Multiple Instance Classification via Successive Linear Programming

The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [ 1998 ]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [ 1997 ]; Long et al., Mach. Learn. 30(1):7–22, [ 1998 ]) is formulated using a linear or...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 137; číslo 3; s. 555 - 568
Hlavní autori: Mangasarian, O. L., Wild, E. W.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.06.2008
Springer
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [ 1998 ]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [ 1997 ]; Long et al., Mach. Learn. 30(1):7–22, [ 1998 ]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-007-9343-5