Asymptotic analysis of Sturm-Liouville problem with Dirichlet and nonlocal two-point boundary conditions

In this study, we obtain asymptotic expansions for eigenvalues and eigenfunctions of the one–dimensional Sturm–Liouville equation with one classical Dirichlet type boundary condition and two-point nonlocal boundary condition. We analyze the characteristic equation of the boundary value problem for e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical modelling and analysis Ročník 28; číslo 2; s. 308 - 329
Hlavní autori: Stikonas, Arturas, Sen, Erdogan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vilnius Vilnius Gediminas Technical University 21.03.2023
Predmet:
ISSN:1392-6292, 1648-3510
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this study, we obtain asymptotic expansions for eigenvalues and eigenfunctions of the one–dimensional Sturm–Liouville equation with one classical Dirichlet type boundary condition and two-point nonlocal boundary condition. We analyze the characteristic equation of the boundary value problem for eigenvalues and derive asymptotic expansions of arbitrary order. We apply the obtained results to the problem with two-point nonlocal boundary condition.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1392-6292
1648-3510
DOI:10.3846/mma.2023.17617