Rolling Bearing Fault Diagnosis Method Based on Multisynchrosqueezing S Transform and Faster Dictionary Learning

Addressing the problem that it is difficult to extract the features of vibration signal and diagnose the fault of rolling bearing, we propose a novel diagnosis method combining multisynchrosqueezing S transform and faster dictionary learning (MSSST-FDL). Firstly, MSSST is adopted to transform vibrat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Shock and vibration Ročník 2021; číslo 1
Hlavní autori: Sun, Guodong, Hu, Ye, Wu, Bo, Zhou, Hongyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cairo Hindawi 2021
John Wiley & Sons, Inc
Wiley
Predmet:
ISSN:1070-9622, 1875-9203
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Addressing the problem that it is difficult to extract the features of vibration signal and diagnose the fault of rolling bearing, we propose a novel diagnosis method combining multisynchrosqueezing S transform and faster dictionary learning (MSSST-FDL). Firstly, MSSST is adopted to transform vibration signals into high-resolution time-frequency images. Then, the local binary pattern (LBP) operator is introduced to extract the low-dimensional texture features of time-frequency images, which improves the speed of fault recognition. Finally, nonnegative matrix factorization (NMF) with only one hyperparameter and nonnegative linear equation are used to solve the dictionary learning and feature coding, respectively. The feature coding is input into the classifier for training and recognition. Experiments show that our method performs well on the rolling bearing dataset of Case Western Reserve University (CWRU) and the Society for Machinery Failure Prevention Technology (MFPT). Further, the proposed method is applied to the loudspeaker pure-tone detection dataset, and the loudspeaker anomaly diagnosis is achieved. The diagnosis results verify that our method can meet the needs of practical engineering.
AbstractList Addressing the problem that it is difficult to extract the features of vibration signal and diagnose the fault of rolling bearing, we propose a novel diagnosis method combining multisynchrosqueezing S transform and faster dictionary learning (MSSST-FDL). Firstly, MSSST is adopted to transform vibration signals into high-resolution time-frequency images. Then, the local binary pattern (LBP) operator is introduced to extract the low-dimensional texture features of time-frequency images, which improves the speed of fault recognition. Finally, nonnegative matrix factorization (NMF) with only one hyperparameter and nonnegative linear equation are used to solve the dictionary learning and feature coding, respectively. The feature coding is input into the classifier for training and recognition. Experiments show that our method performs well on the rolling bearing dataset of Case Western Reserve University (CWRU) and the Society for Machinery Failure Prevention Technology (MFPT). Further, the proposed method is applied to the loudspeaker pure-tone detection dataset, and the loudspeaker anomaly diagnosis is achieved. The diagnosis results verify that our method can meet the needs of practical engineering.
Audience Academic
Author Wu, Bo
Sun, Guodong
Zhou, Hongyu
Hu, Ye
Author_xml – sequence: 1
  givenname: Guodong
  orcidid: 0000-0002-6756-7007
  surname: Sun
  fullname: Sun, Guodong
  organization: School of Mechanical EngineeringHubei University of TechnologyWuhanHubeiChinahbut.edu.cn
– sequence: 2
  givenname: Ye
  orcidid: 0000-0002-4927-8367
  surname: Hu
  fullname: Hu, Ye
  organization: School of Mechanical EngineeringHubei University of TechnologyWuhanHubeiChinahbut.edu.cn
– sequence: 3
  givenname: Bo
  orcidid: 0000-0001-7362-1607
  surname: Wu
  fullname: Wu, Bo
  organization: Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChinacas.cn
– sequence: 4
  givenname: Hongyu
  orcidid: 0000-0003-0359-0803
  surname: Zhou
  fullname: Zhou, Hongyu
  organization: School of Mechanical EngineeringHubei University of TechnologyWuhanHubeiChinahbut.edu.cn
BookMark eNp9kU1v1DAQhiNUJNrCjR8QiSOk9WfiHNtCodJWSFDOltce73qVtRfbK1R-PRNScUAC-TD-eN9nxjNnzUlMEZrmNSUXlEp5yQijl0rIfhzps-aUqkF2IyP8BPdkIN3YM_aiOStlRwiRvBenzeFLmqYQN-01mDzHW3Ocavs-mE1MJZT2Huo2ufbaFHBtiu09PofyGO02p_L9CPBzdn1tH7KJxae8b010SCkVMmJsDSma_NiukB9R-rJ57s1U4NVTPG--3X54uPnUrT5_vLu5WnVWCFY7t_aeApfecgYGrLQCiBudJHjojfeMKJBCemdHKpTyCno_GKBilMZZxc-bu4XrktnpQw57rEInE_Tvi5Q32uQa7AQasG9soIMDgskB1gSBg1NUKrF2PUHWm4V1yAm_XKrepWOOWL5mkgvBeT9wVF0sqo1BaIg-1WwsLgf7YHFSPuD9laKi51KODA3vFoPFVpYM_k-ZlOh5oHoeqH4aKMrZX3Ibqpn7i3nC9C_T28W0DdGZH-H_KX4Bx-ay1w
CitedBy_id crossref_primary_10_1088_1361_6501_ad356e
crossref_primary_10_1007_s10796_023_10371_z
crossref_primary_10_1088_1361_6501_adbd5d
crossref_primary_10_1109_ACCESS_2022_3232553
Cites_doi 10.1038/44565
10.1016/j.measurement.2020.108392
10.1155/2019/1531079
10.1109/JSEN.2020.3042182
10.1016/j.jsv.2010.11.019
10.1155/2019/9375437
10.1016/j.ymssp.2019.106587
10.1109/78.492555
10.1109/18.57199
10.1016/j.eswa.2011.02.008
10.1109/TII.2020.3030186
10.3390/s18051429
10.1002/env.3170050203
10.1016/j.knosys.2020.106507
10.1109/tpami.2002.1017623
10.1016/j.knosys.2019.105313
10.1109/tassp.1977.1162950
10.1016/j.ymssp.2013.09.003
10.1155/2017/5067651
10.1016/j.knosys.2019.07.008
10.1109/jsen.2019.2913006
10.1016/0031-3203(95)00067-4
10.1109/tie.2017.2745473
10.1109/18.923723
10.1109/tie.2018.2868296
10.1109/lsp.2004.839696
10.1109/tgrs.2015.2466660
10.1049/ji-3-2.1946.0074
10.1109/PHM-Chongqing.2018.00056
10.1190/1.1441328
10.1109/msp.2013.2265316
10.1109/jsen.2019.2910868
ContentType Journal Article
Copyright Copyright © 2021 Guodong Sun et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Guodong Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Guodong Sun et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Guodong Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1155/2021/8456991
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1875-9203
Editor Pan, Haiyang
Editor_xml – sequence: 1
  givenname: Haiyang
  surname: Pan
  fullname: Pan, Haiyang
ExternalDocumentID oai_doaj_org_article_e2022717de0c44eeb04887d81584bd60
A814635592
10_1155_2021_8456991
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51775177
GroupedDBID 0R~
123
4.4
5VS
8FE
8FG
AAFWJ
AAJEY
ABDBF
ABJCF
ABJNI
ACGFS
ACIWK
ADBBV
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
DU5
EAD
EAP
EBS
EMK
EPL
EST
ESX
FRP
GROUPED_DOAJ
HCIFZ
HZ~
I-F
IAO
IOS
ITC
KQ8
L6V
M7S
O9-
OK1
PIMPY
PROAC
PTHSS
RHU
RHW
RHX
TUS
~02
1OB
24P
AAMMB
AAYXX
ABUBZ
ACCMX
ACPQW
ACUHS
ADMLS
AEFGJ
AFFHD
AFRHK
AGIAB
AGXDD
AIDQK
AIDYY
ALUQN
CAG
CITATION
COF
EJD
FEDTE
H13
IL9
IPNFZ
MET
MIO
PHGZM
PHGZT
PQGLB
RIG
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c442t-dbff1e35fc32eaec5c4e0d9d50aec6aff208e545fdc91488f8e6f7ae1495adc83
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669008800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9622
IngestDate Tue Oct 14 19:02:40 EDT 2025
Fri Jul 25 09:42:13 EDT 2025
Tue Nov 04 18:14:32 EST 2025
Sat Nov 29 02:36:14 EST 2025
Tue Nov 18 22:16:02 EST 2025
Sun Jun 02 18:54:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-dbff1e35fc32eaec5c4e0d9d50aec6aff208e545fdc91488f8e6f7ae1495adc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6756-7007
0000-0001-7362-1607
0000-0003-0359-0803
0000-0002-4927-8367
OpenAccessLink https://www.proquest.com/docview/2534433673?pq-origsite=%requestingapplication%
PQID 2534433673
PQPubID 2037353
ParticipantIDs doaj_primary_oai_doaj_org_article_e2022717de0c44eeb04887d81584bd60
proquest_journals_2534433673
gale_infotracacademiconefile_A814635592
crossref_primary_10_1155_2021_8456991
crossref_citationtrail_10_1155_2021_8456991
hindawi_primary_10_1155_2021_8456991
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Cairo
PublicationPlace_xml – name: Cairo
PublicationTitle Shock and vibration
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_10_2
e_1_2_9_34_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_32_2
Cohen L. (e_1_2_9_11_2) 1995
Hoyer P. O. (e_1_2_9_30_2) 2004; 5
e_1_2_9_14_2
Classen T. A. (e_1_2_9_37_2) 1980; 35
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_16_2
Yu X. (e_1_2_9_26_2) 2015; 40
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_39_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_21_2
Loparo K. A. (e_1_2_9_33_2) 2013
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_22_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_1_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
Sun G. D. (e_1_2_9_41_2) 2020; 8
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – ident: e_1_2_9_25_2
  doi: 10.1038/44565
– ident: e_1_2_9_28_2
  doi: 10.1016/j.measurement.2020.108392
– ident: e_1_2_9_27_2
  doi: 10.1155/2019/1531079
– ident: e_1_2_9_21_2
  doi: 10.1109/JSEN.2020.3042182
– ident: e_1_2_9_22_2
  doi: 10.1016/j.jsv.2010.11.019
– ident: e_1_2_9_19_2
  doi: 10.1155/2019/9375437
– ident: e_1_2_9_1_2
  doi: 10.1016/j.ymssp.2019.106587
– ident: e_1_2_9_12_2
– volume: 8
  year: 2020
  ident: e_1_2_9_41_2
  article-title: Data-driven fault diagnosis method based on second-order time-reassigned multisynchrosqueezing transform and evenly mini-batch training
  publication-title: IEEE Access
– volume: 5
  start-page: 1457
  year: 2004
  ident: e_1_2_9_30_2
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_9_2
  doi: 10.1109/78.492555
– ident: e_1_2_9_10_2
  doi: 10.1109/18.57199
– ident: e_1_2_9_23_2
  doi: 10.1016/j.eswa.2011.02.008
– ident: e_1_2_9_20_2
  doi: 10.1109/TII.2020.3030186
– ident: e_1_2_9_34_2
– volume-title: Bearing Data Center
  year: 2013
  ident: e_1_2_9_33_2
– ident: e_1_2_9_17_2
  doi: 10.3390/s18051429
– ident: e_1_2_9_24_2
  doi: 10.1002/env.3170050203
– ident: e_1_2_9_29_2
  doi: 10.1016/j.knosys.2020.106507
– ident: e_1_2_9_32_2
  doi: 10.1109/tpami.2002.1017623
– ident: e_1_2_9_3_2
  doi: 10.1016/j.knosys.2019.105313
– ident: e_1_2_9_7_2
  doi: 10.1109/tassp.1977.1162950
– ident: e_1_2_9_39_2
  doi: 10.1016/j.ymssp.2013.09.003
– ident: e_1_2_9_40_2
  doi: 10.1155/2017/5067651
– volume-title: Time-Frequency Analysis: Theory and Applications
  year: 1995
  ident: e_1_2_9_11_2
– ident: e_1_2_9_2_2
  doi: 10.1016/j.knosys.2019.07.008
– ident: e_1_2_9_18_2
  doi: 10.1109/jsen.2019.2913006
– ident: e_1_2_9_31_2
  doi: 10.1016/0031-3203(95)00067-4
– ident: e_1_2_9_5_2
  doi: 10.1109/tie.2017.2745473
– ident: e_1_2_9_36_2
  doi: 10.1109/18.923723
– ident: e_1_2_9_15_2
  doi: 10.1109/tie.2018.2868296
– ident: e_1_2_9_35_2
  doi: 10.1109/lsp.2004.839696
– ident: e_1_2_9_14_2
  doi: 10.1109/tgrs.2015.2466660
– ident: e_1_2_9_6_2
  doi: 10.1049/ji-3-2.1946.0074
– volume: 35
  start-page: 276
  year: 1980
  ident: e_1_2_9_37_2
  article-title: The wigner distribution-a tool for time-frequency signal analysis, part ii: discrete-time signals
  publication-title: Philips Journal of Research
– ident: e_1_2_9_38_2
  doi: 10.1109/PHM-Chongqing.2018.00056
– ident: e_1_2_9_8_2
  doi: 10.1190/1.1441328
– ident: e_1_2_9_13_2
  doi: 10.1109/msp.2013.2265316
– ident: e_1_2_9_16_2
– ident: e_1_2_9_4_2
  doi: 10.1109/jsen.2019.2910868
– volume: 40
  year: 2015
  ident: e_1_2_9_26_2
  article-title: Rolling bearing fault state recognition method based on hht and supervised sparse coding
  publication-title: Journal of China Coal Society
SSID ssj0005364
Score 2.2372587
Snippet Addressing the problem that it is difficult to extract the features of vibration signal and diagnose the fault of rolling bearing, we propose a novel diagnosis...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Analysis
Bearings
Coding
Datasets
Dictionaries
Energy
Failure prevention
Fault diagnosis
Feature extraction
Image resolution
Learning
Linear equations
Loudspeakers
Machine learning
Machinery
Mathematical analysis
Matrix methods
Methods
Neural networks
Object recognition
Roller bearings
Texture recognition
Transformations (mathematics)
Vibration
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BaxUxEA5SLOhBtCq-WiWHigdZmmyS3eTYpz48aBGs0lvIJrO2ULblvVel_npnstlHRaQXT8su2exsZpKZL0y-YWzfKQFKqabqojSVbgNUzkGqOm26Tugou8yl9-1je3RkT07c5xulvignbKQHHgfuAGoiuZNtAhG1BujI5NpkJXrOLjUZrYvWTWBqSu5QmTgKsY2oXFPXU8q7MYT25YHFuME5-Yczypz9m5V5-5Qw8c-zv9bo7HgWD9mDEjHyw1HSR-wODDvs_g0ewR22nfM44-oxuywk23yOFkzXRbg6X_N3Y0Ld2Yp_yhWj-RydV-IXA88HcFfXQzxFCQnV_qK3vvDjKaDlYUjYC_EpYDf5FERYXvPCy_r9Cfu6eH_89kNViipUOHz1ukpd30tQpo-qhgDRRA0iuWQE3jSh72thAcOqPkWHUMn2FpoeVUhIKqRo1VO2NVwM8IxxCTpaJxNI2hMRgKEMzn-LPj8g4E4wY2-m0fWxMI5T4Ytzn5GHMZ504YsuZuzVpvXlyLTxj3ZzUtSmDfFj5wdoNb5Yjb_NambsNanZ0yxGkWIohxHwx4gPyx_SziiGYq6esf1iCbdItTeZiS-rwMrXRmmNE6FVu_9D6OfsHn1y3ADaY1vr5RW8YHfjD7ST5cs8AX4DwkIFSg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEA5aLOiDaFU8rZKHig-ymGyS3eSxpx590CJa5d5CNpm1hbItt1el_vXO5HLnjyL6tGRJQrIzycyXnfnC2J5TApRSTdVFaSrdBqicg1R12nSd0FF2mUvv89v28NDO5-59IUkar_7CR2tH8Fy-tGjoHWWpX7eGIrc-HMx_RnKozBKFQEZUrqnrdXz7H21_szyZoH-zDW8fEwD-dnJlQ85WZnaH3S7uId9fyfMuuwbDDrv1C2ngDtvOQZtxvMfOC6M2n6K60nMWLk6X_PUqeu5k5O_y9dB8ipYq8bOB52zb8XKIxzhCgrDfqdVHfrT2XnkYEvZC5AnYTU55CItLXkhYv9xnn2Zvjl4dVOUGhSpqXS-r1PW9BGX6qGoIEE3UIJJLRmChCX1fCwvoQ_UpOsRFtrfQ9Cgvgk0hRasesK3hbICHjEvQ0TqZQNIBiAD0W3CxWzTwAdF1ggl7sf66PhZ6cbrl4tRnmGGMJ1n4IosJe7apfb6i1fhLvSkJalOHyLDzC1QQX9aWh5p4EGWbQOC0ATraldpkJTpXXWrEhD0nMXtasjikGErmAU6MyK_8Ph2Dot_l6gnbK5rwj1HtrtXElyU_-toorVHrW_Xo_3p5zG5ScXWes8u2losLeMJuxK-oCYunWcV_ACrq8zg
  priority: 102
  providerName: Hindawi Publishing
Title Rolling Bearing Fault Diagnosis Method Based on Multisynchrosqueezing S Transform and Faster Dictionary Learning
URI https://dx.doi.org/10.1155/2021/8456991
https://www.proquest.com/docview/2534433673
https://doaj.org/article/e2022717de0c44eeb04887d81584bd60
Volume 2021
WOSCitedRecordID wos000669008800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: DOA
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: M7S
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Open Access: Wiley-Blackwell Open Access Journals
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: 24P
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgYxJ74GMMURiVH4Z4QNHiOE7iJ7TCqiGxqtoGKk9WYl-2SVNamm5o_PXcuU4HQsADT5Ed52Trzue7y_l3jO1qGYOUMosqK1SU5iVEWoOLqlRVVZxaUXksvc8f89GomEz0OATc2pBW2elEr6jd1FKMfC9RMk2RaC7fzr5GVDWK_q6GEhp32TohlaGcrw8ORuPj2yQP6QGk0MeJI50lSZf6rhR5_WKvQPtBa_HLoeSx-1caeuOcfONvF7_pan8ADR_-79QfsQfB9OT7S1l5zO5As8U2fwIk3GIbPiHUtk_YLKB18wFuBXoOy6vLBX-_zMy7aPmRLz3NB3gKOj5tuL_J29409hyXSO7xd_rqhJ92ljEvG4dUCJgByfjrFOX8hgeA17Nt9ml4cPruMArVGSKbpskiclVdC5CqtjKBEqyyKcROOxVjIyvrOokLQPusdlajz1XUBWQ1ygK5ZKWzhXzK1pppA88YF5DaQgsHgoIrMaBNhIqkQOOhRM_dQY-96dhjbIAupwoal8a7MEoZYqYJzOyxV6vRsyVkxx_GDYjTqzEEtO07pvMzE_atgYQwFkXuIMZlA1Sk8XJXCDTcKpfFPfaa5MSQOsAp2TLcasCFEbCW2acQK9p0Oumx3SBK_5jVTidEJqiT1txK0PO_v37B7hOxZYxoh60t5lfwkt2z1ygB837YHX0feOhTmusJ9o0_HI2_YOv4cPIDHVQaAw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHRNw4GOAKAzwYRMHFC1x4iY-ILQyqlVrq0oUtJ1MYjvbpCktbcdU_ij-Rt5znQ6EgNMOnKKm7pPt_vK-8vx7ANsyDm0cx62g0JEIkjS3gZTWBEUiiiJMdFQ4Lr1PvXQwyI6O5HANvtdnYaisstaJTlGbsaYc-S4XcZKg0DR-O_kSUNcoertat9BYwuLQLi4xZJu96e7j_7vDeef96N1B4LsKBDpJ-DwwRVlGNhaljrnNrRY6saGRRoT4oZWXJQ8zi35FabTEWCErM9sqcQ0USuRGZzHKvQHrKEuEDVgfdvvD46uiktgRVmFMFQayxXldai8EZRmi3Qz9FSmjX4yg6xWwsggbpxSLX579Zhucwevc-9-26j7c9a4121s-Cw9gzVabcOcnwsVN2HAFr3r2ECaejZy1caJ07eQX53O2v6w8PJuxvmutzdpo5Q0bV8ydVJ4tKn2KW0rh_zf61Qc2qj1_llcGpRDxBIpxx0Xy6YJ5AtuTR_DxWhb_GBrVuLJPgEU20ZmMjI0oeRRa9PlQUWboHOVpwo1twusaDkp7anbqEHKuXIgmhCLwKA-eJuysRk-WlCR_GNcmZK3GEJG4uzGeniivl5TlxCEZpcaGuGxrC9LoqckidEwL0wqb8IpwqUjd4ZR07k9t4MKIOEztUQoZfVbJm7DtofuPWW3VoFVeXc7UFWKf_v3rl3DrYNTvqV53cPgMbpPgZT5sCxrz6YV9Djf1V0TD9IV_Mhl8vm6E_wDYL3dW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8agyE48DFAFAb4sIkDipo4zocPCK2UimmjmrSBdjOJ7WyTprQ0HVP50_jreM9xOhACTjtwipq6T7b7y_vK8-8BbMo4tHEcp0GpoyQQWWEDKa0JSpGUZSh0VDouvU972XicHx3J_RX43p2FobLKTic6RW0mmnLkfZ7EQqDQLO5Xvixifzh6M_0SUAcpetPatdNoIbJrFxcYvjWvd4b4X29xPnp3-PZ94DsMBFoIPg9MWVWRjZNKx9wWVida2NBIk4T4IS2qioe5RR-jMlpi3JBXuU0rXA-FFYXReYxyr8H1TKShcGWDB5flJbGjrsLoKgxkynlXdJ8klG-I-jl6LlJGv5hD1zVgaRvWTigqvzj9zUo40ze6-z9v2j244x1utt0-IfdhxdbrcPsnGsZ1WHNlsLp5AFPPUc4GOFG6jorzszkbtvWIpw374BpuswHafsMmNXPnl5tFrU9weykp8I1-dcAOu3iAFbVBKURHgWLcIZJitmCe1vb4IXy8ksU_gtV6UtvHwCIrdC4jYyNKKYUWPUFUnzm6TEUmuLE9eNVBQ2lP2E59Q86UC9ySRBGQlAdSD7aWo6ctUckfxg0IZcsxRC_ubkxmx8prK2U5MUtGmbEhLtvakvR8ZvII3dXSpGEPXhJGFSlBnJIu_FkOXBjRialtSiyjJyt5DzY9jP8xq40OwMor0UZdovfJ379-ATcR1mpvZ7z7FG6R3DZJtgGr89m5fQY39FcEw-y5e0QZfL5qeP8A7kd-pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rolling+Bearing+Fault+Diagnosis+Method+Based+on+Multisynchrosqueezing+S+Transform+and+Faster+Dictionary+Learning&rft.jtitle=Shock+and+vibration&rft.au=Sun%2C+Guodong&rft.au=Hu%2C+Ye&rft.au=Wu%2C+Bo&rft.au=Zhou%2C+Hongyu&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1070-9622&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8456991&rft.externalDocID=A814635592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9622&client=summon