FastGAE: Scalable graph autoencoders with stochastic subgraph decoding

Graph autoencoders (AE) and variational autoencoders (VAE) are powerful node embedding methods, but suffer from scalability issues. In this paper, we introduce FastGAE, a general framework to scale graph AE and VAE to large graphs with millions of nodes and edges. Our strategy, based on an effective...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 142; s. 1 - 19
Hlavní autoři: Salha, Guillaume, Hennequin, Romain, Remy, Jean-Baptiste, Moussallam, Manuel, Vazirgiannis, Michalis
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.10.2021
Elsevier
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Graph autoencoders (AE) and variational autoencoders (VAE) are powerful node embedding methods, but suffer from scalability issues. In this paper, we introduce FastGAE, a general framework to scale graph AE and VAE to large graphs with millions of nodes and edges. Our strategy, based on an effective stochastic subgraph decoding scheme, significantly speeds up the training of graph AE and VAE while preserving or even improving performances. We demonstrate the effectiveness of FastGAE on various real-world graphs, outperforming the few existing approaches to scale graph AE and VAE by a wide margin.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2021.04.015