CD47 as a promising therapeutic target in oncology
CD47 is ubiquitously expressed on the surface of cells and plays a critical role in self-recognition. By interacting with SIRPα, TSP-1 and integrins, CD47 modulates cellular phagocytosis by macrophages, determines life span of individual erythrocytes, regulates activation of immune cells, and manipu...
Saved in:
| Published in: | Frontiers in immunology Vol. 13; p. 757480 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Frontiers Media S.A
22.08.2022
|
| Subjects: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | CD47 is ubiquitously expressed on the surface of cells and plays a critical role in self-recognition. By interacting with SIRPα, TSP-1 and integrins, CD47 modulates cellular phagocytosis by macrophages, determines life span of individual erythrocytes, regulates activation of immune cells, and manipulates synaptic pruning during neuronal development. As such, CD47 has recently be regarded as one of novel innate checkpoint receptor targets for cancer immunotherapy. In this review, we will discuss increasing awareness about the diverse functions of CD47 and its role in immune system homeostasis. Then, we will discuss its potential therapeutic roles against cancer and outlines, the possible future research directions of CD47- based therapeutics against cancer. |
|---|---|
| AbstractList | CD47 is ubiquitously expressed on the surface of cells and plays a critical role in self-recognition. By interacting with SIRPα, TSP-1 and integrins, CD47 modulates cellular phagocytosis by macrophages, determines life span of individual erythrocytes, regulates activation of immune cells, and manipulates synaptic pruning during neuronal development. As such, CD47 has recently be regarded as one of novel innate checkpoint receptor targets for cancer immunotherapy. In this review, we will discuss increasing awareness about the diverse functions of CD47 and its role in immune system homeostasis. Then, we will discuss its potential therapeutic roles against cancer and outlines, the possible future research directions of CD47- based therapeutics against cancer.CD47 is ubiquitously expressed on the surface of cells and plays a critical role in self-recognition. By interacting with SIRPα, TSP-1 and integrins, CD47 modulates cellular phagocytosis by macrophages, determines life span of individual erythrocytes, regulates activation of immune cells, and manipulates synaptic pruning during neuronal development. As such, CD47 has recently be regarded as one of novel innate checkpoint receptor targets for cancer immunotherapy. In this review, we will discuss increasing awareness about the diverse functions of CD47 and its role in immune system homeostasis. Then, we will discuss its potential therapeutic roles against cancer and outlines, the possible future research directions of CD47- based therapeutics against cancer. CD47 is ubiquitously expressed on the surface of cells and plays a critical role in self-recognition. By interacting with SIRPα, TSP-1 and integrins, CD47 modulates cellular phagocytosis by macrophages, determines life span of individual erythrocytes, regulates activation of immune cells, and manipulates synaptic pruning during neuronal development. As such, CD47 has recently be regarded as one of novel innate checkpoint receptor targets for cancer immunotherapy. In this review, we will discuss increasing awareness about the diverse functions of CD47 and its role in immune system homeostasis. Then, we will discuss its potential therapeutic roles against cancer and outlines, the possible future research directions of CD47- based therapeutics against cancer. |
| Author | Song, Shuangshuang Yan, Zhiyong Xie, Hongwei Zhao, Hai Ma, Junwei Che, Shusheng Feng, Ying |
| AuthorAffiliation | 1 Department of Neurosurgery, the Affiliated Hospital of Qingdao University , Qingdao , China 2 Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University , Qingdao , China 3 Department of Emergency, the Affiliated Hospital of Qingdao University , Qingdao , China |
| AuthorAffiliation_xml | – name: 1 Department of Neurosurgery, the Affiliated Hospital of Qingdao University , Qingdao , China – name: 2 Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University , Qingdao , China – name: 3 Department of Emergency, the Affiliated Hospital of Qingdao University , Qingdao , China |
| Author_xml | – sequence: 1 givenname: Hai surname: Zhao fullname: Zhao, Hai – sequence: 2 givenname: Shuangshuang surname: Song fullname: Song, Shuangshuang – sequence: 3 givenname: Junwei surname: Ma fullname: Ma, Junwei – sequence: 4 givenname: Zhiyong surname: Yan fullname: Yan, Zhiyong – sequence: 5 givenname: Hongwei surname: Xie fullname: Xie, Hongwei – sequence: 6 givenname: Ying surname: Feng fullname: Feng, Ying – sequence: 7 givenname: Shusheng surname: Che fullname: Che, Shusheng |
| BookMark | eNp1kUtrHDEMx01JaR7NB-htjr3sxg_5dSmU7SsQ6KU9G9njmTjMjLceTyHfPrO7KTSF6iIh6f9D6H9JzqY8RULeMboVwtibLo3jsuWU862WGgx9RS6YUrARnMPZX_U5uZ7nB7oGWCGEfEPOhaKGgTUXhO8-gW5wbrDZlzymOU19U-9jwX1cagpNxdLH2qSpyVPIQ-4f35LXHQ5zvH7OV-Tnl88_dt82d9-_3u4-3m0CAK-bTgTBtWBd8FZ3SgtqYpQyKKahNQYBvRS0MyFYFQzazgtDZeSSmhakR3FFbk_cNuOD25c0Ynl0GZM7NnLpHZb1xCE6oanmXiDzXoK16GnLpYEoFcggWr-yPpxY-8WPsQ1xqgWHF9CXkynduz7_dhZAaQkr4P0zoORfS5yrW38V4jDgFPMyO64ZN6D4cVWfVkPJ81xi50KqWFM-kNPgGHUHA93RQHcw0J0MXJXsH-WfA_-veQK8OZ8I |
| CitedBy_id | crossref_primary_10_32604_or_2023_042383 crossref_primary_10_1038_s41467_024_53295_1 crossref_primary_10_3389_fimmu_2024_1401528 crossref_primary_10_3892_ol_2023_13950 crossref_primary_10_1002_wrna_1822 crossref_primary_10_1002_cti2_70014 crossref_primary_10_3390_pharmaceutics15010282 crossref_primary_10_4103_egjp_egjp_19_24 crossref_primary_10_1002_advs_202204998 crossref_primary_10_12677_acm_2025_154951 crossref_primary_10_3390_molecules28104224 crossref_primary_10_1007_s12032_023_02101_x crossref_primary_10_3390_biomedicines12092152 crossref_primary_10_3389_fimmu_2024_1379622 crossref_primary_10_1007_s00277_024_05852_3 crossref_primary_10_3390_ijms25126595 crossref_primary_10_1158_1535_7163_MCT_24_0917 crossref_primary_10_1186_s12964_024_01562_5 crossref_primary_10_3390_molecules28052336 crossref_primary_10_1007_s13346_025_01893_x crossref_primary_10_1007_s00277_025_06401_2 crossref_primary_10_1186_s12943_023_01735_9 crossref_primary_10_1002_adfm_202311677 crossref_primary_10_1007_s00432_024_05661_1 crossref_primary_10_3892_ol_2024_14389 crossref_primary_10_1080_15321819_2025_2464718 crossref_primary_10_3390_cancers14246150 crossref_primary_10_1093_postmj_qgaf072 crossref_primary_10_1136_jitc_2024_010326 |
| Cites_doi | 10.1182/blood-2011-11-391367 10.3389/fimmu.2013.00481 10.1002/cyto.b.20539 10.3389/fimmu.2019.00119 10.1111/trf.15033 10.1080/2162402X.2017.1312045 10.1083/jcb.200708043 10.1016/j.ymthe.2016.11.006 10.1182/blood-2008-01-134429 10.1074/jbc.M804860200 10.1172/jci.insight.134728 10.1021/jacs.0c05039 10.1038/nri1859 10.1038/sj.cdd.4402242 10.1371/journal.pone.0098358 10.1016/j.molcel.2008.05.026 10.1371/journal.pone.0137345 10.3389/fimmu.2017.00727 10.1136/jitc-2021-003737 10.4049/jimmunol.173.4.2562 10.1083/jcb.123.2.485 10.1016/j.cell.2009.05.046 10.1016/j.nano.2015.09.011 10.1016/j.critrevonc.2020.103014 10.1056/NEJMra0912273 10.1038/s41467-020-15129-8 10.1182/blood-2020-135941 10.1016/j.drudis.2020.11.003 10.1182/blood.V97.10.3146 10.1182/blood.V98.12.3346 10.1007/s00262-020-02812-4 10.4049/jimmunol.165.8.4624 10.3390/ijms18020441 10.1038/cdd.2008.185 10.1056/NEJMoa1807315 10.1016/j.tranon.2019.10.001 10.1016/j.ymthe.2021.01.006 10.3760/cma.i.issn.0529-5807.2012.10.019 10.1242/jcs.025015 10.1182/blood-2021-150606 10.4049/jimmunol.172.4.2578 10.3390/cancers13195019 10.3389/fimmu.2019.00811 10.1016/S0962-8924(00)01906-1 10.1083/jcb.132.3.437 10.1158/1538-7445.AM2021-1611 10.1074/jbc.M301869200 10.1080/2162402X.2022.2049486 10.1093/abt/tbaa017 10.1182/blood-2021-152896 10.1074/jbc.M104138200 10.1111/ejh.12439 10.4049/jimmunol.1102702 10.3233/JAD-2011-101014 10.1002/cam4.3768 10.1182/blood-2019-126271 10.3349/ymj.2016.57.6.1435 10.1128/JVI.00605-16 10.1038/s41568-019-0183-z 10.1186/s13148-017-0312-z 10.1021/acs.molpharmaceut.2c00073 10.1182/blood-2004-07-2823 10.4049/jimmunol.181.8.5204 10.1073/pnas.1121623109 10.1186/s13148-016-0220-7 10.4049/jimmunol.158.2.677 10.1182/blood-2001-12-0217 10.1182/blood.V87.1.180.bloodjournal871180 10.1182/blood-2020-134391 10.1038/s41590-017-0004-z 10.1097/CJI.0b013e318247440a 10.1136/jitc-2020-000905 10.1038/nn1997 10.1007/s40820-021-00647-x 10.1111/cas.14310 10.1016/j.it.2010.04.001 10.1073/pnas.1106550108 10.1038/s41598-019-46942-x 10.1158/1078-0432.CCR-19-1457 10.2174/138945008785909310 10.1038/nm.3931 10.18632/oncotarget.9899 10.1038/nature18935 10.1038/s41591-019-0356-z 10.1002/1521-4141(2000)30:8<2130::AID-IMMU2130>3.0.CO;2-8 10.1093/abt/tbaa006 10.1182/blood-2011-02-338020 10.1159/000464388 10.1186/s12951-020-0571-2 10.1182/blood-2011-10-386805 10.4049/jimmunol.167.5.2547 10.4049/jimmunol.180.12.8073 10.1126/science.288.5473.2051 10.1073/pnas.1209265109 10.1038/nature22076 10.1182/blood-2011-08-372425 10.1007/s13402-019-00469-5 10.1126/science.aar4060 10.1016/j.ejca.2017.02.013 10.1007/s12079-021-00646-y 10.1038/s41586-019-1456-0 10.1038/s41590-020-0728-z 10.3389/fimmu.2019.00252 10.1158/1078-0432.CCR-16-1700 10.1016/j.immuni.2007.11.011 10.1038/s41467-021-25475-w 10.1146/annurev-immunol-032713-120142 10.1523/jneurosci.23-07-02665.2003 10.1016/j.bbrep.2017.01.013 10.4049/jimmunol.164.4.2193 10.1126/scitranslmed.3001375 10.4049/jimmunol.175.12.7781 10.1016/j.blre.2018.04.005 10.3389/fimmu.2018.02985 10.1158/2326-6066.CIR-18-0367 10.1038/s41586-019-1593-5 10.1016/j.bbrc.2009.06.121 10.1038/nnano.2017.69 10.1073/pnas.92.9.3978 10.1182/blood-2019-122793 10.1182/blood-2008-03-143008 10.3389/fimmu.2019.01268 10.1007/s11302-006-9024-0 10.1016/j.cell.2010.07.044 10.1038/15233 10.1038/sj.emboj.7601415 10.1073/pnas.1710776114 10.1038/cdd.2014.86 10.1016/j.it.2017.12.005 10.1016/j.iotech.2022.1000705 10.1038/s41392-020-0121-2 10.1080/14712598.2022.2072209 10.1158/0008-5472.CAN-08-0186 10.1091/mbc.e13-01-0063 10.1016/j.celrep.2020.03.058 10.1126/science.2578228 10.4161/cc.10.1.14324 10.1126/science.aax0182 10.1371/journal.pone.0218897 10.1200/JCO.2020.38.15_suppl.3056 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Zhao, Song, Ma, Yan, Xie, Feng and Che. Copyright © 2022 Zhao, Song, Ma, Yan, Xie, Feng and Che 2022 Zhao, Song, Ma, Yan, Xie, Feng and Che |
| Copyright_xml | – notice: Copyright © 2022 Zhao, Song, Ma, Yan, Xie, Feng and Che. – notice: Copyright © 2022 Zhao, Song, Ma, Yan, Xie, Feng and Che 2022 Zhao, Song, Ma, Yan, Xie, Feng and Che |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2022.757480 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_37072b3a1bb5499ab0d2584e5645c3db PMC9446754 10_3389_fimmu_2022_757480 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c442t-f3c32731fcb97f67308ee55c6174d88a4ab530f8cc96c8a9fb3805e2508d45ba3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000873989200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:53:12 EDT 2025 Thu Aug 21 18:22:36 EDT 2025 Thu Sep 04 18:09:23 EDT 2025 Tue Nov 18 22:12:44 EST 2025 Sat Nov 29 03:27:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-f3c32731fcb97f67308ee55c6174d88a4ab530f8cc96c8a9fb3805e2508d45ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Alessandro Poggi, San Martino Hospital (IRCCS), Italy Reviewed by: Sukhbir Kaur, National Institutes of Health (NIH), United States; David Soto-Pantoja, Wake Forest School of Medicine, United States This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology |
| OpenAccessLink | https://doaj.org/article/37072b3a1bb5499ab0d2584e5645c3db |
| PMID | 36081498 |
| PQID | 2712846254 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_37072b3a1bb5499ab0d2584e5645c3db pubmedcentral_primary_oai_pubmedcentral_nih_gov_9446754 proquest_miscellaneous_2712846254 crossref_citationtrail_10_3389_fimmu_2022_757480 crossref_primary_10_3389_fimmu_2022_757480 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-22 |
| PublicationDateYYYYMMDD | 2022-08-22 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in immunology |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Barclay (B13) 2006; 6 Liu (B11) 2020 Feng (B22) 2020; 152 Qi (B129) 2020; 136 Liu (B54) 2015; 21 Logtenberg (B114) 2019; 25 Azcutia (B44) 2013; 24 Yuan (B105) 2017; 12 Liu (B101) 2015; 10 Mehta (B128) 2021; 138 Stefanidakis (B28) 2008; 112 Bamberger (B141) 2003; 23 Van (B48) 2012; 188 Zhao (B84) 2011; 108 Burger (B12) 2012; 119 Du (B139) 2021; 29 Foppoli (B133) 2015; 94 Low (B39) 1985; 227 Chen (B137) 2022 Barclay (B10) 2014; 32 Chow (B132) 2020; 38 Van (B56) 2008; 181 Miller (B109) 2019; 14 Poels (B4) 1986; 76 Cham (B53) 2020; 31 Lee (B69) 2016; 90 Tulasne (B19) 2001; 98 Russ (B46) 2018; 32 Topalian (B74) 2020; 367 Sallman (B125) 2019; 134 Jalil (B79) 2020; 3 Willingham (B87) 2012; 109 Murakami (B36) 2014; 21 Jaiswal (B94) 2010; 31 Zhao (B60) 2017; 8 Cooper (B72) 1995; 92 Wang (B135) 2022; 19 Bratosin (B41) 2011 Brown (B6) 2001; 11 Engelbertsen (B23) 2019; 9 Olsson (B32) 2008; 112 Németh (B96) 2019; 10 Crayne (B59) 2019; 10 Ingram (B119) 2017; 114 Wilson (B126) 2021; 138 Tsai (B16) 2008; 180 Fenalti (B3) 2021; 12 Chao (B104) 2010; 2 Ben Mkaddem (B95) 2019; 10 Shi (B123) 2020; 5 Wang (B1) 2021; 10 Huang (B58) 2017; 41 Leclair (B20) 2020; 111 Lamy (B82) 2003; 278 Jeanne (B90) 2021; 13 Zhong (B138) 2020; 13 Chao (B93) 2011; 118 Ribas (B75) 2018; 359 Kim (B131) 2020; 136 Autio (B134) 2020; 26 Ticchioni (B47) 1997; 158 Latour (B52) 2001; 167 Petrova (B116) 2017; 23 Bald (B68) 2020; 21 Lindberg (B2) 1993; 123 Bell (B63) 2016; 12 Vernon-Wilson (B15) 2000; 30 Kaur (B29) 2021 Brooke (B25) 2004; 173 Burton (B83) 2009; 16 Bresser (B115) 2022; 11 Huang (B122) 2021; 13 Veillette (B107) 2018; 39 Piccio (B27) 2005; 105 Oldenborg (B33) 2000; 288 Dheilly (B124) 2017; 25 Liu (B70) 2004; 172 Gao (B89) 2017; 8 Feng (B86) 2020; 152 Maute (B130) 2022; 13 Ma (B103) 2020; 18 Sarfati (B9) 2008; 9 Cooper (B98) 2001; 97 Nilsson (B43) 2009; 387 Kaur (B100) 2020; 3 Kaur (B31) 2011; 10 Demeure (B51) 2000; 164 Ni (B121) 2020; 142 Hatherley (B24) 2008; 31 Park (B35) 2008; 15 Stirnemann (B40) 2017; 18 Zhao (B113) 2017; 9 Meng (B127) 2019; 134 Zhao (B92) 2012; 109 Leclair (B21) 2014; 9 Nath (B64) 2018; 9 Przewoznik (B67) 2012; 35 von Roemeling (B106) 2020; 11 Oronsky (B112) 2016; 8 Ferlin (B136) 2021; 70 Weiskopf (B61) 2017; 76 Nath (B65) 2019; 7 Kim (B108) 2010; 363 Kobayashi (B34) 2007; 27 Mateo (B81) 2002; 100 Demaria (B77) 2019; 574 Bouguermouh (B50) 2008; 180 Jaiswal (B8) 2009; 138 Rodríguez-Jiménez (B55) 2019; 10 Isenberg (B17) 2009; 284 Chen (B102) 2017; 544 Simhadri (B37) 2012; 119 Pierson (B66) 1996; 87 van Beek (B14) 2005; 175 Hanisch (B26) 2007; 10 Feng (B45) 2019; 19 Van (B73) 2006; 25 Kojima (B140) 2016; 536 Mentlik James (B97) 2013; 4 Fisher (B117) 2008; 68 Hayat (B18) 2020; 43 Wang (B110) 2020; 8 Floden (B142) 2011; 25 Yu (B111) 2020 Chen (B118) 2022; 10 Kusakari (B42) 2008; 121 Parkos (B71) 1996; 132 McMichael (B99) 2017; 6 Zhang (B120) 2021; 81 Lee (B57) 2016; 57 Mateo (B80) 1999; 5 Avice (B49) 2000; 165 Liu (B7) 2001; 276 Chao (B88) 2010; 142 Zhao (B91) 2012; 119 Nguyen (B30) 2017; 9 Barkal (B85) 2018; 19 Velliquette (B38) 2019; 59 Cheng (B5) 2012; 41 Barkal (B78) 2019; 572 Ferrari (B62) 2007; 3 Advani (B76) 2018; 379 |
| References_xml | – volume: 119 year: 2012 ident: B91 article-title: Is targeting of CD47-SIRPα enough for treating hematopoietic malignancy publication-title: Blood doi: 10.1182/blood-2011-11-391367 – volume: 4 year: 2013 ident: B97 article-title: Combination immune therapies to enhance anti-tumor responses by NK cells publication-title: Front Immunol doi: 10.3389/fimmu.2013.00481 – start-page: 28 year: 2011 ident: B41 article-title: A cytometric study of the red blood cells in gaucher disease reveals their abnormal shape that may be involved in increased erythrophagocytosis publication-title: Cytom Part B Clin Cytom doi: 10.1002/cyto.b.20539 – volume: 10 year: 2019 ident: B59 article-title: The immunology of macrophage activation syndrome publication-title: Front Immunol doi: 10.3389/fimmu.2019.00119 – volume: 59 year: 2019 ident: B38 article-title: Monoclonal anti-CD47 interference in red cell and platelet testing publication-title: Transfusion doi: 10.1111/trf.15033 – volume: 6 year: 2017 ident: B99 article-title: Activation of the FcgammaReceptorIIIa on human natural killer cells leads to increased expression of functional interleukin-21 receptor publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1312045 – volume: 180 start-page: 989 year: 2008 ident: B16 article-title: Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells publication-title: J Cell Biol doi: 10.1083/jcb.200708043 – volume: 25 year: 2017 ident: B124 article-title: Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies publication-title: Mol Ther doi: 10.1016/j.ymthe.2016.11.006 – volume: 112 year: 2008 ident: B28 article-title: Endothelial CD47 interaction with SIRPγ is required for human T-cell transendothelial migration under shear flow conditions in vitro publication-title: Blood doi: 10.1182/blood-2008-01-134429 – volume: 284 year: 2009 ident: B17 article-title: Differential interactions of thrombospondin-1, -2, and -4 with CD47 and effects on cGMP signaling and ischemic injury responses publication-title: J Biol Chem doi: 10.1074/jbc.M804860200 – year: 2020 ident: B11 article-title: Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy publication-title: JCI Insight doi: 10.1172/jci.insight.134728 – volume: 142 year: 2020 ident: B121 article-title: Nanoscale metal–organic framework Co-delivers TLR-7 agonists and anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy publication-title: J Am Chem Soc doi: 10.1021/jacs.0c05039 – volume: 6 year: 2006 ident: B13 article-title: The SIRP family of receptors and immune regulation publication-title: Nat Rev Immunol doi: 10.1038/nri1859 – volume: 15 start-page: 192 year: 2008 ident: B35 article-title: Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4402242 – volume: 9 start-page: e98358 year: 2014 ident: B21 article-title: CD47-independent effects mediated by the TSP-derived 4N1K peptide publication-title: PloS One doi: 10.1371/journal.pone.0098358 – volume: 31 year: 2008 ident: B24 article-title: Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47 publication-title: Mol Cell doi: 10.1016/j.molcel.2008.05.026 – volume: 10 year: 2015 ident: B101 article-title: Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential publication-title: PloS One doi: 10.1371/journal.pone.0137345 – volume: 8 year: 2017 ident: B60 article-title: What else can CD39 tell us publication-title: Front Immunol doi: 10.3389/fimmu.2017.00727 – volume: 10 start-page: 1 year: 2022 ident: B118 article-title: Delivery of CD47 blocker SIRPα-fc by CAR-T cells enhances antitumor efficacy publication-title: J Immunother Cancer doi: 10.1136/jitc-2021-003737 – volume: 173 year: 2004 ident: B25 article-title: Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family publication-title: J Immunol doi: 10.4049/jimmunol.173.4.2562 – volume: 123 year: 1993 ident: B2 article-title: Molecular cloning of integrin-associated protein: An immunoglobulin family member with multiple membrane-spanning domains implicated in α(v)β3- dependent ligand binding publication-title: J Cell Biol doi: 10.1083/jcb.123.2.485 – volume: 138 year: 2009 ident: B8 article-title: CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis publication-title: Cell doi: 10.1016/j.cell.2009.05.046 – volume: 12 year: 2016 ident: B63 article-title: Designer exosomes as next-generation cancer immunotherapy publication-title: Nanomed Nanotechnol Biol Med doi: 10.1016/j.nano.2015.09.011 – volume: 152 year: 2020 ident: B22 article-title: CD47: The next checkpoint target for cancer immunotherapy publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2020.103014 – volume: 363 year: 2010 ident: B108 article-title: Nanomedicine publication-title: N Engl J Med doi: 10.1056/NEJMra0912273 – volume: 11 start-page: 1 year: 2020 ident: B106 article-title: Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity publication-title: Nat Commun doi: 10.1038/s41467-020-15129-8 – volume: 136 year: 2020 ident: B131 article-title: ALX148, a CD47 blocker, in combination with rituximab in patients with non-Hodgkin lymphoma publication-title: Blood doi: 10.1182/blood-2020-135941 – year: 2020 ident: B111 article-title: The development of small-molecule inhibitors targeting CD47 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2020.11.003 – volume: 97 year: 2001 ident: B98 article-title: Human natural killer cells: A unique innate immunoregulatory role for the CD56bright subset publication-title: Blood doi: 10.1182/blood.V97.10.3146 – volume: 98 year: 2001 ident: B19 article-title: C-terminal peptide of thrombospondin-1 induces platelet aggregation through the fc receptor γ-chain-associated signaling pathway and by agglutination publication-title: Blood doi: 10.1182/blood.V98.12.3346 – volume: 70 year: 2021 ident: B136 article-title: Selective CD47 targeting with a bispecific antibody publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-020-02812-4 – volume: 165 year: 2000 ident: B49 article-title: CD47 ligation selectively inhibits the development of human naive T cells into Th1 effectors publication-title: J Immunol doi: 10.4049/jimmunol.165.8.4624 – volume: 18 year: 2017 ident: B40 article-title: A review of gaucher disease pathophysiology, clinical presentation and treatments publication-title: Int J Mol Sci doi: 10.3390/ijms18020441 – volume: 16 year: 2009 ident: B83 article-title: The role of bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death publication-title: Cell Death Differ doi: 10.1038/cdd.2008.185 – volume: 379 year: 2018 ident: B76 article-title: CD47 blockade by Hu5F9-G4 and rituximab in non-hodgkin’s lymphoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1807315 – volume: 13 start-page: 57 year: 2020 ident: B138 article-title: Targeting tumor microenvironment by small-molecule inhibitors publication-title: Transl Oncol doi: 10.1016/j.tranon.2019.10.001 – volume: 29 year: 2021 ident: B139 article-title: A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC publication-title: Mol Ther doi: 10.1016/j.ymthe.2021.01.006 – volume: 41 year: 2012 ident: B5 article-title: Molecular pathology of lung cancer: Key to personalized medicine publication-title: Chin J Pathol doi: 10.3760/cma.i.issn.0529-5807.2012.10.019 – volume: 121 year: 2008 ident: B42 article-title: Trans-endocytosis of CD47 and SHPS-1 and its role in regulation of the CD47-SHPS-1 system publication-title: J Cell Sci doi: 10.1242/jcs.025015 – volume: 138 year: 2021 ident: B128 article-title: Lemzoparlimab, a differentiated anti-CD47 antibody in combination with rituximab in relapsed and refractory non-hodgkin’s lymphoma: Initial clinical results publication-title: Blood doi: 10.1182/blood-2021-150606 – volume: 172 year: 2004 ident: B70 article-title: Peptide-mediated inhibition of neutrophil transmigration by blocking CD47 interactions with signal regulatory protein α publication-title: J Immunol doi: 10.4049/jimmunol.172.4.2578 – volume: 13 year: 2021 ident: B90 article-title: Targeting ovarian carcinoma with TSP-1:CD47 antagonist TAX2 activates anti-tumor immunity publication-title: Cancers (Basel) doi: 10.3390/cancers13195019 – volume: 10 year: 2019 ident: B95 article-title: Understanding fc receptor involvement in inflammatory diseases: From mechanisms to new therapeutic tools publication-title: Front Immunol doi: 10.3389/fimmu.2019.00811 – volume: 11 year: 2001 ident: B6 article-title: Integrin-associated protein (CD47) and its ligands publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(00)01906-1 – volume: 132 year: 1996 ident: B71 article-title: CD47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia publication-title: J Cell Biol doi: 10.1083/jcb.132.3.437 – volume: 81 year: 2021 ident: B120 article-title: Abstract 1611: A novel anti-human CD47 antibody prodrug as cancer therapeutics to lower on-target side effects publication-title: Cancer Res doi: 10.1158/1538-7445.AM2021-1611 – volume: 278 year: 2003 ident: B82 article-title: CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.M301869200 – volume: 11 year: 2022 ident: B115 article-title: . QPCTL regulates macrophage and monocyte abundance and inflammatory signatures in the tumor microenvironment publication-title: Oncoimmunology doi: 10.1080/2162402X.2022.2049486 – volume: 3 year: 2020 ident: B100 article-title: Preclinical and clinical development of therapeutic antibodies targeting functions of CD47 in the tumor microenvironment publication-title: Antib Ther doi: 10.1093/abt/tbaa017 – volume: 138 year: 2021 ident: B126 article-title: AO-176, a differentiated clinical-stage anti-CD47 antibody, demonstrates potent anti-tumor activity across multiple preclinical models of b cell neoplasms publication-title: Blood doi: 10.1182/blood-2021-152896 – volume: 276 year: 2001 ident: B7 article-title: The role of CD47 in neutrophil transmigration publication-title: J Biol Chem doi: 10.1074/jbc.M104138200 – volume: 94 year: 2015 ident: B133 article-title: Gamma-delta t-cell lymphomas publication-title: Eur J Haematol doi: 10.1111/ejh.12439 – volume: 152 start-page: 103014 year: 2020 ident: B86 article-title: CD47: the next checkpoint target for cancer immunotherapy publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2020.103014 – volume: 188 year: 2012 ident: B48 article-title: CD47 high expression on CD4 effectors identifies functional long-lived memory T cell progenitors publication-title: J Immunol doi: 10.4049/jimmunol.1102702 – volume: 25 year: 2011 ident: B142 article-title: Microglia demonstrate age-dependent interaction with amyloid-β fibrils publication-title: J Alzheimer’s Dis doi: 10.3233/JAD-2011-101014 – volume: 10 year: 2021 ident: B1 article-title: An antitumor peptide RS17-targeted CD47, design, synthesis, and antitumor activity publication-title: Cancer Med doi: 10.1002/cam4.3768 – volume: 134 year: 2019 ident: B125 article-title: The first-in-Class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: Ongoing phase 1b results publication-title: Blood doi: 10.1182/blood-2019-126271 – volume: 57 year: 2016 ident: B57 article-title: Upregulation of CD47 in regulatory T cells in atopic dermatitis publication-title: Yonsei Med J doi: 10.3349/ymj.2016.57.6.1435 – volume: 90 year: 2016 ident: B69 article-title: CD47 plays a role as a negative regulator in inducing protective immune responses to vaccination against influenza virus publication-title: J Virol doi: 10.1128/JVI.00605-16 – volume: 19 year: 2019 ident: B45 article-title: Phagocytosis checkpoints as new targets for cancer immunotherapy publication-title: Nat Rev Cancer doi: 10.1038/s41568-019-0183-z – volume: 9 start-page: 4 year: 2017 ident: B113 article-title: The immunomodulatory anticancer agent, RRx-001, induces an interferon response through epigenetic induction of viral mimicry publication-title: Clin Epigenet doi: 10.1186/s13148-017-0312-z – volume: 19 year: 2022 ident: B135 article-title: Recent advances of tumor therapy based on the CD47-SIRPα axis publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.2c00073 – volume: 105 year: 2005 ident: B27 article-title: Adhesion of human T cells to antigen-presenting cells through SIRPβ2-CD47 interaction costimulates T-cell proliferation publication-title: Blood doi: 10.1182/blood-2004-07-2823 – volume: 181 year: 2008 ident: B56 article-title: Cutting edge: CD47 controls the In vivo proliferation and homeostasis of peripheral CD4 + CD25 + Foxp3 + regulatory T cells that express CD103 publication-title: J Immunol doi: 10.4049/jimmunol.181.8.5204 – volume: 109 year: 2012 ident: B87 article-title: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1121623109 – volume: 8 start-page: 53 year: 2016 ident: B112 article-title: RRx-001, an epigenetic-based radio- and chemosensitizer, has vascular normalizing effects on SCCVII and U87 tumors publication-title: Clin Epigenet doi: 10.1186/s13148-016-0220-7 – volume: 158 year: 1997 ident: B47 article-title: Integrin-associated protein (CD47) is a comitogenic molecule on CD3-activated human T cells publication-title: J Immunol doi: 10.4049/jimmunol.158.2.677 – volume: 100 year: 2002 ident: B81 article-title: Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: Link between phosphatidylserine exposure and cytoskeleton organization publication-title: Blood doi: 10.1182/blood-2001-12-0217 – volume: 76 year: 1986 ident: B4 article-title: Monoclonal antibody against human ovarian tumor-associated antigens publication-title: J Natl Cancer Inst – volume: 87 year: 1996 ident: B66 article-title: Human natural killer cell expansion is regulated by thrombospondin- mediated activation of transforming growth factor-beta 1 and independent accessory cell-derived contact and soluble factors publication-title: Blood doi: 10.1182/blood.V87.1.180.bloodjournal871180 – volume: 136 year: 2020 ident: B129 article-title: A phase I/IIa study of lemzoparlimab, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): Initial phase I results publication-title: Blood doi: 10.1182/blood-2020-134391 – volume: 19 start-page: 76 year: 2018 ident: B85 article-title: Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy publication-title: Nat Immunol doi: 10.1038/s41590-017-0004-z – volume: 35 year: 2012 ident: B67 article-title: Recruitment of natural killer cells in advanced stages of endogenously arising b-cell lymphoma publication-title: J Immunother doi: 10.1097/CJI.0b013e318247440a – volume: 8 start-page: 1 year: 2020 ident: B110 article-title: CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-000905 – volume: 10 year: 2007 ident: B26 article-title: Microglia: Active sensor and versatile effector cells in the normal and pathologic brain publication-title: Nat Neurosci doi: 10.1038/nn1997 – volume: 13 start-page: 141 year: 2021 ident: B122 article-title: Time-programmed delivery of sorafenib and anti-CD47 antibody via a double-Layer-Gel matrix for postsurgical treatment of breast cancer publication-title: Nano-Micro Lett doi: 10.1007/s40820-021-00647-x – volume: 111 year: 2020 ident: B20 article-title: Peptide analogues PKHB1 and 4N1K induce cell death through CD47-independent mechanisms publication-title: Cancer Sci doi: 10.1111/cas.14310 – volume: 31 year: 2010 ident: B94 article-title: Macrophages as mediators of tumor immunosurveillance publication-title: Trends Immunol doi: 10.1016/j.it.2010.04.001 – volume: 108 year: 2011 ident: B84 article-title: CD47-signal regulatory protein- (SIRP) interactions form a barrier for antibody-mediated tumor cell destruction publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1106550108 – volume: 9 start-page: 10608 year: 2019 ident: B23 article-title: Increased lymphocyte activation and atherosclerosis in CD47-deficient mice publication-title: Sci Rep doi: 10.1038/s41598-019-46942-x – volume: 26 year: 2020 ident: B134 article-title: Probody therapeutics: An emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-19-1457 – volume: 9 year: 2008 ident: B9 article-title: CD47 in the immune response: Role of thrombospondin and SIRP-α reverse signaling publication-title: Curr Drug Targets doi: 10.2174/138945008785909310 – volume: 21 year: 2015 ident: B54 article-title: CD47 blockade triggers T cell–mediated destruction of immunogenic tumors publication-title: Nat Med doi: 10.1038/nm.3931 – volume: 8 year: 2017 ident: B89 article-title: CD47 deficiency in tumor stroma promotes tumor progression by enhancing angiogenesis publication-title: Oncotarget doi: 10.18632/oncotarget.9899 – volume: 536 start-page: 86 year: 2016 ident: B140 article-title: CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis publication-title: Nature doi: 10.1038/nature18935 – volume: 25 year: 2019 ident: B114 article-title: Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy publication-title: Nat Med doi: 10.1038/s41591-019-0356-z – volume: 30 year: 2000 ident: B15 article-title: CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1 publication-title: Eur J Immunol doi: 10.1002/1521-4141(2000)30:8<2130::AID-IMMU2130>3.0.CO;2-8 – volume: 3 year: 2020 ident: B79 article-title: Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-SIRPα structure–function publication-title: Antib Ther doi: 10.1093/abt/tbaa006 – volume: 118 year: 2011 ident: B93 article-title: Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy publication-title: Blood doi: 10.1182/blood-2011-02-338020 – volume: 41 year: 2017 ident: B58 article-title: Treg cells protect dopaminergic neurons against MPP + neurotoxicity via CD47-SIRPA interaction publication-title: Cell Physiol Biochem doi: 10.1159/000464388 – volume: 18 year: 2020 ident: B103 article-title: Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential publication-title: J Nanobiotechnol doi: 10.1186/s12951-020-0571-2 – volume: 119 year: 2012 ident: B12 article-title: CD47 functions as a molecular switch for erythrocyte phagocytosis publication-title: Blood doi: 10.1182/blood-2011-10-386805 – volume: 167 year: 2001 ident: B52 article-title: Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-α: Down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation publication-title: J Immunol doi: 10.4049/jimmunol.167.5.2547 – volume: 180 year: 2008 ident: B50 article-title: CD47 expression on T cell is a self-control negative regulator of type 1 immune response publication-title: J Immunol doi: 10.4049/jimmunol.180.12.8073 – volume: 288 year: 2000 ident: B33 article-title: Role of CD47 as a marker of self on red blood cells publication-title: Science (80-) doi: 10.1126/science.288.5473.2051 – volume: 109 year: 2012 ident: B92 article-title: On the mechanism of CD47 targeting in cancer publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1209265109 – volume: 544 year: 2017 ident: B102 article-title: SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via mac-1 integrin publication-title: Nature doi: 10.1038/nature22076 – volume: 119 year: 2012 ident: B37 article-title: Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells publication-title: Blood doi: 10.1182/blood-2011-08-372425 – volume: 43 start-page: 19 year: 2020 ident: B18 article-title: CD47: Role in the immune system and application to cancer therapy publication-title: Cell Oncol doi: 10.1007/s13402-019-00469-5 – volume: 359 year: 2018 ident: B75 article-title: Cancer immunotherapy using checkpoint blockade publication-title: Science (80-) doi: 10.1126/science.aar4060 – volume: 76 year: 2017 ident: B61 article-title: Cancer immunotherapy targeting the CD47/SIRPα axis publication-title: Eur J Cancer doi: 10.1016/j.ejca.2017.02.013 – year: 2021 ident: B29 article-title: CD47 interactions with exportin-1 limit the targeting of m7G-modified RNAs to extracellular vesicles publication-title: J Cell Commun Signal doi: 10.1007/s12079-021-00646-y – volume: 572 year: 2019 ident: B78 article-title: CD24 signalling through macrophage siglec-10 is a target for cancer immunotherapy publication-title: Nature doi: 10.1038/s41586-019-1456-0 – volume: 21 year: 2020 ident: B68 article-title: The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies publication-title: Nat Immunol doi: 10.1038/s41590-020-0728-z – volume: 10 year: 2019 ident: B96 article-title: Importance of fc receptor γ-chain ITAM tyrosines in neutrophil activation and in vivo autommune arthritis publication-title: Front Immunol doi: 10.3389/fimmu.2019.00252 – volume: 23 year: 2017 ident: B116 article-title: TTI-621 (SIRPαFc): A CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-16-1700 – volume: 27 year: 2007 ident: B34 article-title: TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells publication-title: Immunity doi: 10.1016/j.immuni.2007.11.011 – volume: 12 start-page: 5218 year: 2021 ident: B3 article-title: Structure of the human marker of self 5-transmembrane receptor CD47 publication-title: Nat Commun doi: 10.1038/s41467-021-25475-w – volume: 32 start-page: 25 year: 2014 ident: B10 article-title: The interaction between signal regulatory protein alpha (SIRP α) and CD47: Structure, function, and therapeutic target publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032713-120142 – volume: 23 year: 2003 ident: B141 article-title: A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation publication-title: J Neurosci doi: 10.1523/jneurosci.23-07-02665.2003 – volume: 9 year: 2017 ident: B30 article-title: Investigation of the adaptor protein PLIC-2 in multiple pathways publication-title: Biochem Biophys Rep doi: 10.1016/j.bbrep.2017.01.013 – volume: 164 year: 2000 ident: B51 article-title: CD47 engagement inhibits cytokine production and maturation of human dendritic cells publication-title: J Immunol doi: 10.4049/jimmunol.164.4.2193 – volume: 2 year: 2010 ident: B104 article-title: Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3001375 – volume: 175 year: 2005 ident: B14 article-title: Signal regulatory proteins in the immune system publication-title: J Immunol doi: 10.4049/jimmunol.175.12.7781 – volume: 32 year: 2018 ident: B46 article-title: Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review publication-title: Blood Rev doi: 10.1016/j.blre.2018.04.005 – volume: 9 year: 2018 ident: B64 article-title: CD47 expression in natural killer cells regulates homeostasis and modulates immune response to lymphocytic choriomeningitis virus publication-title: Front Immunol doi: 10.3389/fimmu.2018.02985 – volume: 7 year: 2019 ident: B65 article-title: Natural killer cell recruitment and activation are regulated by cd47 expression in the tumor microenvironment publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-18-0367 – volume: 574 start-page: 45 year: 2019 ident: B77 article-title: Harnessing innate immunity in cancer therapy publication-title: Nature doi: 10.1038/s41586-019-1593-5 – volume: 387 start-page: 58 year: 2009 ident: B43 article-title: CD47 promotes both phosphatidylserine-independent and phosphatidylserine-dependent phagocytosis of apoptotic murine thymocytes by non-activated macrophages publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2009.06.121 – volume: 12 year: 2017 ident: B105 article-title: Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.69 – volume: 92 year: 1995 ident: B72 article-title: Transendothelial migration of neutrophils involves integrin-associated protein (CD47) publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.92.9.3978 – volume: 134 year: 2019 ident: B127 article-title: TJC4, a differentiated anti-CD47 antibody with novel epitope and RBC sparing properties publication-title: Blood doi: 10.1182/blood-2019-122793 – volume: 112 year: 2008 ident: B32 article-title: CD47 on experimentally senescent murine RBCs inhibits phagocytosis following fcγ receptor-mediated but not scavenger receptor-mediated recognition by macrophages publication-title: Blood doi: 10.1182/blood-2008-03-143008 – volume: 10 year: 2019 ident: B55 article-title: Thrombospondin-1/CD47 interaction regulates Th17 and treg differentiation in psoriasis publication-title: Front Immunol doi: 10.3389/fimmu.2019.01268 – volume: 3 start-page: 99 year: 2007 ident: B62 article-title: Shaping immune responses through the activation of dendritic cells’ P2 receptors publication-title: Purinergic Signal doi: 10.1007/s11302-006-9024-0 – volume: 142 start-page: 699 year: 2010 ident: B88 article-title: Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma publication-title: Cell doi: 10.1016/j.cell.2010.07.044 – volume: 5 year: 1999 ident: B80 article-title: CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia publication-title: Nat Med doi: 10.1038/15233 – volume: 25 year: 2006 ident: B73 article-title: Expression of the self-marker CD47 on dendritic cells governs their trafficking to secondary lymphoid organs publication-title: EMBO J doi: 10.1038/sj.emboj.7601415 – volume: 114 start-page: 201710776 year: 2017 ident: B119 article-title: Localized CD47 blockade enhances immunotherapy for murine melanoma publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1710776114 – volume: 21 year: 2014 ident: B36 article-title: CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition publication-title: Cell Death Differ doi: 10.1038/cdd.2014.86 – volume: 39 year: 2018 ident: B107 article-title: SIRPα–CD47 immune checkpoint blockade in anticancer therapy publication-title: Trends Immunol doi: 10.1016/j.it.2017.12.005 – volume: 13 start-page: 100070 year: 2022 ident: B130 article-title: CD47–SIRPα-targeted therapeutics: Status and prospects publication-title: Immuno-Oncology Technol doi: 10.1016/j.iotech.2022.1000705 – volume: 5 start-page: 16 year: 2020 ident: B123 article-title: The identification of a CD47-blocking “hotspot” and design of a CD47/PD-L1 dual-specific antibody with limited hemagglutination publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-0121-2 – start-page: 1 year: 2022 ident: B137 article-title: Bispecific antibodies for immune cell retargeting against cancer publication-title: Expert Opin Biol Ther doi: 10.1080/14712598.2022.2072209 – volume: 68 year: 2008 ident: B117 article-title: Biological research in the evolution of cancer surgery: A personal perspective publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-0186 – volume: 24 year: 2013 ident: B44 article-title: CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions publication-title: Mol Biol Cell doi: 10.1091/mbc.e13-01-0063 – volume: 31 start-page: 107494 year: 2020 ident: B53 article-title: Immunotherapeutic blockade of CD47 inhibitory signaling enhances innate and adaptive immune responses to viral infection publication-title: Cell Rep doi: 10.1016/j.celrep.2020.03.058 – volume: 227 year: 1985 ident: B39 article-title: The role of hemoglobin denaturation and band 3 clustering in red blood cell aging publication-title: Science (80-) doi: 10.1126/science.2578228 – volume: 10 year: 2011 ident: B31 article-title: CD47 applies the brakes to angiogenesis via vascular endothelial growth factor receptor-2 publication-title: Cell Cycle doi: 10.4161/cc.10.1.14324 – volume: 367 year: 2020 ident: B74 article-title: Neoadjuvant checkpoint blockade for cancer immunotherapy publication-title: Science (80-) doi: 10.1126/science.aax0182 – volume: 14 year: 2019 ident: B109 article-title: Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors doi: 10.1371/journal.pone.0218897 – volume: 38 year: 2020 ident: B132 article-title: A phase I study of ALX148, a CD47 blocker, in combination with standard anticancer antibodies and chemotherapy regimens in patients with advanced malignancy publication-title: J Clin Oncol doi: 10.1200/JCO.2020.38.15_suppl.3056 |
| SSID | ssj0000493335 |
| Score | 2.4923005 |
| SecondaryResourceType | review_article |
| Snippet | CD47 is ubiquitously expressed on the surface of cells and plays a critical role in self-recognition. By interacting with SIRPα, TSP-1 and integrins, CD47... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 757480 |
| SubjectTerms | atherosclerosis cancer immunotherapy CD47 immune modulation Immunology immunotherapies SIRPα |
| Title | CD47 as a promising therapeutic target in oncology |
| URI | https://www.proquest.com/docview/2712846254 https://pubmed.ncbi.nlm.nih.gov/PMC9446754 https://doaj.org/article/37072b3a1bb5499ab0d2584e5645c3db |
| Volume | 13 |
| WOSCitedRecordID | wos000873989200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TuwwEB0BAonmiqdYLiAjUSEFgh-xU_IUBSAKQNtZtmOLRZBF7O6VaO63M44XlDTQ0LhIHMc5k2TOxJMzAHtU-cjjRcZd5bARLFPW0awyrDCCWhmaBNmHK3lzo_r98rZV6ivmhCV54ATcIZO5pJaZI2tjKGNsXlF0mj6qoDhW2fj2RdbTCqaeEu9ljIm0jIlRWHkYBi8vE4wHKT2QQvIoA9lyRI1ef4dkdlMkWz7nYgn-TMkiOU6TXIYZX6_AQiof-b4K9PSMS2JGxBAcEQ2Gboi0fqgiKc2bDGoyrBt16vc1uL84vzu9zKY1EDLHOR1ngTmGDOMoOFvKUODzqLwXwiHx4JVShhsrWB6Uc2XhlCmDZSoXHomNqriwhq3DXD2s_QYQHMj4QrDKs8ADMsOiohI7IiZKOmN7kH8Cot1UIDzWqXjWGChEDHWDoY4Y6oRhD_a_DnlN6hjfdT6JKH91jMLWzQY0t56aW_9k7h7sftpII65xdcPUfjgZaSqjq8VwjvdAdozXOWN3Tz14bCS1S4yKpeCbvzHFv7AYrzp-eKZ0C-bGbxO_DfPu33gwetuBWdlXO83diu31__MPFnbu-A |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD47+as+a+promising+therapeutic+target+in+oncology&rft.jtitle=Frontiers+in+immunology&rft.au=Zhao%2C+Hai&rft.au=Song%2C+Shuangshuang&rft.au=Ma%2C+Junwei&rft.au=Yan%2C+Zhiyong&rft.date=2022-08-22&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.757480&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2022_757480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |