile Communication Systems Technical University Dresden Dresden Germany
– name: 2 CIBIO, Research Centre in Biodiversity and Genetic Resources InBIO Universidade do Porto Campus de Vairão Vila do Conde Portugal
– name: 3 Department of Environmental Conservation University of Massachusetts Amherst MA USA
– name: 4 Reptile, Amphibian and Fish Conservation the Netherlands Nijmegen the Netherlands
Author_xml – sequence: 1
  givenname: Maximilian
  surname: Matthé
  fullname: Matthé, Maximilian
  email: maxi.matthe@googlemail.com
  organization: Technical University Dresden
– sequence: 2
  givenname: Marco
  surname: Sannolo
  fullname: Sannolo, Marco
  organization: Campus de Vairão
– sequence: 3
  givenname: Kristopher
  surname: Winiarski
  fullname: Winiarski, Kristopher
  organization: University of Massachusetts
– sequence: 4
  givenname: Annemarieke
  surname: Spitzen ‐ van der Sluijs
  fullname: Spitzen ‐ van der Sluijs, Annemarieke
  organization: Reptile, Amphibian and Fish Conservation the Netherlands
– sequence: 5
  givenname: Daniel
  surname: Goedbloed
  fullname: Goedbloed, Daniel
  organization: Technische Universität Braunschweig
– sequence: 6
  givenname: Sebastian
  surname: Steinfartz
  fullname: Steinfartz, Sebastian
  organization: Technische Universität Braunschweig
– sequence: 7
  givenname: Ulrich
  surname: Stachow
  fullname: Stachow, Ulrich
  organization: Leibniz Centre for Agricultural Landscape Research ZALF
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28811886$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1q3DAUhUVJadI0i75AMWTTLiaRbMk_m0AZpkkg0E2yFvq5HivYkivJLbPLIwTyhnmSyplJSUN7N7pwv3s4V-c92rPOAkIfCT4hGOenoKA4KQjFb9BBjilbVBWr9170--gohFucqsQ5xdU7tJ_XNSF1XR4gvXTDKLwJzmauzcbORfd4dz-IqDpj15no186b2A0hU24YnO032RRAZ63zW3rtxdgZlSkxxsnD492Dh12fhThpA-EDetuKPsDR7j1EN99W18uLxdX388vl16uForTAC0q1xlICw0SXSuNKqgqXlaBEQsuYZA1IJTEpC03ydFmuSNW0hBQCtzWUsjhEZ1vdcZIDaAU2etHz0ZtB-A13wvC_J9Z0fO1-csZY3hR1Evi8E_DuxwQh8sEEBX0vLLgpcNLkTZP-kdCEHr9Cb93kbTpvpirKmlSJ-vTS0R8rzwEk4HQLKO9C8NByZaKIxs0GTc8J5nPKfE6ZzymnjS-vNp5F_8Xu1H-ZHjb_B_lquSqeNn4DDtK6NA
CitedBy_id crossref_primary_10_1038_s41598_018_22225_9
crossref_primary_10_1093_jmammal_gyaf048
crossref_primary_10_1016_j_ecolind_2021_108110
crossref_primary_10_1007_s42519_023_00319_6
crossref_primary_10_3390_ani13050801
crossref_primary_10_1002_ece3_10260
crossref_primary_10_3897_jor_33_120070
crossref_primary_10_1007_s42835_024_01791_1
crossref_primary_10_1002_wsb_1520
crossref_primary_10_1643_CH_18_101
crossref_primary_10_1016_j_fishres_2020_105622
crossref_primary_10_1007_s42991_022_00261_3
crossref_primary_10_1016_j_jnc_2024_126702
crossref_primary_10_1002_wsb_1086
crossref_primary_10_1111_jfb_14242
crossref_primary_10_3390_s22197602
crossref_primary_10_1002_ece3_71572
crossref_primary_10_1007_s42991_021_00165_8
crossref_primary_10_1007_s10641_025_01680_0
crossref_primary_10_1515_mammalia_2023_0071
crossref_primary_10_1016_j_seares_2025_102574
crossref_primary_10_1139_cjz_2023_0019
crossref_primary_10_1016_j_ecoinf_2023_102214
crossref_primary_10_1007_s42991_023_00344_9
crossref_primary_10_3390_electronics13112067
crossref_primary_10_1371_journal_pone_0298285
Cites_doi 10.2307/2937171
10.1002/ece3.1047
10.1186/1742-9994-4-2
10.1093/biomet/51.3-4.429
10.1111/j.2041-210X.2012.00212.x
10.3354/esr00637
10.1163/017353710X521546
10.1145/1991996.1992002
10.1002/env.2293
10.1579/0044-7447-34.8.628
10.1371/journal.pone.0150160
10.1038/186641a0
10.1111/j.2041-210X.2011.00106.x
10.1111/2041-210x.12008
10.1016/j.ecoinf.2015.03.003
10.1111/j.1541-0420.2009.01244.x
10.1111/j.1541-0420.2008.01165.x
10.1002/ece3.1340
10.1023/B:VISI.0000029664.99615.94
10.1890/08-0304.1
10.1046/j.1365-294X.2003.01868.x
10.1093/biomet/52.1-2.249
10.1007/s11284-016-1346-y
10.1670/14-155
10.1093/acprof:oso/9780198726135.003.0005
10.1111/j.1365-2664.2007.01368.x
10.1371/journal.pone.0059424
10.1109/ATSIP.2014.6834623
10.1038/srep02622
10.1371/journal.pone.0114120
10.1644/1545-1542(2001)082<0440:CAPMIS>2.0.CO;2
10.1890/1540-9295(2006)004[0147:MDOWAW]2.0.CO;2
10.1371/journal.pone.0145640
10.3758/s13428-011-0058-z
10.1111/j.1365-2664.2005.01117.x
10.2307/2533097
10.1093/biomet/52.1-2.225
ContentType Journal Article
Copyright 2017 The Authors. published by John Wiley & Sons Ltd.
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017 The Authors. published by John Wiley & Sons Ltd.
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7SN
7SS
7ST
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOI 10.1002/ece3.3140
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database

CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2045-7758
EndPage 5872
ExternalDocumentID PMC5552938
28811886
10_1002_ece3_3140
ECE33140
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Bundesstiftung Umwelt
  funderid: AZ 24095‐33/0
– fundername: Deutsche Bundesstiftung Umwelt
  grantid: AZ 24095‐33/0
GroupedDBID 0R~
1OC
24P
53G
5VS
7X2
8-0
8-1
8FE
8FH
AAFWJ
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AFRAH
AIAGR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ATCPS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
D-8
D-9
DIK
EBS
ECGQY
EJD
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEP
ITC
KQ8
LK8
M0K
M48
M7P
M~E
OK1
PIMPY
PROAC
RNS
ROL
RPM
SUPJJ
WIN
AAMMB
AAYXX
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
NPM
3V.
7SN
7SS
7ST
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c4430-44dd0bbe501d6cd07bc7067a41bef55b59ebcb0163d127752c179f113a0f8e6b3
IEDL.DBID 24P
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407485300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-7758
IngestDate Tue Nov 04 01:56:26 EST 2025
Sun Nov 09 11:22:24 EST 2025
Wed Aug 13 07:08:11 EDT 2025
Thu Apr 03 07:00:17 EDT 2025
Tue Nov 18 21:06:49 EST 2025
Sat Nov 29 04:31:07 EST 2025
Wed Jan 22 16:28:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords I3S
AmphIdent
APHIS
Wild‐ID
photographic identification
capture–recapture
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4430-44dd0bbe501d6cd07bc7067a41bef55b59ebcb0163d127752c179f113a0f8e6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.3140
PMID 28811886
PQID 1927459999
PQPubID 2034651
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5552938
proquest_miscellaneous_1929900614
proquest_journals_1927459999
pubmed_primary_28811886
crossref_citationtrail_10_1002_ece3_3140
crossref_primary_10_1002_ece3_3140
wiley_primary_10_1002_ece3_3140_ECE33140
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
– name: Hoboken
PublicationTitle Ecology and evolution
PublicationTitleAlternate Ecol Evol
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 1965; 52
2010; 31
2013; 3
2015; 5
2013; 4
2011; 2
2009; 65
2004; 60
2011
2010
2004; 25
2004; 4
2014; 26
2008; 15
2016; 31
2005; 42
2006; 110
2016; 50
2013; 8
2003; 12
2016; 11
2015; 46
2010; 66
2015; 26
2017; 53
2001; 82
2012; 3
2014; 4
2015; 27
1997; 52
1960; 186
2009; 90
2004; 35
2008; 45
2011; 43
2016
2007; 4
2014
2013
2014; 9
2010; 5
1964; 51
2005; 34
1992; 62
Bay H. (e_1_2_10_5_1) 2006; 110
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_40_1
Neubeck C. (e_1_2_10_36_1) 2014
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
Schoen A. (e_1_2_10_44_1) 2015; 46
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
Matthe M. (e_1_2_10_32_1) 2008; 15
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Sannolo M. (e_1_2_10_42_1) 2016; 11
Kenyon N. (e_1_2_10_26_1) 2010; 5
Itseez (e_1_2_10_21_1) 2016
Arntzen J. (e_1_2_10_2_1) 2004; 25
e_1_2_10_3_1
e_1_2_10_19_1
Ferner J. W. (e_1_2_10_14_1) 2010
e_1_2_10_38_1
Goedbloed D. (e_1_2_10_17_1) 2017; 53
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_33_1
e_1_2_10_31_1
Crall J. (e_1_2_10_10_1) 2013
e_1_2_10_50_1
Bailey L. L. (e_1_2_10_4_1) 2004; 35
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_47_1
References_xml – volume: 31
  start-page: 489
  year: 2010
  end-page: 502
  article-title: Photographic identification in reptiles: A matter of scales
  publication-title: Amphibia‐Reptilia
– volume: 35
  start-page: 38
  year: 2004
  end-page: 41
  article-title: Evaluating elastomer marking and photo identification methods for terrestrial salamanders: Marking effects and observer bias
  publication-title: Herpetological Review
– volume: 11
  start-page: 63
  year: 2016
  end-page: 68
  article-title: Photo‐identification in amphibian studies: A test of I3S Pattern
  publication-title: Acta Herpetologica
– volume: 4
  start-page: 2
  year: 2007
  article-title: Spot the match ‐ wildlife photo‐identification using information theory
  publication-title: Frontiers in zoology
– volume: 3
  start-page: 813
  year: 2012
  end-page: 822
  article-title: A computer‐assisted system for photographic mark‐recapture analysis
  publication-title: Methods in Ecology and Evolution
– volume: 34
  start-page: 628
  year: 2005
  end-page: 634
  article-title: Photo‐identification, site fidelity, and movement of female gray seals ( ) between haul‐outs in the Baltic Sea
  publication-title: Ambio
– volume: 52
  start-page: 225
  year: 1965
  end-page: 247
  article-title: Explicit estimates from capture–recapture data with both death and immigration‐stochastic mode
  publication-title: Biometrika
– volume: 45
  start-page: 170
  year: 2008
  end-page: 180
  article-title: Multi‐scale features for identifying individuals in large biological databases: An application of pattern recognition technology to the marbled salamander Ambystoma opacum
  publication-title: Journal of Applied Ecology
– volume: 9
  start-page: 1
  year: 2014
  end-page: 11
  article-title: The neuro‐hormonal control of rapid dynamic skin colour change in an amphibian during amplexus
  publication-title: PLoS ONE
– volume: 50
  start-page: 44
  year: 2016
  end-page: 49
  article-title: Individual identification of the endangered wyoming toad and implications for monitoring species recovery
  publication-title: Journal of Herpetology
– volume: 46
  start-page: 188
  year: 2015
  end-page: 192
  article-title: Tracking toads using photo identification and image‐recognition software
  publication-title: Herpetological Review
– volume: 3
  start-page: 2622
  year: 2013
  article-title: Glyphosate applications on arable fields considerably coincide with migrating amphibians
  publication-title: Scientific reports
– volume: 4
  start-page: 1480
  year: 2014
  end-page: 1490
  article-title: One step forward: Contrasting the effects of Toe clipping and PIT tagging on frog survival and recapture probability
  publication-title: Ecology and Evolution
– volume: 12
  start-page: 2003
  year: 2003
  end-page: 2009
  article-title: Population size estimation in Yellowstone wolves with error‐prone noninvasive microsatellite genotypes
  publication-title: Molecular Ecology
– start-page: 123
  year: 2010
  end-page: 141
– year: 2014
– volume: 5
  start-page: 126
  year: 2010
  end-page: 131
  article-title: Temporal variation in dorsal patterns of juvenile green‐eyed tree frogs, (Anura: Hylidae)
  publication-title: Herpetological Conservation and Biology
– volume: 2
  start-page: 454
  year: 2011
  end-page: 463
  article-title: Estimating survival in photographic capture‐recapture studies: Overcoming misidentification error
  publication-title: Methods in Ecology and Evolution
– volume: 11
  start-page: 1
  year: 2016
  end-page: 22
  article-title: Use of photo‐identification and mark‐recapture methodology to assess basking shark ( ) populations
  publication-title: PLoS ONE
– volume: 60
  start-page: 91
  year: 2004
  end-page: 11020042
  article-title: Distinctive image features from scale invariant keypoints
  publication-title: Int'l Journal of Computer Vision
– volume: 26
  start-page: 1
  year: 2015
  end-page: 16
  article-title: Weighted likelihood recapture estimation of detection probabilities from an ice‐based survey of bowhead whales
  publication-title: Environmetrics
– volume: 25
  start-page: 305
  year: 2004
  end-page: 315
  article-title: Cost comparison of marking techniques in long‐term population studies: PIT‐tags versus pattern maps
  publication-title: Amphibia‐Reptilia
– volume: 110
  start-page: 404
  year: 2006
  end-page: 417
  article-title: {SURF}: Speeded up robust features
  publication-title: Computer Vision and Image Understanding
– volume: 62
  start-page: 67
  year: 1992
  end-page: 118
  article-title: Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies
  publication-title: Ecological Monographs
– volume: 82
  start-page: 440
  year: 2001
  end-page: 449
  article-title: Computer‐aided photograph matching in studies using individual identification: An example from Serengeti Cheetahs
  publication-title: Journal of Mammalogy
– start-page: 230
  year: 2013
  end-page: 237
  article-title: Hotspotter ‐ patterned species instant recognition
  publication-title: Applications of Computer Vision (WACV)
– start-page: 59
  year: 2016
  end-page: 72
  article-title: Digital identification and analysis
  publication-title: Reptile Ecology and Conservation A Handbook of Techniques
– volume: 26
  start-page: 137
  year: 2014
  end-page: 146
  article-title: Recognition of juvenile hawksbills Eretmochelys imbricata through face scale digitization and automated searching
  publication-title: Endangered Species Research
– volume: 53
  start-page: 314
  year: 2017
  end-page: 318
  article-title: Evaluation of a new AmphIdent module and sources of automated photo identification error using data from the Near East fire salamander
  publication-title: Salamandra
– volume: 52
  start-page: 249
  year: 1965
  end-page: 259
  article-title: A note on the multiple recapture census
  publication-title: Biometrika
– volume: 15
  start-page: 89
  year: 2008
  end-page: 94
  article-title: Computergestützte bildanalyse von bauchfleckenmustern des Kammolchs ( )
  publication-title: Zeitschrift für Feldherpetologie
– volume: 51
  start-page: 429
  year: 1964
  end-page: 438
  article-title: Estimates of survival from the sighting of marked animals
  publication-title: Biometrika
– volume: 5
  start-page: 141
  year: 2015
  end-page: 151
  article-title: Genetic fingerprinting proves cross‐correlated automatic photo‐identification of individuals as highly efficient in large capture–mark–recapture studies
  publication-title: Ecology and Evolution
– volume: 42
  start-page: 999
  year: 2005
  end-page: 1011
  article-title: An astronomical pattern‐matching algorithm for computer‐aided identification of whale sharks
  publication-title: Journal of Applied Ecology
– volume: 4
  start-page: 252
  year: 2013
  end-page: 259
  article-title: Analysis of photo‐id data allowing for missed matches and individuals identified from opposite sides
  publication-title: Methods in Ecology and Evolution
– volume: 43
  start-page: 568
  year: 2011
  end-page: 576
  article-title: The use of visual and automatized behavioral markers to assess methodologies: A study case on PIT‐tagging in the Alpine newt
  publication-title: Behavior research methods
– volume: 27
  start-page: 64
  year: 2015
  end-page: 70
  article-title: APHIS: A new software for photo‐matching in ecological studies
  publication-title: Ecological Informatics
– volume: 4
  start-page: 147
  year: 2004
  end-page: 154
  article-title: Measuring devices on wild animals: What constitutes acceptable practice?
  publication-title: Frontiers in Ecology and the Environment
– year: 2016
– volume: 90
  start-page: 3
  year: 2009
  end-page: 9
  article-title: Modeling misidentification errors in capture‐recapture studies using photographic identification of evolving marks
  publication-title: Ecology
– start-page: 295
  year: 2014
  end-page: 300
– volume: 31
  start-page: 483
  year: 2016
  end-page: 489
  article-title: A newt does not change its spots: Using pattern mapping for the identification of individuals in large populations of newt species
  publication-title: Ecological Research
– volume: 8
  year: 2013
  article-title: Computer‐assisted photo identification outperforms visible implant elastomers in an endangered salamander,
  publication-title: PLoS ONE
– volume: 66
  start-page: 178
  year: 2010
  end-page: 185
  article-title: Uncovering a latent multinomial: Analysis of mark‐ recapture data with misidentification
  publication-title: Biometrics
– volume: 186
  start-page: 641
  year: 1960
  end-page: 642
  article-title: Control of colour change in amphibians
  publication-title: Nature
– volume: 52
  start-page: 60
  year: 1997
  end-page: 72
  article-title: Capture‐recapture survival models taking account of transients
  publication-title: Biometrics
– start-page: 1
  year: 2011
  end-page: 8
– volume: 65
  start-page: 833
  year: 2009
  end-page: 840
  article-title: Incorporating genotype uncertainty into mark‐recapture‐type models for estimating abundance using DNA samples
  publication-title: Biometrics
– volume: 11
  start-page: 1
  year: 2016
  end-page: 12
  article-title: Effects of photo and genotype‐based misidentification error on estimates of survival, detection and state transition using multistate survival models
  publication-title: PLoS ONE
– start-page: 123
  volume-title: Amphibian ecology and conservation: A handbook of techniques
  year: 2010
  ident: e_1_2_10_14_1
– volume: 11
  start-page: 63
  year: 2016
  ident: e_1_2_10_42_1
  article-title: Photo‐identification in amphibian studies: A test of I3S Pattern
  publication-title: Acta Herpetologica
– ident: e_1_2_10_29_1
  doi: 10.2307/2937171
– ident: e_1_2_10_19_1
  doi: 10.1002/ece3.1047
– ident: e_1_2_10_46_1
  doi: 10.1186/1742-9994-4-2
– ident: e_1_2_10_9_1
  doi: 10.1093/biomet/51.3-4.429
– volume: 110
  start-page: 404
  year: 2006
  ident: e_1_2_10_5_1
  article-title: {SURF}: Speeded up robust features
  publication-title: Computer Vision and Image Understanding
– ident: e_1_2_10_8_1
  doi: 10.1111/j.2041-210X.2012.00212.x
– ident: e_1_2_10_13_1
  doi: 10.3354/esr00637
– ident: e_1_2_10_41_1
  doi: 10.1163/017353710X521546
– ident: e_1_2_10_43_1
– ident: e_1_2_10_28_1
  doi: 10.1145/1991996.1992002
– ident: e_1_2_10_16_1
  doi: 10.1002/env.2293
– ident: e_1_2_10_24_1
  doi: 10.1579/0044-7447-34.8.628
– ident: e_1_2_10_18_1
  doi: 10.1371/journal.pone.0150160
– volume: 25
  start-page: 305
  year: 2004
  ident: e_1_2_10_2_1
  article-title: Cost comparison of marking techniques in long‐term population studies: PIT‐tags versus pattern maps
  publication-title: Amphibia‐Reptilia
– ident: e_1_2_10_23_1
  doi: 10.1038/186641a0
– ident: e_1_2_10_35_1
  doi: 10.1111/j.2041-210X.2011.00106.x
– volume-title: Die Gelbbauchunke als Leitart for Pionieramphibien in den Flussauen Nordhessens: Naturschutzgenetik
  year: 2014
  ident: e_1_2_10_36_1
– ident: e_1_2_10_20_1
  doi: 10.1111/2041-210x.12008
– ident: e_1_2_10_37_1
  doi: 10.1016/j.ecoinf.2015.03.003
– volume-title: Open source computer vision library
  year: 2016
  ident: e_1_2_10_21_1
– volume: 46
  start-page: 188
  year: 2015
  ident: e_1_2_10_44_1
  article-title: Tracking toads using photo identification and image‐recognition software
  publication-title: Herpetological Review
– ident: e_1_2_10_30_1
  doi: 10.1111/j.1541-0420.2009.01244.x
– ident: e_1_2_10_50_1
  doi: 10.1111/j.1541-0420.2008.01165.x
– ident: e_1_2_10_12_1
  doi: 10.1002/ece3.1340
– ident: e_1_2_10_31_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 5
  start-page: 126
  year: 2010
  ident: e_1_2_10_26_1
  article-title: Temporal variation in dorsal patterns of juvenile green‐eyed tree frogs, Litoria genimaculata (Anura: Hylidae)
  publication-title: Herpetological Conservation and Biology
– ident: e_1_2_10_51_1
  doi: 10.1890/08-0304.1
– ident: e_1_2_10_11_1
  doi: 10.1046/j.1365-294X.2003.01868.x
– volume: 15
  start-page: 89
  year: 2008
  ident: e_1_2_10_32_1
  article-title: Computergestützte bildanalyse von bauchfleckenmustern des Kammolchs (Triturus Cristatus)
  publication-title: Zeitschrift für Feldherpetologie
– ident: e_1_2_10_45_1
  doi: 10.1093/biomet/52.1-2.249
– ident: e_1_2_10_33_1
  doi: 10.1007/s11284-016-1346-y
– start-page: 230
  year: 2013
  ident: e_1_2_10_10_1
  article-title: Hotspotter ‐ patterned species instant recognition
  publication-title: Applications of Computer Vision (WACV)
– ident: e_1_2_10_34_1
  doi: 10.1670/14-155
– ident: e_1_2_10_40_1
  doi: 10.1093/acprof:oso/9780198726135.003.0005
– ident: e_1_2_10_15_1
  doi: 10.1111/j.1365-2664.2007.01368.x
– ident: e_1_2_10_6_1
  doi: 10.1371/journal.pone.0059424
– volume: 35
  start-page: 38
  year: 2004
  ident: e_1_2_10_4_1
  article-title: Evaluating elastomer marking and photo identification methods for terrestrial salamanders: Marking effects and observer bias
  publication-title: Herpetological Review
– ident: e_1_2_10_38_1
  doi: 10.1109/ATSIP.2014.6834623
– ident: e_1_2_10_7_1
  doi: 10.1038/srep02622
– ident: e_1_2_10_27_1
  doi: 10.1371/journal.pone.0114120
– ident: e_1_2_10_25_1
  doi: 10.1644/1545-1542(2001)082<0440:CAPMIS>2.0.CO;2
– ident: e_1_2_10_47_1
  doi: 10.1890/1540-9295(2006)004[0147:MDOWAW]2.0.CO;2
– ident: e_1_2_10_49_1
  doi: 10.1371/journal.pone.0145640
– ident: e_1_2_10_48_1
  doi: 10.3758/s13428-011-0058-z
– volume: 53
  start-page: 314
  year: 2017
  ident: e_1_2_10_17_1
  article-title: Evaluation of a new AmphIdent module and sources of automated photo identification error using data from the Near East fire salamander
  publication-title: Salamandra
– ident: e_1_2_10_3_1
  doi: 10.1111/j.1365-2664.2005.01117.x
– ident: e_1_2_10_39_1
  doi: 10.2307/2533097
– ident: e_1_2_10_22_1
  doi: 10.1093/biomet/52.1-2.225
SSID ssj0000602407
Score 2.3418899
Snippet Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and...
Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5861
SubjectTerms Algorithms
AmphIdent
APHIS
Capture-recapture studies
capture–recapture
Demographics
Eye
I3S
Image quality
Matching
Object recognition
Original Research
photographic identification
Population number
Wildlife
Wild‐ID
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYlLedNAQQZx4GLVcew4OSFYpeKAVhUC1FvkZ3elJdk2u0i98R_6D_tLOnayoVWBCzdLHvmhGdvfjEffIPQW_J5UaiaIUbIkXClOFNeW5FxxxnOnVAy4ff8sp9Pi6Kg8HAJu3ZBWubkT40VtWxNi5PuARCQXAGfK98sTEqpGhd_VoYTGbbQdmMrAzrc_VtPDL2OUheaBw0tuKIUo23fGZeCohmDH1YfoBrq8mSR5FbzG1-fg_v-u-wHaGXAn_tAbykN0yzWP0N0qclafPUZ6MtYjxK3Hy1m7agmA2ZhpidXiGIZczX50GCaFERdneN05iwHx9rKR93pusFHL8CVx8escbtK-jbs-VfEJ-nZQfZ18IkP5BWI4zyjh3FqqtRM0tbmxVGoj4W1TPNXOC6FF6bTRABkzmzIpBTNwuH2aZor6wuU6e4q2mrZxuwiDB64496nLvedcUKV9XlDldcpsmpcuQe82uqjNwE0eSmQs6p5VmdVBbXVQW4LejKLLnpDjT0J7G2XUw5ns6t-aSNDrsRtOU_giUY1r11EGnufgJSfoWa__cRZWFOCNFXmC5DXLGAUCU_f1nmY-i4zdQgiAVQVsM9rQ3xdeV5MqC43n_97BC3SPBXwRMxH30NbqdO1eojvm52renb4aTsElQC8WGQ
  priority: 102
  providerName: ProQuest
Title Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.3140
https://www.ncbi.nlm.nih.gov/pubmed/28811886
https://www.proquest.com/docview/1927459999
https://www.proquest.com/docview/1929900614
https://pubmed.ncbi.nlm.nih.gov/PMC5552938
Volume 7
WOSCitedRecordID wos000407485300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: M0K
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: M7P
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: BENPR
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: PIMPY
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: WIN
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: 24P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7LjoIv3i9d1yGKD76UTdKkafFJhy4uukMRL-NTSdLUGZhth-mMsG_7EwT_4f4ST9KZ6rAKgi8hJac0Tc5JvpOcfEHoOfg9VGomQqNkGnKleKi4LsOYK854bJXyC26f3snxOJlM0nwPvdyehen4IfoFN2cZfrx2Bq50e_SLNNQaG4HHycFfH1AaSafSjOf9AguJHX2XOy7tGNcBRYpkyyxE2FH_9u58dAVkXo2V_B3D-kno-NZ_Vf82urnBnvhVpyx30J6t76LrmeetPr-HylF_JyFuKryYNqvm8uI7QFofb4nV_GuznK2mZy2Gj4H6zs_xurUlBtzbSXv265nBRi3cxsTlxQ8YT7s8bruAxfvo43H2YfQm3FzCEBrOIxJyXpZEaysILWNTEqmNhBlOcaptJYQWqdVGA3CMSsqgkZkBE6-gQxSpEhvr6AHar5vaPkIY_HDFeUVtXFWcC6J0FSdEVZqyksapDdCLbVcUZsNQ7i7KmBcdtzIrXKMVrtEC9KwXXXS0HH8SOtz2Z7GxzLYARCu5AFicBuhpXww25TZKVG2btZeBSdr5ygF62HV__xWWJOCTJXGA5I5i9AKOr3u3pJ5NPW-3EALAVQK_6RXj7xUvslEWuczBv4s-RjeYQxw-NvEQ7a-Wa_sEXTPfVrN2OfSmAamcJEM0eJ2N8_dDv_wA6Sl561IJ5YP85DT_Ak-fT8Y_ASrXHQ4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VAoIL_z8LBQwCiUtUx7Hj5IAQWrZqtdsVh4J6S23HYVdakqXZBe2Nd-A9eCiehLGzCa0K3HrgFsmTn4kn42_Gk28AnmPcE0rNRGCUTAOuFA8U13kQc8UZj61SPuH2YSTH4-TwMH23AT_af2FcWWXrE72jzivjcuTbiEQkFwhn0tfzz4HrGuV2V9sWGo1ZDO3qK4Zs9au9tzi_LxjbGRz0d4N1V4HAcB7RgPM8p1pbQcM8NjmV2kh02YqH2hZCaJFabTQioSgPmZSCGbTZIgwjRYvExjrC616AixwDL1dCtk-HXU6Hxo4xTLYERpRtW2MjDItdauXksncGy54tyTwJlf1at3P9f3tLN-DaGlWTN81ncBM2bHkLLg88I_fqNuh-122RVAWZT6pFFSBU93WkRM0-ogqLyaeaoJKowWxFlrXNCeL5Rtazek8NMWruNlx-fvuO60RzTOqmEPMOvD8XBe_CZlmV9j6QlOJpvAhtXBScC6p0ESdUFTpkeRintgcv27nPzJp53TUAmWUNZzTLnJlkzkx68KwTnTd0I38S2monP1t7nDr7PfM9eNoNo69wG0CqtNXSyyD4cDmAHtxr7K27C0sSjDWTuAfylCV2Ao6H_PRIOZ14PnIhBILGBNX0Nvv3B88G_UHkDh78W4MncGX3YH-UjfbGw4dwlTkk5Wsut2Bzcby0j-CS-bKY1seP_fdH4Oi8TfkXtatxUg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceD8KCxgE0l6iOo4dJweEULcVq11VPQDaW7Adh1YqSdm0oN74D_wbfg6_hLHThF0tcNsDt0iZPCb5Mv48nnwD8BznPaHUTARGyTTgSvFAcZ0HMVec8dgq5RNu7w_leJwcHaWTLfjR_gvjyirbmOgDdV4ZlyPvIxORXCCdSfvFpixisjd6tfgcuA5SbqW1bafRQOTArr_i9K1-ub-H7_oFY6Ph28GbYNNhIDCcRzTgPM-p1lbQMI9NTqU2EsO34qG2hRBapFYbjawoykMmpWAG8VuEYaRokdhYR3jeC3BR8pgyXzY46fI7NHbqYbIVM6Ksb42NcIrs0iwnh8AzvPZseeZJ2uzHvdH1__mJ3YBrG7ZNXjefx03YsuUtuDz0St3r26AHXRdGUhVkMa2WVYAU3teXEjX_iC4sp59qgg6jB_M1WdU2J8jzG1uv9j0zxKiFW4j5-e07jh_NNqmbAs078O5cHLwL22VV2vtAUoqH8SK0cVFwLqjSRZxQVeiQ5WGc2h7stjjIzEaR3TUGmWeNljTLHGQyB5kePOtMF40MyZ-MdlogZJtIVGe_UdCDp91ujCFuYUiVtlp5GyQlLjfQg3sN9rqrsCTBOWgS90CeQmVn4PTJT-8pZ1OvUy6EQDKZoJsev3-_8Ww4GEZu48G_PXgCVxDB2eH--OAhXGWOYPlSzB3YXh6v7CO4ZL4sZ_XxY_8pEvhw3kj-BZ-aeik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+photo%E2%80%90matching+algorithms+commonly+used+for+photographic+capture%E2%80%93recapture+studies&rft.jtitle=Ecology+and+evolution&rft.au=Matth%C3%A9%2C+Maximilian&rft.au=Sannolo%2C+Marco&rft.au=Winiarski%2C+Kristopher&rft.au=Spitzen+%E2%80%90+van+der+Sluijs%2C+Annemarieke&rft.date=2017-08-01&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=7&rft.issue=15&rft.spage=5861&rft.epage=5872&rft_id=info:doi/10.1002%2Fece3.3140&rft.externalDBID=10.1002%252Fece3.3140&rft.externalDocID=ECE33140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon