Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem

•A model of the unequal-area facility layout problem is described.•A modified multi-objective particle swarm optimization algorithm is proposed.•We apply the heuristic strategy to update layout.•The gradient method is applied to execute local search.•The objective space division method is used to fi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 102; s. 179 - 192
Hlavní autori: Liu, Jingfa, Zhang, Huiyun, He, Kun, Jiang, Shengyi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.07.2018
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A model of the unequal-area facility layout problem is described.•A modified multi-objective particle swarm optimization algorithm is proposed.•We apply the heuristic strategy to update layout.•The gradient method is applied to execute local search.•The objective space division method is used to find the Pbest and Gbest. The facility layout problem (FLP) is the problem of placing facilities in a certain shop floor so that facilities do not overlap each other and are satisfied with some given objectives. Considering practical situations, this study focuses on the multi-objective unequal-area facility layout problem (UA-FLP), where the facilities have unequal-areas and fixed shapes and are placed orthogonally in the continuous shop floor. The objectives of the problem aim to optimize the material handling cost, the total adjacency value and the utilization ratio of the shop floor. The chief difficulties of this version of the FLP lie in the satisfaction of non-overlapping constraint between any two different facilities and the optimization of multiple objectives in the huge solution space. In this paper, we put forward a heuristic configuration mutation operation and subsequent local search based on the gradient method to satisfy the non-overlapping constraint, and the multi-objective particle swarm optimization (MOPSO) algorithm, which has recently proven its high effectiveness and robustness in solving multi-objective problems, to obtain a set of Pareto-optimal solutions of the problem. The novelty of the paper lies in the use of an objective space division method in the MOPSO which governs the neighborhood topology and the local best swarm used to assess the global fitness of a solution and choose the global leader particle. The proposed algorithm is tested on three sets of different UA-FLPs from the literature with the size of the problem up to 62 facilities. The numerical results show that the proposed method is effective in solving the multi-objective UA-FLP.
AbstractList •A model of the unequal-area facility layout problem is described.•A modified multi-objective particle swarm optimization algorithm is proposed.•We apply the heuristic strategy to update layout.•The gradient method is applied to execute local search.•The objective space division method is used to find the Pbest and Gbest. The facility layout problem (FLP) is the problem of placing facilities in a certain shop floor so that facilities do not overlap each other and are satisfied with some given objectives. Considering practical situations, this study focuses on the multi-objective unequal-area facility layout problem (UA-FLP), where the facilities have unequal-areas and fixed shapes and are placed orthogonally in the continuous shop floor. The objectives of the problem aim to optimize the material handling cost, the total adjacency value and the utilization ratio of the shop floor. The chief difficulties of this version of the FLP lie in the satisfaction of non-overlapping constraint between any two different facilities and the optimization of multiple objectives in the huge solution space. In this paper, we put forward a heuristic configuration mutation operation and subsequent local search based on the gradient method to satisfy the non-overlapping constraint, and the multi-objective particle swarm optimization (MOPSO) algorithm, which has recently proven its high effectiveness and robustness in solving multi-objective problems, to obtain a set of Pareto-optimal solutions of the problem. The novelty of the paper lies in the use of an objective space division method in the MOPSO which governs the neighborhood topology and the local best swarm used to assess the global fitness of a solution and choose the global leader particle. The proposed algorithm is tested on three sets of different UA-FLPs from the literature with the size of the problem up to 62 facilities. The numerical results show that the proposed method is effective in solving the multi-objective UA-FLP.
The facility layout problem (FLP) is the problem of placing facilities in a certain shop floor so that facilities do not overlap each other and are satisfied with some given objectives. Considering practical situations, this study focuses on the multi-objective unequal-area facility layout problem (UA-FLP), where the facilities have unequal-areas and fixed shapes and are placed orthogonally in the continuous shop floor. The objectives of the problem aim to optimize the material handling cost, the total adjacency value and the utilization ratio of the shop floor. The chief difficulties of this version of the FLP lie in the satisfaction of non-overlapping constraint between any two different facilities and the optimization of multiple objectives in the huge solution space. In this paper, we put forward a heuristic configuration mutation operation and subsequent local search based on the gradient method to satisfy the non-overlapping constraint, and the multi-objective particle swarm optimization (MOPSO) algorithm, which has recently proven its high effectiveness and robustness in solving multi-objective problems, to obtain a set of Pareto-optimal solutions of the problem. The novelty of the paper lies in the use of an objective space division method in the MOPSO which governs the neighborhood topology and the local best swarm used to assess the global fitness of a solution and choose the global leader particle. The proposed algorithm is tested on three sets of different UA-FLPs from the literature with the size of the problem up to 62 facilities. The numerical results show that the proposed method is effective in solving the multi-objective UA-FLP.
Author Jiang, Shengyi
Zhang, Huiyun
He, Kun
Liu, Jingfa
Author_xml – sequence: 1
  givenname: Jingfa
  surname: Liu
  fullname: Liu, Jingfa
  email: jfliu@nuist.edu.cn
  organization: School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 2
  givenname: Huiyun
  surname: Zhang
  fullname: Zhang, Huiyun
  email: zhanghuiyun1992@foxmail.com
  organization: School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 3
  givenname: Kun
  surname: He
  fullname: He, Kun
  email: brooklet60@hust.edu.cn
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Shengyi
  surname: Jiang
  fullname: Jiang, Shengyi
  organization: School of Information Science and Technology, Guangdong University of Foreign Studies, Guangdong 51006, China
BookMark eNp9kE1r3DAQhkVJoJuPP9CToGe7kmyvJeilhH5BSi_NWYzlUSMjW44kb9me-8Or7RYKPeQ0MLzPO8xzRS6WsCAhrzirOeP7N1ON6QfUgnFZM1GzpntBdlz2TbXvVXNBdkx1fdXyvn1JrlKaGOM9Y_2O_Pqy-eyqMExosjsgXSFmZzzS0hdnGtbsZvcTsgsLBf89RJcfZzpAwpGW1T8wrWCQju7g0ilrQ6T5Eem24NMGvoKIQC0Y510-Ug_HsGW6xjB4nG_IpQWf8PbvvCYPH95_u_tU3X_9-Pnu3X1l2lbkCqBTreV2HLGxUqIQIAcOQqpeWKaYAG6bfugawQeFinVMyXHghkOrpDW8uSavz73l7tOGKespbHEpJ7Vg-050QnX7khLnlIkhpYhWr9HNEI-aM32yrSd9sq1PtjUTutgukPwPMi7_sZYjOP88-vaMYnn94DDqZBwuBkcXi1s9Bvcc_hsElaCV
CitedBy_id crossref_primary_10_1016_j_jmsy_2019_09_004
crossref_primary_10_1080_00207543_2021_1897176
crossref_primary_10_1016_j_procs_2024_03_004
crossref_primary_10_1007_s12065_020_00419_3
crossref_primary_10_1016_j_cie_2023_109408
crossref_primary_10_1016_j_engappai_2020_103697
crossref_primary_10_3390_su12062476
crossref_primary_10_1109_ACCESS_2020_3004447
crossref_primary_10_1080_00207543_2020_1733124
crossref_primary_10_1155_2021_3972772
crossref_primary_10_15675_gepros_v16i4_2806
crossref_primary_10_1016_j_cor_2021_105283
crossref_primary_10_1007_s10489_020_01666_8
crossref_primary_10_1155_2021_9967531
crossref_primary_10_1109_ACCESS_2019_2949743
crossref_primary_10_1007_s12652_023_04655_0
crossref_primary_10_1016_j_advengsoft_2019_102722
crossref_primary_10_1080_00207543_2022_2037778
crossref_primary_10_1016_j_desal_2019_114076
crossref_primary_10_1007_s42405_025_01033_2
crossref_primary_10_1088_1742_6596_1992_3_032120
crossref_primary_10_1016_j_asoc_2019_106052
crossref_primary_10_3390_app11156676
crossref_primary_10_3390_app14188120
crossref_primary_10_3390_su151612275
crossref_primary_10_1016_j_eswa_2019_112831
crossref_primary_10_1016_j_procir_2021_11_286
crossref_primary_10_1111_cgf_14989
crossref_primary_10_1155_2022_9181865
crossref_primary_10_1016_j_engappai_2019_103453
crossref_primary_10_1016_j_rcim_2022_102379
crossref_primary_10_1016_j_eswa_2022_118617
crossref_primary_10_3390_a14110306
crossref_primary_10_1016_j_procir_2021_11_328
crossref_primary_10_1016_j_applthermaleng_2019_01_097
crossref_primary_10_1080_21681015_2024_2302630
crossref_primary_10_1109_TEM_2019_2923259
crossref_primary_10_1155_2018_7353171
crossref_primary_10_1007_s11081_025_09991_y
crossref_primary_10_1002_int_22693
crossref_primary_10_1007_s13198_025_02898_y
crossref_primary_10_1016_j_arcontrol_2024_100970
crossref_primary_10_1109_ACCESS_2022_3163287
crossref_primary_10_3390_land11111991
crossref_primary_10_3390_app132111682
crossref_primary_10_1016_j_procs_2023_11_141
crossref_primary_10_1016_j_eswa_2019_113096
crossref_primary_10_1007_s10845_020_01603_z
crossref_primary_10_1016_j_eswa_2020_113423
crossref_primary_10_1016_j_cirpj_2021_09_013
crossref_primary_10_1109_TII_2018_2875048
crossref_primary_10_1016_j_cie_2025_111189
crossref_primary_10_3390_app11031107
crossref_primary_10_1016_j_swevo_2020_100688
crossref_primary_10_1080_01605682_2021_1920345
crossref_primary_10_1007_s10661_020_08727_y
crossref_primary_10_1016_j_engappai_2023_105941
crossref_primary_10_1080_00207543_2023_2168308
crossref_primary_10_3390_su17135769
crossref_primary_10_1109_ACCESS_2023_3250228
crossref_primary_10_1016_j_eswa_2019_06_033
crossref_primary_10_1109_ACCESS_2024_3427144
crossref_primary_10_3390_a14020060
crossref_primary_10_1155_2022_6289609
crossref_primary_10_3390_app13127215
crossref_primary_10_3390_pr8020185
crossref_primary_10_1016_j_autcon_2018_08_008
crossref_primary_10_1109_TEVC_2024_3398436
crossref_primary_10_1007_s11804_025_00643_2
crossref_primary_10_1007_s00500_025_10605_z
crossref_primary_10_1007_s42452_025_06706_x
Cites_doi 10.1016/j.eswa.2012.01.125
10.1016/j.ejor.2015.04.029
10.1016/j.ejor.2015.08.014
10.1080/00207543.2011.613863
10.1016/j.physa.2015.02.092
10.1016/j.neucom.2013.01.068
10.1016/j.eswa.2009.12.080
10.1016/j.ejor.2017.04.002
10.1016/S0360-8352(01)00063-8
10.1016/j.ejor.2016.07.022
10.1016/S0305-0548(01)00085-5
10.1007/s11432-010-0080-2
10.1080/00207541003614371
10.1016/j.cie.2015.09.006
10.1080/00207540701666253
10.1080/0020754031000118125
10.1016/j.rcim.2005.11.002
10.1016/j.arcontrol.2007.04.001
10.1080/002075498193165
10.1007/s10845-015-1053-5
10.1080/00207540600943993
10.1016/j.eswa.2017.02.047
10.1016/j.eswa.2013.02.026
10.1080/00207540050031922
10.1016/j.ejor.2009.02.028
10.1016/j.ijpe.2016.03.019
10.1016/j.ejor.2009.06.016
10.1016/j.eswa.2016.10.004
10.1080/00207549308956725
10.1016/S0925-5273(02)00468-1
10.1080/0305215X.2014.933825
10.1016/j.cie.2009.05.010
10.1016/j.eswa.2011.11.046
10.1016/S0166-3615(97)00106-1
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.02.035
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 192
ExternalDocumentID 10_1016_j_eswa_2018_02_035
S0957417418301246
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c442t-aa594f1fdde3f88e22a8b1a28972f0902a1f37b5321b9e905098db1c1a498fc13
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430774900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 05:34:24 EDT 2025
Sat Nov 29 07:07:58 EST 2025
Tue Nov 18 22:32:30 EST 2025
Fri Feb 23 02:45:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Facility layout problem
Multi-objective optimization
Group decision-making
Preference
Particle swarm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-aa594f1fdde3f88e22a8b1a28972f0902a1f37b5321b9e905098db1c1a498fc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2065252956
PQPubID 2045477
PageCount 14
ParticipantIDs proquest_journals_2065252956
crossref_primary_10_1016_j_eswa_2018_02_035
crossref_citationtrail_10_1016_j_eswa_2018_02_035
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_02_035
PublicationCentury 2000
PublicationDate 2018-07-15
PublicationDateYYYYMMDD 2018-07-15
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Engelbrecht (bib0012) 2007
Wong, Komarudin (bib0023) 2010; 37
Kulturel-Konak, Konak (bib0025) 2015; 47
Dunker, Radons, Westkämper (bib0011) 2003; 41
Liu, Wang, He, Xue (bib0030) 2017; 262
Aiello, Scalia, Enea (bib0002) 2012; 39
Kang, Chae (bib0019) 2017; 79
Asl, Wong (bib0005) 2017; 28
Muther (bib0033) 1973
Jolai, Tavakkoli-Moghaddam, Taghipour (bib0018) 2012; 50
Wu, Appleton (bib0041) 2002; 41
Lee, Han, Roh (bib0026) 2003; 30
Paes, Pessoa, Vidal (bib0035) 2017; 256
Liu, Xue, Liu, Xu (bib0031) 2009; 57
Zhang, Lu, Zhang, Fang (bib0042) 2013; 19
Gonçalves, Resende (bib0015) 2015; 246
Saraswat, Venkatadri, Castillo (bib0037) 2015; 90
Guan, Lin (bib0016) 2016; 248
Tompkins, White, Bozer, Tanchoco (bib0038) 2010
Gómez, Fernández, Garcı́a, Garcı́a (bib0014) 2003; 84
Khilwani, Shankar, Tiwari (bib0021) 2008; 46
Drira, Pierreval, Hajri-Gabouj (bib0010) 2007; 31
Al-Hakim (bib0004) 2000; 38
García-Hernández, Pérez-Ortiz, Araúzo-Azofra, Salas-Morera, Hervás-Martínez (bib0013) 2014; 135
Aiello, Scalia, Enea (bib0003) 2013; 40
Liu, Jiang, Li, Xue, Liu, Zhang (bib0028) 2015; 431
Islier (bib0017) 1998; 36
Komarudin, Wong (bib0022) 2010; 202
Chang, Ku (bib0006) 2013; 2013
Diego, Santamarina, Alcaide, Cloquell (bib0009) 2009; 6
Mckendall, Hakobyan (bib0032) 2010; 201
Chwif, Barretto, Moscato (bib0007) 1998; 36
Li, Yan, Xie, Huang (bib0027) 2012; 28
Zhou, Ye, Cao, Ye (bib0043) 2006; 4114
Vitayasak, Pongcharoen, Hicks (bib0040) 2017; 190
Liu, Li (bib0029) 2010; 53
Kulturel-Konak, Konak (bib0024) 2010; 49
Nordin, Zainuddin, Salim, Ponnusamy (bib0034) 2009; 5
Aiello, Enea, Galante (bib0001) 2006; 22
Ulutas, Kulturel-Konak (bib0039) 2012; 39
Das (bib0008) 1993; 31
Palomo-Romero, Salas-Morera, García-Hernández (bib0036) 2017; 68
Kennedy, Eberhart (bib0020) 1995; 4
Das (10.1016/j.eswa.2018.02.035_bib0008) 1993; 31
Aiello (10.1016/j.eswa.2018.02.035_bib0003) 2013; 40
Chang (10.1016/j.eswa.2018.02.035_bib0006) 2013; 2013
Kulturel-Konak (10.1016/j.eswa.2018.02.035_bib0025) 2015; 47
Mckendall (10.1016/j.eswa.2018.02.035_bib0032) 2010; 201
Nordin (10.1016/j.eswa.2018.02.035_bib0034) 2009; 5
Gonçalves (10.1016/j.eswa.2018.02.035_bib0015) 2015; 246
Aiello (10.1016/j.eswa.2018.02.035_bib0001) 2006; 22
Wu (10.1016/j.eswa.2018.02.035_bib0041) 2002; 41
Kennedy (10.1016/j.eswa.2018.02.035_bib0020) 1995; 4
Diego (10.1016/j.eswa.2018.02.035_bib0009) 2009; 6
Asl (10.1016/j.eswa.2018.02.035_bib0005) 2017; 28
Chwif (10.1016/j.eswa.2018.02.035_bib0007) 1998; 36
Engelbrecht (10.1016/j.eswa.2018.02.035_bib0012) 2007
Vitayasak (10.1016/j.eswa.2018.02.035_bib0040) 2017; 190
Zhang (10.1016/j.eswa.2018.02.035_bib0042) 2013; 19
Guan (10.1016/j.eswa.2018.02.035_bib0016) 2016; 248
Al-Hakim (10.1016/j.eswa.2018.02.035_bib0004) 2000; 38
Komarudin (10.1016/j.eswa.2018.02.035_bib0022) 2010; 202
Liu (10.1016/j.eswa.2018.02.035_bib0029) 2010; 53
Lee (10.1016/j.eswa.2018.02.035_bib0026) 2003; 30
Wong (10.1016/j.eswa.2018.02.035_bib0023) 2010; 37
Gómez (10.1016/j.eswa.2018.02.035_bib0014) 2003; 84
Aiello (10.1016/j.eswa.2018.02.035_bib0002) 2012; 39
Muther (10.1016/j.eswa.2018.02.035_bib0033) 1973
García-Hernández (10.1016/j.eswa.2018.02.035_bib0013) 2014; 135
Zhou (10.1016/j.eswa.2018.02.035_bib0043) 2006; 4114
Palomo-Romero (10.1016/j.eswa.2018.02.035_bib0036) 2017; 68
Islier (10.1016/j.eswa.2018.02.035_bib0017) 1998; 36
Drira (10.1016/j.eswa.2018.02.035_bib0010) 2007; 31
Dunker (10.1016/j.eswa.2018.02.035_bib0011) 2003; 41
Tompkins (10.1016/j.eswa.2018.02.035_bib0038) 2010
Jolai (10.1016/j.eswa.2018.02.035_bib0018) 2012; 50
Liu (10.1016/j.eswa.2018.02.035_bib0028) 2015; 431
Khilwani (10.1016/j.eswa.2018.02.035_bib0021) 2008; 46
Kulturel-Konak (10.1016/j.eswa.2018.02.035_bib0024) 2010; 49
Li (10.1016/j.eswa.2018.02.035_bib0027) 2012; 28
Liu (10.1016/j.eswa.2018.02.035_bib0030) 2017; 262
Kang (10.1016/j.eswa.2018.02.035_bib0019) 2017; 79
Ulutas (10.1016/j.eswa.2018.02.035_bib0039) 2012; 39
Liu (10.1016/j.eswa.2018.02.035_bib0031) 2009; 57
Saraswat (10.1016/j.eswa.2018.02.035_bib0037) 2015; 90
Paes (10.1016/j.eswa.2018.02.035_bib0035) 2017; 256
References_xml – volume: 41
  start-page: 3479
  year: 2003
  end-page: 3500
  ident: bib0011
  article-title: A coevolutionary algorithm for a facility layout problem
  publication-title: International Journal of Production Research
– volume: 84
  start-page: 271
  year: 2003
  end-page: 282
  ident: bib0014
  article-title: Using genetic algorithms to resolve layout problems in facilities where there are aisles
  publication-title: International Journal of Production Economics
– volume: 79
  start-page: 268
  year: 2017
  end-page: 281
  ident: bib0019
  article-title: Harmony search for the layout design of an unequal area facility
  publication-title: Expert Systems with Applications
– volume: 246
  start-page: 86
  year: 2015
  end-page: 107
  ident: bib0015
  article-title: A biased random-key genetic algorithm for the unequal area facility layout problem
  publication-title: European Journal of Operational Research
– volume: 202
  start-page: 730
  year: 2010
  end-page: 746
  ident: bib0022
  article-title: Applying ant system for solving unequal area facility layout problems
  publication-title: European Journal of Operational Research
– volume: 190
  start-page: 146
  year: 2017
  end-page: 157
  ident: bib0040
  article-title: A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a genetic algorithm or modified backtracking search algorithm
  publication-title: International Journal of Production Economics
– volume: 30
  start-page: 117
  year: 2003
  end-page: 138
  ident: bib0026
  article-title: An improved genetic algorithm for facility layout problems having inner structure walls and passages
  publication-title: Computers & Operations Research
– year: 1973
  ident: bib0033
  article-title: Systematic layout planning
– year: 2010
  ident: bib0038
  article-title: Facilities planning
– volume: 248
  start-page: 899
  year: 2016
  end-page: 909
  ident: bib0016
  article-title: Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem
  publication-title: European Journal of Operational Research
– volume: 201
  start-page: 171
  year: 2010
  end-page: 182
  ident: bib0032
  article-title: Heuristic for the dynamic facility layout problem with unequal-area departments
  publication-title: European Journal of Operational Research
– volume: 38
  start-page: 2573
  year: 2000
  end-page: 2582
  ident: bib0004
  article-title: On solving facility layout problems using genetic algorithms
  publication-title: International Journal of Production Research
– volume: 36
  start-page: 1549
  year: 1998
  end-page: 1569
  ident: bib0017
  article-title: A genetic algorithm approach for multiple criteria facility layout design
  publication-title: International Journal of Production Research
– year: 2007
  ident: bib0012
  article-title: Computational intelligence: An introduction
– volume: 41
  start-page: 371
  year: 2002
  end-page: 387
  ident: bib0041
  article-title: The optimization of block layout and aisle structure by a genetic algorithm
  publication-title: Computers & Industrial Engineering
– volume: 31
  start-page: 255
  year: 2007
  end-page: 267
  ident: bib0010
  article-title: Facility layout problems: a survey
  publication-title: Annual Reviews in Control
– volume: 50
  start-page: 4279
  year: 2012
  end-page: 4293
  ident: bib0018
  article-title: A multi-objective particle swarm optimization algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations
  publication-title: International Journal of Production Research
– volume: 36
  start-page: 125
  year: 1998
  end-page: 132
  ident: bib0007
  article-title: A solution to the facility layout problem using simulated annealing
  publication-title: Computers in Industry
– volume: 431
  start-page: 166
  year: 2015
  end-page: 174
  ident: bib0028
  article-title: Heuristic-based energy landscape paving for the circular packing problem with performance constraints of equilibrium
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 57
  start-page: 1144
  year: 2009
  end-page: 1149
  ident: bib0031
  article-title: An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle
  publication-title: Computers & Industrial Engineering
– volume: 6
  start-page: 1679
  year: 2009
  end-page: 1693
  ident: bib0009
  article-title: Solving facility layout problems with strict geometric constraints using a two phase genetic algorithm
  publication-title: International Journal of Production Research
– volume: 5
  start-page: 742
  year: 2009
  end-page: 756
  ident: bib0034
  article-title: Mathematical modeling and hybrid heuristic for unequal size facility layout problem
  publication-title: Journal of Fundamental Sciences
– volume: 39
  start-page: 10352
  year: 2012
  end-page: 10358
  ident: bib0002
  article-title: A multi-objective genetic algorithm for the facility layout problem based upon slicing structure encoding
  publication-title: Expert Systems with Applications
– volume: 19
  start-page: 727
  year: 2013
  end-page: 734
  ident: bib0042
  article-title: Workshop layout optimization based on differential cellular multi-objective genetic algorithm
  publication-title: Computer Integrated Manufacturing Systems
– volume: 135
  start-page: 69
  year: 2014
  end-page: 78
  ident: bib0013
  article-title: An evolutionary neural system for incorporating expert knowledge into the UA-FLP
  publication-title: Neurocomputing
– volume: 49
  start-page: 1877
  year: 2010
  end-page: 1902
  ident: bib0024
  article-title: Unequal area flexible bay facility layout using ant colony optimization
  publication-title: International Journal of Production Research
– volume: 28
  start-page: 90
  year: 2012
  end-page: 95
  ident: bib0027
  article-title: A research of multi-objective facility layout based on NSGA-II
  publication-title: Machine Design and Research
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0020
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE international conference on neural networks
– volume: 4114
  start-page: 1008
  year: 2006
  end-page: 1013
  ident: bib0043
  article-title: A genetic algorithm approach on a facility layout design problem with aisles
  publication-title: Proceedings of the International conference on intelligent computing
– volume: 90
  start-page: 167
  year: 2015
  end-page: 176
  ident: bib0037
  article-title: A framework for multi-objective facility layout design
  publication-title: Computers & Industrial Engineering
– volume: 39
  start-page: 5384
  year: 2012
  end-page: 5395
  ident: bib0039
  article-title: An artificial immune system based algorithm to solve unequal area facility layout problem
  publication-title: Expert Systems with Applications
– volume: 256
  start-page: 742
  year: 2017
  end-page: 756
  ident: bib0035
  article-title: A hybrid genetic algorithm with decomposition phases for the unequal area facility layout problem
  publication-title: European Journal of Operational Research
– volume: 53
  start-page: 885
  year: 2010
  end-page: 895
  ident: bib0029
  article-title: Basin filling algorithm for the circular packing problem with equilibrium behavioral constraints
  publication-title: Science China Information Science
– volume: 47
  start-page: 963
  year: 2015
  end-page: 978
  ident: bib0025
  article-title: Large-scale hybrid simulated annealing algorithm for cyclic facility layout problems
  publication-title: Engineering Optimization
– volume: 22
  start-page: 447
  year: 2006
  end-page: 455
  ident: bib0001
  article-title: A multi-objective approach to facility layout problem by genetic search algorithm and electre method
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 262
  start-page: 1052
  year: 2017
  end-page: 1063
  ident: bib0030
  article-title: Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem
  publication-title: European Journal of Operational Research
– volume: 37
  start-page: 5523
  year: 2010
  end-page: 5527
  ident: bib0023
  article-title: Solving facility layout problems using flexible bay structure representation and ant system algorithm
  publication-title: Expert Systems with Applications
– volume: 68
  start-page: 151
  year: 2017
  end-page: 162
  ident: bib0036
  article-title: An island model genetic algorithm for unequal area facility layout problems
  publication-title: Expert Systems with Applications
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 19
  ident: bib0006
  article-title: A slicing tree representation and QCP-model-based heuristic algorithm for the unequal-area block facility layout problem
  publication-title: Mathematical Problems in Engineering
– volume: 28
  start-page: 1317
  year: 2017
  end-page: 1336
  ident: bib0005
  article-title: Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization
  publication-title: Journal of Intelligent Manufacturing
– volume: 46
  start-page: 895
  year: 2008
  end-page: 927
  ident: bib0021
  article-title: Facility layout problem: an approach based on a group decision-making system and psychoclonal algorithm
  publication-title: International Journal of Production Research
– volume: 31
  start-page: 279
  year: 1993
  end-page: 297
  ident: bib0008
  article-title: A facility layout method for flexible manufacturing systems
  publication-title: International Journal of Production Research
– volume: 40
  start-page: 4812
  year: 2013
  end-page: 4819
  ident: bib0003
  article-title: A non dominated ranking multi objective genetic algorithm and electre method for unequal area facility layout problems
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 10352
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2018.02.035_bib0002
  article-title: A multi-objective genetic algorithm for the facility layout problem based upon slicing structure encoding
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.125
– volume: 246
  start-page: 86
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2018.02.035_bib0015
  article-title: A biased random-key genetic algorithm for the unequal area facility layout problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.04.029
– volume: 248
  start-page: 899
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2018.02.035_bib0016
  article-title: Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.08.014
– volume: 50
  start-page: 4279
  issue: 15
  year: 2012
  ident: 10.1016/j.eswa.2018.02.035_bib0018
  article-title: A multi-objective particle swarm optimization algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2011.613863
– volume: 431
  start-page: 166
  year: 2015
  ident: 10.1016/j.eswa.2018.02.035_bib0028
  article-title: Heuristic-based energy landscape paving for the circular packing problem with performance constraints of equilibrium
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2015.02.092
– volume: 135
  start-page: 69
  issue: 13
  year: 2014
  ident: 10.1016/j.eswa.2018.02.035_bib0013
  article-title: An evolutionary neural system for incorporating expert knowledge into the UA-FLP☆
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.068
– volume: 37
  start-page: 5523
  issue: 7
  year: 2010
  ident: 10.1016/j.eswa.2018.02.035_bib0023
  article-title: Solving facility layout problems using flexible bay structure representation and ant system algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.12.080
– volume: 262
  start-page: 1052
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2018.02.035_bib0030
  article-title: Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.04.002
– volume: 41
  start-page: 371
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2018.02.035_bib0041
  article-title: The optimization of block layout and aisle structure by a genetic algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/S0360-8352(01)00063-8
– volume: 256
  start-page: 742
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2018.02.035_bib0035
  article-title: A hybrid genetic algorithm with decomposition phases for the unequal area facility layout problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.07.022
– volume: 28
  start-page: 90
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2018.02.035_bib0027
  article-title: A research of multi-objective facility layout based on NSGA-II
  publication-title: Machine Design and Research
– volume: 19
  start-page: 727
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2018.02.035_bib0042
  article-title: Workshop layout optimization based on differential cellular multi-objective genetic algorithm
  publication-title: Computer Integrated Manufacturing Systems
– volume: 30
  start-page: 117
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2018.02.035_bib0026
  article-title: An improved genetic algorithm for facility layout problems having inner structure walls and passages
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(01)00085-5
– volume: 53
  start-page: 885
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2018.02.035_bib0029
  article-title: Basin filling algorithm for the circular packing problem with equilibrium behavioral constraints
  publication-title: Science China Information Science
  doi: 10.1007/s11432-010-0080-2
– volume: 49
  start-page: 1877
  issue: 7
  year: 2010
  ident: 10.1016/j.eswa.2018.02.035_bib0024
  article-title: Unequal area flexible bay facility layout using ant colony optimization
  publication-title: International Journal of Production Research
  doi: 10.1080/00207541003614371
– volume: 90
  start-page: 167
  year: 2015
  ident: 10.1016/j.eswa.2018.02.035_bib0037
  article-title: A framework for multi-objective facility layout design
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2015.09.006
– volume: 6
  start-page: 1679
  issue: 15
  year: 2009
  ident: 10.1016/j.eswa.2018.02.035_bib0009
  article-title: Solving facility layout problems with strict geometric constraints using a two phase genetic algorithm
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540701666253
– volume: 41
  start-page: 3479
  issue: 15
  year: 2003
  ident: 10.1016/j.eswa.2018.02.035_bib0011
  article-title: A coevolutionary algorithm for a facility layout problem
  publication-title: International Journal of Production Research
  doi: 10.1080/0020754031000118125
– volume: 22
  start-page: 447
  issue: 5-6
  year: 2006
  ident: 10.1016/j.eswa.2018.02.035_bib0001
  article-title: A multi-objective approach to facility layout problem by genetic search algorithm and electre method
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2005.11.002
– volume: 31
  start-page: 255
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2018.02.035_bib0010
  article-title: Facility layout problems: a survey
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2007.04.001
– volume: 36
  start-page: 1549
  issue: 6
  year: 1998
  ident: 10.1016/j.eswa.2018.02.035_bib0017
  article-title: A genetic algorithm approach for multiple criteria facility layout design
  publication-title: International Journal of Production Research
  doi: 10.1080/002075498193165
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2018.02.035_bib0006
  article-title: A slicing tree representation and QCP-model-based heuristic algorithm for the unequal-area block facility layout problem
  publication-title: Mathematical Problems in Engineering
– volume: 5
  start-page: 742
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2018.02.035_bib0034
  article-title: Mathematical modeling and hybrid heuristic for unequal size facility layout problem
  publication-title: Journal of Fundamental Sciences
– volume: 28
  start-page: 1317
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2018.02.035_bib0005
  article-title: Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1053-5
– volume: 46
  start-page: 895
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2018.02.035_bib0021
  article-title: Facility layout problem: an approach based on a group decision-making system and psychoclonal algorithm
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540600943993
– volume: 79
  start-page: 268
  year: 2017
  ident: 10.1016/j.eswa.2018.02.035_bib0019
  article-title: Harmony search for the layout design of an unequal area facility
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.02.047
– volume: 40
  start-page: 4812
  year: 2013
  ident: 10.1016/j.eswa.2018.02.035_bib0003
  article-title: A non dominated ranking multi objective genetic algorithm and electre method for unequal area facility layout problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.02.026
– volume: 38
  start-page: 2573
  issue: 11
  year: 2000
  ident: 10.1016/j.eswa.2018.02.035_bib0004
  article-title: On solving facility layout problems using genetic algorithms
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540050031922
– volume: 201
  start-page: 171
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2018.02.035_bib0032
  article-title: Heuristic for the dynamic facility layout problem with unequal-area departments
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.02.028
– year: 2010
  ident: 10.1016/j.eswa.2018.02.035_bib0038
– year: 2007
  ident: 10.1016/j.eswa.2018.02.035_bib0012
– volume: 190
  start-page: 146
  year: 2017
  ident: 10.1016/j.eswa.2018.02.035_bib0040
  article-title: A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a genetic algorithm or modified backtracking search algorithm
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2016.03.019
– volume: 4114
  start-page: 1008
  year: 2006
  ident: 10.1016/j.eswa.2018.02.035_bib0043
  article-title: A genetic algorithm approach on a facility layout design problem with aisles
– volume: 202
  start-page: 730
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2018.02.035_bib0022
  article-title: Applying ant system for solving unequal area facility layout problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.06.016
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2018.02.035_bib0020
  article-title: Particle swarm optimization
– year: 1973
  ident: 10.1016/j.eswa.2018.02.035_bib0033
– volume: 68
  start-page: 151
  year: 2017
  ident: 10.1016/j.eswa.2018.02.035_bib0036
  article-title: An island model genetic algorithm for unequal area facility layout problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.10.004
– volume: 31
  start-page: 279
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2018.02.035_bib0008
  article-title: A facility layout method for flexible manufacturing systems
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549308956725
– volume: 84
  start-page: 271
  issue: 3
  year: 2003
  ident: 10.1016/j.eswa.2018.02.035_bib0014
  article-title: Using genetic algorithms to resolve layout problems in facilities where there are aisles
  publication-title: International Journal of Production Economics
  doi: 10.1016/S0925-5273(02)00468-1
– volume: 47
  start-page: 963
  issue: 7
  year: 2015
  ident: 10.1016/j.eswa.2018.02.035_bib0025
  article-title: Large-scale hybrid simulated annealing algorithm for cyclic facility layout problems
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2014.933825
– volume: 57
  start-page: 1144
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2018.02.035_bib0031
  article-title: An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2009.05.010
– volume: 39
  start-page: 5384
  year: 2012
  ident: 10.1016/j.eswa.2018.02.035_bib0039
  article-title: An artificial immune system based algorithm to solve unequal area facility layout problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.11.046
– volume: 36
  start-page: 125
  issue: 1–2
  year: 1998
  ident: 10.1016/j.eswa.2018.02.035_bib0007
  article-title: A solution to the facility layout problem using simulated annealing
  publication-title: Computers in Industry
  doi: 10.1016/S0166-3615(97)00106-1
SSID ssj0017007
Score 2.5649977
Snippet •A model of the unequal-area facility layout problem is described.•A modified multi-objective particle swarm optimization algorithm is proposed.•We apply the...
The facility layout problem (FLP) is the problem of placing facilities in a certain shop floor so that facilities do not overlap each other and are satisfied...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 179
SubjectTerms Algorithms
Decision making
Division
Facilities management
Facility layout problem
Fitness
Group decision-making
Layouts
Materials handling
Multi-objective optimization
Multiple objective analysis
Optimization algorithms
Particle swarm optimization
Preference
Preferences
Robustness (mathematics)
Solution space
Title Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem
URI https://dx.doi.org/10.1016/j.eswa.2018.02.035
https://www.proquest.com/docview/2065252956
Volume 102
WOSCitedRecordID wos000430774900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3NEGA_mBt8hT7FxsP05oqAxpQmJIfYucxNlStWnVy1jf-Uv8P45jOw1FTIDES1S5cWr1-3LO8fG5IPQ2rwoJhrcmZUg1iUuZEAHoEhmqOCxVyjRVbbMJfnEhxmP5aTD47nNhbqa8acTtrVz8V6hhDMA2qbN_AXf3UBiAzwA6XAF2uP4R8G1KLZnnEyvKgoW7J1h9VctZMAcZMXPJl4GaXs2X9fp6FhhtVpqTg91EkDXw0pt8rVU_HnHTaJOJSRSYm6ZdT90a8lO1NRHOrj_NT_5-U0x57UpG-2S63rF5FxJUb1pKgS6tOl3R-bNHm3q76Yg8at2wH3cD57X3e1_r5mpb950ZVBgvqU3ntB42n2WzC2myrkpOYmq7-ZxoK6gFj0jKbXfFTpKHrCeLqe1S49Q6tS33ftEY1nkxOdEAgon0E20JV1tCZa8S92ezELMOEIOg1-P0HjpgPJFiiA5OP5yNz7vjKx7aPH2_cJetZQML93_pdxbRnm3QGjyXj9FDt1PBp5Y9T9BAN0_RI98FBDul8Ax92yMc9oTDLeFwn3C4IxxuCYdhaDexJRz2hMNAOAyEw33CYU84bAmHHeGeoy_vzy7fjYjr7UGKOGZrolQi44pWoF2jSgjNmBI5VbD956wyscKKVhHPk4jRXGppqhSJMqcFVbEUVUGjF2jYzBt9iHBRmI1JqQoV8TjhWlZ5kghBK50yDjvmI0T9_5sVrvC96b8yzXyE4yQzmGQGkyxkGWByhIJuzsKWfbnz7sTDljnD1RqkGbDsznnHHuPMSZAVfJ8mzBy_py__8bGv0IPdu3WMhuvlRr9G94ubdb1avnFc_QFSh888
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+particle+swarm+optimization+algorithm+based+on+objective+space+division+for+the+unequal-area+facility+layout+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Jingfa&rft.au=Zhang%2C+Huiyun&rft.au=He%2C+Kun&rft.au=Jiang%2C+Shengyi&rft.date=2018-07-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=102&rft.spage=179&rft.epage=192&rft_id=info:doi/10.1016%2Fj.eswa.2018.02.035&rft.externalDocID=S0957417418301246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon