Imbalanced rock burst assessment using variational autoencoder-enhanced gradient boosting algorithms and explainability

We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a variational autoencoder (VAE) to address the imbalance rock burst dataset, and proposed a multilevel explainable artificial intelligence (XAI) tailored for tree-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Underground space (Beijing) Jg. 17; S. 226 - 245
Hauptverfasser: Lin, Shan, Liang, Zenglong, Dong, Miao, Guo, Hongwei, Zheng, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Shanghai Elsevier B.V 01.08.2024
KeAi Publishing Communications Ltd
KeAi Communications Co., Ltd
Schlagworte:
ISSN:2467-9674, 2096-2754, 2467-9674
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a variational autoencoder (VAE) to address the imbalance rock burst dataset, and proposed a multilevel explainable artificial intelligence (XAI) tailored for tree-based ensemble learning. We collected 537 data from real-world rock burst records and selected four critical features contributing to rock burst occurrences. Initially, we employed data visualization to gain insight into the data's structure and performed correlation analysis to explore the data distribution and feature relationships. Then, we set up a VAE model to generate samples for the minority class due to the imbalanced class distribution. In conjunction with the VAE, we compared and evaluated six state-of-the-art ensemble models, including gradient boosting algorithms and the classical logistic regression model, for rock burst prediction. The results indicated that gradient boosting algorithms outperformed the classical single models, and the VAE-classifier outperformed the original classifier, with the VAE-NGBoost model yielding the most favorable results. Compared to other resampling methods combined with NGBoost for imbalanced datasets, such as synthetic minority oversampling technique (SMOTE), SMOTE-edited nearest neighbours (SMOTE-ENN), and SMOTE-tomek links (SMOTE-Tomek), the VAE-NGBoost model yielded the best performance. Finally, we developed a multilevel XAI model using feature sensitivity analysis, Tree Shapley Additive exPlanations (Tree SHAP), and Anchor to provide an in-depth exploration of the decision-making mechanics of VAE-NGBoost, further enhancing the accountability of tree-based ensemble models in predicting rock burst occurrences.
AbstractList We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a variational autoencoder (VAE) to address the imbalance rock burst dataset, and proposed a multilevel explainable artificial intelligence (XAI) tailored for treebased ensemble learning. We collected 537 data from realworld rock burst records and selected four critical features contributing to rock burst occurrences. Initially, we employed data visualization to gain insight into the data's structure and performed correlation analysis to explore the data distribution and feature relationships. Then, we set up a VAE model to generate samples for the minority class due to the imbalanced class distribution. In conjunction with the VAE, we compared and evaluated six stateoftheart ensemble models, including gradient boosting algorithms and the classical logistic regression model, for rock burst prediction. The results indicated that gradient boosting algorithms outperformed the classical single models, and the VAEclassifier outperformed the original classifier, with the VAENGBoost model yielding the most favorable results. Compared to other resampling methods combined with NGBoost for imbalanced datasets, such as synthetic minority oversampling technique (SMOTE), SMOTEedited nearest neighbours (SMOTEENN), and SMOTEtomek links (SMOTETomek), the VAENGBoost model yielded the best performance. Finally, we developed a multilevel XAI model using feature sensitivity analysis, Tree Shapley Additive exPlanations (Tree SHAP), and Anchor to provide an indepth exploration of the decisionmaking mechanics of VAENGBoost, further enhancing the accountability of treebased ensemble models in predicting rock burst occurrences.
We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a variational autoencoder (VAE) to address the imbalance rock burst dataset, and proposed a multilevel explainable artificial intelligence (XAI) tailored for tree-based ensemble learning. We collected 537 data from real-world rock burst records and selected four critical features contributing to rock burst occurrences. Initially, we employed data visualization to gain insight into the data's structure and performed correlation analysis to explore the data distribution and feature relationships. Then, we set up a VAE model to generate samples for the minority class due to the imbalanced class distribution. In conjunction with the VAE, we compared and evaluated six state-of-the-art ensemble models, including gradient boosting algorithms and the classical logistic regression model, for rock burst prediction. The results indicated that gradient boosting algorithms outperformed the classical single models, and the VAE-classifier outperformed the original classifier, with the VAE-NGBoost model yielding the most favorable results. Compared to other resampling methods combined with NGBoost for imbalanced datasets, such as synthetic minority oversampling technique (SMOTE), SMOTE-edited nearest neighbours (SMOTE-ENN), and SMOTE-tomek links (SMOTE-Tomek), the VAE-NGBoost model yielded the best performance. Finally, we developed a multilevel XAI model using feature sensitivity analysis, Tree Shapley Additive exPlanations (Tree SHAP), and Anchor to provide an in-depth exploration of the decision-making mechanics of VAE-NGBoost, further enhancing the accountability of tree-based ensemble models in predicting rock burst occurrences.
Author Liang, Zenglong
Guo, Hongwei
Dong, Miao
Lin, Shan
Zheng, Hong
Author_xml – sequence: 1
  givenname: Shan
  surname: Lin
  fullname: Lin, Shan
  organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Zenglong
  surname: Liang
  fullname: Liang, Zenglong
  organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: Miao
  surname: Dong
  fullname: Dong, Miao
  organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 4
  givenname: Hongwei
  surname: Guo
  fullname: Guo, Hongwei
  email: ghway0723@gmail.com, hw-cee.guo@polyu.edu.hk
  organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 5
  givenname: Hong
  surname: Zheng
  fullname: Zheng, Hong
  organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
BookMark eNqFkc1u1DAUhSNUJErpE7CJxDrBf4mdBQtU8TNSpW5gbV07N1OHjD3YTqFvj2eCKsQCVrau7ncsn-9ldeGDx6p6TUlLCe3fzu3qx3RsGWG8pbQlRD2rLpnoZTP0Ulz8cX9RXac0E0IYUVLJ7rL6sTsYWMBbHOsY7LfarDHlGlLClA7oc70m5_f1A0QH2QUPSw1rDuhtGDE26O83eB9hdKd9E0LKJwSWfYgu3x9SDX6s8edxAefBuMXlx1fV8wmWhNe_z6vq68cPX24-N7d3n3Y3728bKwTLDfQSR66EMAAMZdcjYR1OneqIUXwiijDDcCCUczF0Ejs7Wm5UZ6giYNHyq2q35Y4BZn2M7gDxUQdw-jwIca8hZmcX1IKbkfJO8V5KgT2oifXTWIbCgpmMLFlvtqxjDN9XTFnPYY2lkaQ5kUJROQhatvi2ZWNIKeL09Col-iRMz_osTJ-EaUp1EVao4S_KunwuPEdwy3_YdxuLpcgHh1EnW1QUKy6izeWn7p_8L1tDt-E
CitedBy_id crossref_primary_10_1007_s11709_025_0204_9
crossref_primary_10_1016_j_engfailanal_2024_109059
crossref_primary_10_1016_j_tust_2025_106820
crossref_primary_10_3390_electronics13244984
crossref_primary_10_1080_17499518_2025_2547367
crossref_primary_10_1016_j_engstruct_2025_119709
crossref_primary_10_1007_s11709_025_1135_1
crossref_primary_10_1007_s10462_025_11175_0
crossref_primary_10_1016_j_jrmge_2025_02_023
crossref_primary_10_3390_app15126466
crossref_primary_10_1002_msd2_70004
crossref_primary_10_1016_j_enggeo_2025_108245
crossref_primary_10_2478_amns_2024_2933
Cites_doi 10.1016/j.chemolab.2023.104933
10.1016/j.engappai.2023.106022
10.1007/s00603-019-01799-4
10.1021/ac051495j
10.1016/j.tust.2019.04.019
10.1016/j.tust.2018.09.022
10.1007/s00603-015-0905-9
10.1038/nature14539
10.32604/cmc.2019.04589
10.3390/app13063950
10.1609/aaai.v32i1.11491
10.1002/9780470725184
10.1016/j.ijmst.2023.07.006
10.1007/s11771-020-4506-8
10.1016/j.ijrmms.2015.06.011
10.1007/11427469_155
10.1145/507533.507538
10.1007/s10064-017-1117-1
10.1007/s00603-021-02369-3
10.1016/j.advengsoft.2022.103398
10.1007/s11771-017-3619-1
10.1016/j.compstruct.2023.117601
10.1016/j.compstruct.2021.114269
10.1109/IJCNN.2019.8852155
10.1109/ACCESS.2023.3262020
10.1201/9780203883204.ch160
10.1613/jair.953
10.1016/j.compscitech.2022.109425
10.1016/j.tust.2023.105319
10.1111/coin.12410
10.3390/cancers14122897
10.1002/eng2.12298
10.3390/math11040838
10.1007/s10999-023-09679-0
10.3390/polym12122990
10.1007/s11704-019-8208-z
10.1016/j.renene.2023.119565
10.1016/j.neuroimage.2023.120253
10.1016/j.tust.2020.103287
10.1155/2022/6156210
10.1061/(ASCE)CP.1943-5487.0000553
10.1016/j.autcon.2023.105012
10.1016/j.techsoc.2023.102347
10.1109/ACCESS.2021.3102399
10.23919/MIPRO.2019.8757212
10.1080/15567036.2019.1655114
10.1016/j.future.2022.03.007
10.1016/j.measurement.2022.110888
10.1016/j.enggeo.2018.03.010
10.1016/j.ghm.2022.12.002
10.1145/2939672.2939785
10.3724/SP.J.1235.2012.00097
10.1016/j.neunet.2014.09.003
10.1109/ACCESS.2022.3173059
10.1155/2020/5735496
10.1007/s10064-020-01861-4
10.21105/joss.00097
10.1088/1361-6501/ac9ed3
10.1016/j.enggeo.2020.105515
10.3390/min13010103
10.1142/S0219876221410231
10.1504/IJHM.2022.127037
10.2113/2022/5354402
10.1016/j.eswa.2023.121294
10.1016/j.compstruct.2022.115393
10.1016/j.mechmat.2019.103280
10.1109/ACCESS.2021.3071389
10.1007/s10064-021-02175-9
ContentType Journal Article
Copyright 2024 Tongji University
2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 Tongji University
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 6I.
AAFTH
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1016/j.undsp.2023.11.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
Engineering
EISSN 2467-9674
EndPage 245
ExternalDocumentID oai_doaj_org_article_43bd135836774e6a8f26fd3bd4cabfb7
10_1016_j_undsp_2023_11_008
S2467967424000060
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABDBF
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADVLN
AEUPX
AFFHD
AFKRA
AFPUW
AIGII
AKBMS
AKYEP
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c442t-a67ed3844baa2e756e025ef5850b83f0802b2e901334957e5cdc3b85b180acec3
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001189024000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2467-9674
2096-2754
IngestDate Mon Nov 10 04:29:33 EST 2025
Fri Jul 25 11:55:52 EDT 2025
Tue Nov 18 21:46:47 EST 2025
Sat Nov 29 01:48:07 EST 2025
Sat Jun 29 15:31:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords VAE
Explainable artificial intelligence (XAI)
Ensemble learning
Rock burst
Gradient boosting
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-a67ed3844baa2e756e025ef5850b83f0802b2e901334957e5cdc3b85b180acec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/43bd135836774e6a8f26fd3bd4cabfb7
PQID 3074817941
PQPubID 6865017
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_43bd135836774e6a8f26fd3bd4cabfb7
proquest_journals_3074817941
crossref_primary_10_1016_j_undsp_2023_11_008
crossref_citationtrail_10_1016_j_undsp_2023_11_008
elsevier_sciencedirect_doi_10_1016_j_undsp_2023_11_008
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Shanghai
PublicationPlace_xml – name: Shanghai
PublicationTitle Underground space (Beijing)
PublicationYear 2024
Publisher Elsevier B.V
KeAi Publishing Communications Ltd
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing Communications Ltd
– name: KeAi Communications Co., Ltd
References Tao, Peng, Li, Sun, Li, Wang (b0290) 2024; 237
Tholke, Mantilla-Ramos, Abdelhedi, Maschke, Dehgan, Harel (b0300) 2023; 277
Liu, R., Ye, Y. C., Zhang, G. Q., Yao, N., Chen, H., & Wang, Q. H. (2019). Grading Prediction Model of Rockburst Based on Rough Set-Multidimensional Normal Cloud.
Zhang, K., Schölkopf, B., Muandet, K., & Wang, Z. (2013).
Schmidhuber (b0275) 2015; 61
Wagner (b0315) 2019; 52
Paper presented at the 32nd Conference on Neural Information Processing Systems (NIPS), Dec 02-08, Montreal, CANADA.
Cai, Wang, Wang (b0020) 2001; 20
Duan, T., Avati, A., Ding, D. Y., Thai, K. K., Basu, S., Ng, A., et al. (2019). NGBoost: Natural Gradient Boosting for Probabilistic Prediction. Paper presented at the 25th Americas Conference on Information Systems of the Association-for-Information-Systems (AMCIS), Aug 15–17, Cancun, MEXICO.
Topuz, Alp (b0310) 2023; 154
Shi, Zhou, Dong, Hu, Wang, Chen (b0280) 2010; 29
Paper presented at the International Joint Conference on Neural Networks (IJCNN), Jul 14-19, Budapest, HUNGARY.
Wang, Wei, Wang (b0335) 2023; 34
Jiang, L. F. (2008).
(Vol. 3498, pp. 983-986).
Paper presented at the 32nd AAAI Conference on Artificial Intelligence / 30th Innovative Applications of Artificial Intelligence Conference / 8th AAAI Symposium on Educational Advances in Artificial Intelligence, Feb 02-07, New Orleans, LA.
Zhang, Liu (b0410) 2022; 133
Paper presented at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Aug 13-17, San Francisco, CA.
Wang, Chen, Liao, Hou, Li, Wang (b0320) 2020; 27
.
Li, X. H., Wang, X. F., Kang, Y., & He, Z. (2005). Artificial neural network for prediction of rockburst in deep-buried long tunnel. In J. Wang, X. Liao & Z. Yi (Eds.)
Liu, Zhao, Xiao, Yin (b0210) 2023; 13
Paper presented at the International Young Scholars Symposium on Rock Mechanics, Apr 28-May 02, Beijing, Peoples R China.
Xia, Zhang, Wang, Liu, Sang, Liu (b0350) 2023; 140
Du, Z. J., Xu, M. G., Liu, Z. P., & Wu, X. (2006). Laboratory integratedevaluation method for engineering wall rock rock-burst.
Xue, Bai, Kong, Qiu, Li, Su (b0370) 2020; 268
(Publication No.5 page-143) [Doctoral dissertation, Inner Mongolia University Of Science & Technology]. (in Chinese).
Zhou, Li, Mitri (b0455) 2016; 30
Xia, B. W. (2007).
(Publication No.12 page-88) [Master’s thesis, Southwest Jiaotong University]. (in Chinese).
Xu, Lu, Pan, Qin (b0360) 2022; 44
Zhu, Wu, Luo, Jia, Wang, Fang (b0465) 2023; 20
Zhao, H. B. (2005a). Classification of rockburst using support vector machine.
(04), 642-644. (in Chinese).
(11), 26-30.(in Chinese).
Feng, Feng, Chen, Xiao (b0060) 2015; 80
Chen, T. Q., Guestrin, C., & Assoc Comp, M. (2016).
Rodrigues, Luna, Pinto (b0265) 2023; 240
Zhang, Zhang, Qiu (b0400) 2010; 35
Hao, Shi, Wang, Bai, Chen (b0080) 2016; 37
Micci-Barreca (b0225) 2001; 3
Pan, Wang (b0240) 2023; 1
(Publication No.1 page-94) [Master’s thesis, Chongqing University]. (in Chinese).
Zhou, Jia, Wang (b0460) 2020; 12
Zhao, Chen (b0430) 2020; 2020
Guo, Guo, Zhang, Huang (b0075) 2022; 10
Zhao, Song, Wang, Guo, Marigentti, Liu (b0435) 2023; 121
Liu, Lu (b0160) 2022; 5
Saltelli, Ratto, A., Andres, M., & Campol, T. (2008). Global Sensitivity Analysis. The Primer.
Paper presented at the 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 20-24, Opatija, CROATIA.
Bijlsma, Bobeldijk, Verheij, Ramaker, Kochhar, Macdonald (b0015) 2006; 78
Liu, Vu-Bac, Zhuang, Lu, Fu, Rabczuk (b0190) 2023; 176
Li, Li, Yang (b0140) 2017; 24
Ribeiro, M. T., Singh, S., Guestrin, C., & Aaai. (2018).
Susan, Kumar (b0285) 2020; 3
Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv:1312.6114. Retrieved from
Liu, D. Y., & Liu, G. S. (2019).
Ke, G. L., Meng, Q., Finley, T., Wang, T. F., Chen, W., Ma, W. D., et al. (2017).
Paper presented at the 31st Annual Conference on Neural Information Processing Systems (NIPS), Dec 04-09, Long Beach, CA.
Li, Liu, Armaghani, Xiao, Zhou (b0135) 2022; 12
Yao, J. M., & He, F. L. (2008).
Liu, B. K., Wang, Y. Z., Rabczuk, T., Olofsson, T., & Lu, W. Z. (2023c). Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks. arXiv:2307.16785. Retrieved from
Wang, Liu, Ma, He (b0325) 2022; 2021
Xue, Bai, Qiu, Kong, Li (b0375) 2020; 98
Zhang, Su, Yan (b0415) 2011; 7
Waqar, Guo, Qi (b0340) 2023; 13
He, Wang (b0085) 2023; 33
Jia, Y. P. (2014).
Lin, S., Liang, Z. L., Zhao, S. X., Dong, M., Guo, H. W., & Zheng, H. (2023). A comprehensive evaluation of ensemble machine learning in geotechnical stability analysis and explainability. [Article; Early Access].
Liang, Sari, Zhao, McKinnon, Wu (b0150) 2021; 54
Zhuang, Zhou (b0470) 2019; 59
Liu, Vu-Bac, Zhuang, Fu, Rabczuk (b0185) 2022; 224
He, Xia, Jia, Gong, Zhao, Liang (b0090) 2012; 4
Tian, R. (2021).
Chawla, Bowyer, Hall, Kegelmeyer (b0025) 2002; 16
ElShawi, Sherif, Al-Mallah, Sakr (b0050) 2021; 37
(Publication No.2 page-130) [Doctoral dissertation, Zhejiang University]. CNKI. (in Chinese).
(3), 48-55. (in Chinese).
Liu, Vu-Bac, Rabczuk (b0175) 2021; 273
Liu, Jiang, Wang, Wu, Liu (b0220) 2022; 192
Faradonbeh, Taheri, Karakus (b0055) 2022; 119
Pu, Apel, Xu (b0250) 2019; 90
Zhao, H. B. (2005b).
Lee, Jeong (b0130) 2016; 49
Zhang, Zhang, Wu, Zhao, Fu (b0405) 2020; 79
Paper presented at the Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28.
Zhou, Chen, Li, Liu, Wang (b0445) 2021; 80
Herman, Usher (b0095) 2017; 2
Mienye, Sun (b0230) 2023; 11
Puh, M., & Brkic, L. (2019).
Liu, Vu-Bac, Zhuang, Fu, Rabczuk (b0180) 2022; 289
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018).
Liu, Lu, Olofsson, Zhuang, Rabczuk (b0165) 2024; 327
Xu, Du, Yao, Liu (b0365) 2008; S1
Ahmad, Katman, Al-Mansob, Ahmad, Safdar, Alguno (b0010) 2022; 2022
Liu, Penaka, Lu, Feng, Rebbling, Olofsson (b0170) 2023; 75
Zhao, Nasrullah, Li (b0440) 2019; 20
Xue, Li, Li, Qiu, Tao, Wang (b0380) 2019; 78
Yong, Reed, Wagener, Werkhoven (b0390) 2008
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative Adversarial Networks. arXiv:1406.2661. Retrieved from
doi:10.48550/arXiv.1406.2661.
Khushi, Shaukat, Alam, Hameed, Uddin, Luo (b0115) 2021; 9
Afraei, Shahriar, Madani (b0005) 2019; 83
Zhou, Chen, Zhang, Wang, He, Feng (b0450) 2020; 28
Gong, Li (b0065) 2007; 26
LeCun, Bengio, Hinton (b0125) 2015; 521
Liu, Vu-Bac, Zhuang, Rabczuk (b0195) 2020; 142
Tasci, Zhuge, Camphausen, Krauze (b0295) 2022; 14
Xing, Kulatilake, Sandbak (b0355) 2018; 238
Wang, Ma, Yan (b0330) 2023; 11
Dong, Yu, Cao, Shi, Ma (b0035) 2020; 14
Mirza, Haroon, Khan, Padhani, Syed (b0235) 2021; 9
Paper presented at the Asia Pacific Symposium on Safety 2005, Nov 02-04, Shaoxing, Peoples R China.
Wang (10.1016/j.undsp.2023.11.008_b0330) 2023; 11
Liu (10.1016/j.undsp.2023.11.008_b0170) 2023; 75
Xue (10.1016/j.undsp.2023.11.008_b0370) 2020; 268
He (10.1016/j.undsp.2023.11.008_b0090) 2012; 4
Herman (10.1016/j.undsp.2023.11.008_b0095) 2017; 2
Zhao (10.1016/j.undsp.2023.11.008_b0435) 2023; 121
10.1016/j.undsp.2023.11.008_b0255
Zhou (10.1016/j.undsp.2023.11.008_b0460) 2020; 12
Liu (10.1016/j.undsp.2023.11.008_b0220) 2022; 192
Wang (10.1016/j.undsp.2023.11.008_b0325) 2022; 2021
Liu (10.1016/j.undsp.2023.11.008_b0190) 2023; 176
10.1016/j.undsp.2023.11.008_b0215
Mirza (10.1016/j.undsp.2023.11.008_b0235) 2021; 9
Liu (10.1016/j.undsp.2023.11.008_b0180) 2022; 289
Zhou (10.1016/j.undsp.2023.11.008_b0450) 2020; 28
ElShawi (10.1016/j.undsp.2023.11.008_b0050) 2021; 37
Li (10.1016/j.undsp.2023.11.008_b0135) 2022; 12
Khushi (10.1016/j.undsp.2023.11.008_b0115) 2021; 9
Zhuang (10.1016/j.undsp.2023.11.008_b0470) 2019; 59
Faradonbeh (10.1016/j.undsp.2023.11.008_b0055) 2022; 119
Yong (10.1016/j.undsp.2023.11.008_b0390) 2008
Liu (10.1016/j.undsp.2023.11.008_b0160) 2022; 5
Xu (10.1016/j.undsp.2023.11.008_b0365) 2008; S1
Wang (10.1016/j.undsp.2023.11.008_b0320) 2020; 27
Pu (10.1016/j.undsp.2023.11.008_b0250) 2019; 90
Susan (10.1016/j.undsp.2023.11.008_b0285) 2020; 3
Chawla (10.1016/j.undsp.2023.11.008_b0025) 2002; 16
Guo (10.1016/j.undsp.2023.11.008_b0075) 2022; 10
Bijlsma (10.1016/j.undsp.2023.11.008_b0015) 2006; 78
LeCun (10.1016/j.undsp.2023.11.008_b0125) 2015; 521
Zhang (10.1016/j.undsp.2023.11.008_b0405) 2020; 79
10.1016/j.undsp.2023.11.008_b0245
Rodrigues (10.1016/j.undsp.2023.11.008_b0265) 2023; 240
10.1016/j.undsp.2023.11.008_b0200
Liu (10.1016/j.undsp.2023.11.008_b0210) 2023; 13
Zhao (10.1016/j.undsp.2023.11.008_b0430) 2020; 2020
Wang (10.1016/j.undsp.2023.11.008_b0335) 2023; 34
Hao (10.1016/j.undsp.2023.11.008_b0080) 2016; 37
10.1016/j.undsp.2023.11.008_b0205
Cai (10.1016/j.undsp.2023.11.008_b0020) 2001; 20
He (10.1016/j.undsp.2023.11.008_b0085) 2023; 33
Xia (10.1016/j.undsp.2023.11.008_b0350) 2023; 140
10.1016/j.undsp.2023.11.008_b0040
10.1016/j.undsp.2023.11.008_b0120
Liu (10.1016/j.undsp.2023.11.008_b0175) 2021; 273
10.1016/j.undsp.2023.11.008_b0045
Lee (10.1016/j.undsp.2023.11.008_b0130) 2016; 49
Xue (10.1016/j.undsp.2023.11.008_b0380) 2019; 78
Xing (10.1016/j.undsp.2023.11.008_b0355) 2018; 238
Feng (10.1016/j.undsp.2023.11.008_b0060) 2015; 80
10.1016/j.undsp.2023.11.008_b0070
Xu (10.1016/j.undsp.2023.11.008_b0360) 2022; 44
Afraei (10.1016/j.undsp.2023.11.008_b0005) 2019; 83
Liu (10.1016/j.undsp.2023.11.008_b0195) 2020; 142
Shi (10.1016/j.undsp.2023.11.008_b0280) 2010; 29
Tasci (10.1016/j.undsp.2023.11.008_b0295) 2022; 14
Dong (10.1016/j.undsp.2023.11.008_b0035) 2020; 14
Tholke (10.1016/j.undsp.2023.11.008_b0300) 2023; 277
Li (10.1016/j.undsp.2023.11.008_b0140) 2017; 24
Zhou (10.1016/j.undsp.2023.11.008_b0445) 2021; 80
Liang (10.1016/j.undsp.2023.11.008_b0150) 2021; 54
Tao (10.1016/j.undsp.2023.11.008_b0290) 2024; 237
Zhang (10.1016/j.undsp.2023.11.008_b0410) 2022; 133
10.1016/j.undsp.2023.11.008_b0270
10.1016/j.undsp.2023.11.008_b0030
Zhang (10.1016/j.undsp.2023.11.008_b0415) 2011; 7
10.1016/j.undsp.2023.11.008_b0395
10.1016/j.undsp.2023.11.008_b0155
Liu (10.1016/j.undsp.2023.11.008_b0165) 2024; 327
Pan (10.1016/j.undsp.2023.11.008_b0240) 2023; 1
10.1016/j.undsp.2023.11.008_b0110
Schmidhuber (10.1016/j.undsp.2023.11.008_b0275) 2015; 61
Zhang (10.1016/j.undsp.2023.11.008_b0400) 2010; 35
Micci-Barreca (10.1016/j.undsp.2023.11.008_b0225) 2001; 3
Gong (10.1016/j.undsp.2023.11.008_b0065) 2007; 26
Mienye (10.1016/j.undsp.2023.11.008_b0230) 2023; 11
Waqar (10.1016/j.undsp.2023.11.008_b0340) 2023; 13
Wagner (10.1016/j.undsp.2023.11.008_b0315) 2019; 52
10.1016/j.undsp.2023.11.008_b0145
10.1016/j.undsp.2023.11.008_b0420
Ahmad (10.1016/j.undsp.2023.11.008_b0010) 2022; 2022
Liu (10.1016/j.undsp.2023.11.008_b0185) 2022; 224
10.1016/j.undsp.2023.11.008_b0345
10.1016/j.undsp.2023.11.008_b0425
10.1016/j.undsp.2023.11.008_b0105
Zhu (10.1016/j.undsp.2023.11.008_b0465) 2023; 20
10.1016/j.undsp.2023.11.008_b0305
Topuz (10.1016/j.undsp.2023.11.008_b0310) 2023; 154
10.1016/j.undsp.2023.11.008_b0260
Zhou (10.1016/j.undsp.2023.11.008_b0455) 2016; 30
10.1016/j.undsp.2023.11.008_b0100
Xue (10.1016/j.undsp.2023.11.008_b0375) 2020; 98
Zhao (10.1016/j.undsp.2023.11.008_b0440) 2019; 20
10.1016/j.undsp.2023.11.008_b0385
References_xml – volume: S1
  start-page: 2921
  year: 2008
  end-page: 2928
  ident: b0365
  article-title: Rockburst prediction of chengchao iron mine during deep mining
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 78
  start-page: 417
  year: 2019
  end-page: 429
  ident: b0380
  article-title: Prediction of rock burst in underground caverns based on rough set and extensible comprehensive evaluation
  publication-title: Bulletin of Engineering Geology and the Environment
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0125
  article-title: Deep learning. [Review]
  publication-title: Nature
– volume: 192
  year: 2022
  ident: b0220
  article-title: A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis
  publication-title: Measurement
– volume: 52
  start-page: 1417
  year: 2019
  end-page: 1446
  ident: b0315
  article-title: Deep mining: A rock engineering challenge
  publication-title: Rock Mechanics and Rock Engineering
– reference: Zhang, K., Schölkopf, B., Muandet, K., & Wang, Z. (2013).
– volume: 24
  start-page: 2105
  year: 2017
  end-page: 2113
  ident: b0140
  article-title: Rock burst prediction based on genetic algorithms and extreme learning machine
  publication-title: Journal of Central South University
– volume: 2020
  year: 2020
  ident: b0430
  article-title: Data-Driven Model for Rockburst Prediction
  publication-title: Mathematical Problems in Engineering
– volume: 289
  year: 2022
  ident: b0180
  article-title: Stochastic full-range multiscale modeling of thermal conductivity of Polymeric carbon nanotubes composites: A machine learning approach
  publication-title: Composite Structures
– reference: (11), 26-30.(in Chinese).
– reference: Zhao, H. B. (2005a). Classification of rockburst using support vector machine.
– reference: Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018).
– volume: 2022
  year: 2022
  ident: b0010
  article-title: Prediction of Rockburst Intensity Grade in Deep Underground Excavation Using Adaptive Boosting Classifier
  publication-title: Complexity
– volume: 7
  start-page: 392
  year: 2011
  end-page: 397
  ident: b0415
  article-title: Method of identifying rockburst grades based on gaussian process machine learning
  publication-title: Chinese Journal of Underground Space and Engineering
– volume: 26
  start-page: 1012
  year: 2007
  end-page: 1018
  ident: b0065
  article-title: A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– reference: Paper presented at the 31st Annual Conference on Neural Information Processing Systems (NIPS), Dec 04-09, Long Beach, CA.
– volume: 80
  start-page: 3885
  year: 2021
  end-page: 3902
  ident: b0445
  article-title: Rockburst prediction for hard rock and deep-lying long tunnels based on the entropy weight ideal point method and geostress field inversion: A case study of the Sangzhuling Tunnel
  publication-title: Bulletin of Engineering Geology and the Environment
– volume: 75
  year: 2023
  ident: b0170
  article-title: Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden
  publication-title: Technology in Society
– volume: 140
  year: 2023
  ident: b0350
  article-title: Prediction of bending strength of glass fiber reinforced methacrylate-based pipeline UV-CIPP rehabilitation materials based on machine learning
  publication-title: Tunnelling and Underground Space Technology
– volume: 33
  start-page: 1065
  year: 2023
  end-page: 1082
  ident: b0085
  article-title: Rock dynamics in deep mining
  publication-title: International Journal of Mining Science and Technology
– volume: 327
  year: 2024
  ident: b0165
  article-title: Stochastic interpretable machine learning based multiscale modeling in thermal conductivity of Polymeric graphene-enhanced composites
  publication-title: Composite Structures
– reference: Paper presented at the International Joint Conference on Neural Networks (IJCNN), Jul 14-19, Budapest, HUNGARY.
– reference: Li, X. H., Wang, X. F., Kang, Y., & He, Z. (2005). Artificial neural network for prediction of rockburst in deep-buried long tunnel. In J. Wang, X. Liao & Z. Yi (Eds.),
– volume: 59
  start-page: 57
  year: 2019
  end-page: 77
  ident: b0470
  article-title: The Prediction of Self-Healing Capacity of Bacteria-Based Concrete Using Machine Learning Approaches
  publication-title: Cmc-Computers Materials & Continua
– volume: 28
  start-page: 1386
  year: 2020
  end-page: 1396
  ident: b0450
  article-title: Efficiency coefficient method and ground stress field inversion for rockburst prediction in deep and long tunnel
  publication-title: Journal of Engineering Geology
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b0275
  article-title: Deep learning in neural networks: An overview.
  publication-title: Neural Networks
– volume: 4
  start-page: 97
  year: 2012
  end-page: 114
  ident: b0090
  article-title: Studies on classification, criteria and control of rockbursts
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
– volume: 27
  start-page: 2834
  year: 2020
  end-page: 2848
  ident: b0320
  article-title: Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst
  publication-title: Journal of Central South University
– reference: Liu, B. K., Wang, Y. Z., Rabczuk, T., Olofsson, T., & Lu, W. Z. (2023c). Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks. arXiv:2307.16785. Retrieved from
– reference: Saltelli, Ratto, A., Andres, M., & Campol, T. (2008). Global Sensitivity Analysis. The Primer.
– reference: (04), 642-644. (in Chinese).
– reference: Paper presented at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Aug 13-17, San Francisco, CA.
– volume: 10
  start-page: 50427
  year: 2022
  end-page: 50447
  ident: b0075
  article-title: Research on Rockburst Classification Prediction Based on BP-SVM Model
  publication-title: Ieee Access
– reference: Zhao, H. B. (2005b).
– reference: Xia, B. W. (2007).
– reference: Jiang, L. F. (2008).
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b0025
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 30
  start-page: 4016003
  year: 2016
  ident: b0455
  article-title: Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods
  publication-title: Journal of Computing in Civil Engineering
– volume: 1
  start-page: 1
  year: 2023
  end-page: 17
  ident: b0240
  article-title: Disturbance response instability theory of rock bursts in coal mines and its application
  publication-title: Geohazard Mechanics
– reference: (Publication No.12 page-88) [Master’s thesis, Southwest Jiaotong University]. (in Chinese).
– reference: Paper presented at the Asia Pacific Symposium on Safety 2005, Nov 02-04, Shaoxing, Peoples R China.
– volume: 13
  start-page: 103
  year: 2023
  ident: b0210
  article-title: Ensemble Tree Model for Long-Term Rockburst Prediction in Incomplete Datasets
  publication-title: Minerals
– reference: . Paper presented at the Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28.
– volume: 238
  start-page: 62
  year: 2018
  end-page: 75
  ident: b0355
  article-title: Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine
  publication-title: Engineering Geology
– volume: 12
  start-page: 2990
  year: 2020
  ident: b0460
  article-title: Global Sensitivity Analysis for the Polymeric Microcapsules in Self-Healing Cementitious Composites
  publication-title: Polymers
– volume: 13
  start-page: 3950
  year: 2023
  ident: b0340
  article-title: A comprehensive review of mechanisms, predictive techniques, and control strategies of rockburst
  publication-title: Applied Sciences-Basel
– volume: 80
  start-page: 89
  year: 2015
  end-page: 100
  ident: b0060
  article-title: Microseismic sequences associated with rockbursts in the tunnels of the Jinping II hydropower station
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 37
  start-page: 1633
  year: 2021
  end-page: 1650
  ident: b0050
  article-title: Interpretability in healthcare: A comparative study of local machine learning interpretability techniques
  publication-title: Computational Intelligence
– reference: Liu, R., Ye, Y. C., Zhang, G. Q., Yao, N., Chen, H., & Wang, Q. H. (2019). Grading Prediction Model of Rockburst Based on Rough Set-Multidimensional Normal Cloud.
– volume: 154
  year: 2023
  ident: b0310
  article-title: Machine learning in architecture
  publication-title: Automation in Construction
– volume: 3
  start-page: 27
  year: 2001
  end-page: 32
  ident: b0225
  article-title: A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems
  publication-title: ACM SIGKDD Explorations Newsletter
– reference: Duan, T., Avati, A., Ding, D. Y., Thai, K. K., Basu, S., Ng, A., et al. (2019). NGBoost: Natural Gradient Boosting for Probabilistic Prediction. Paper presented at the 25th Americas Conference on Information Systems of the Association-for-Information-Systems (AMCIS), Aug 15–17, Cancun, MEXICO.
– volume: 83
  start-page: 324
  year: 2019
  end-page: 353
  ident: b0005
  article-title: Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 1: Literature review and data preprocessing procedure
  publication-title: Tunnelling and Underground Space Technology
– volume: 12
  start-page: 1
  year: 2022
  end-page: 23
  ident: b0135
  article-title: Novel ensemble intelligence methodologies for rockburst assessment in complex and variable environments. [Article]
  publication-title: Scientific Reports
– volume: 14
  start-page: 241
  year: 2020
  end-page: 258
  ident: b0035
  article-title: A survey on ensemble learning
  publication-title: Frontiers of Computer Science
– volume: 176
  year: 2023
  ident: b0190
  article-title: Al-DeMat: A web-based expert system platform for computationally expensive models in materials design
  publication-title: Advances in Engineering Software
– volume: 119
  year: 2022
  ident: b0055
  article-title: The propensity of the over-stressed rock masses to different failure mechanisms based on a hybrid probabilistic approach
  publication-title: Tunnelling and Underground Space Technology
– volume: 9
  start-page: 109960
  year: 2021
  end-page: 109975
  ident: b0115
  article-title: A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data
  publication-title: IEEE Access
– reference: Paper presented at the 32nd Conference on Neural Information Processing Systems (NIPS), Dec 02-08, Montreal, CANADA.
– volume: 240
  year: 2023
  ident: b0265
  article-title: An evaluation strategy to select and discard sampling preprocessing methods for imbalanced datasets: A focus on classification models
  publication-title: Chemometrics and Intelligent Laboratory Systems
– reference: (Publication No.2 page-130) [Doctoral dissertation, Zhejiang University]. CNKI. (in Chinese).
– reference: Lin, S., Liang, Z. L., Zhao, S. X., Dong, M., Guo, H. W., & Zheng, H. (2023). A comprehensive evaluation of ensemble machine learning in geotechnical stability analysis and explainability. [Article; Early Access].
– reference: Liu, D. Y., & Liu, G. S. (2019).
– reference: (3), 48-55. (in Chinese).
– volume: 14
  start-page: 2897
  year: 2022
  ident: b0295
  article-title: Bias and class imbalance in oncologic data-towards inclusive and transferrable ai in large scale oncology data sets
  publication-title: Cancers
– reference: Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv:1312.6114. Retrieved from
– volume: 2
  start-page: 97
  year: 2017
  ident: b0095
  article-title: SALib: An open-source Python library for Sensitivity Analysis
  publication-title: Journal of Open Source Software
– reference: Ke, G. L., Meng, Q., Finley, T., Wang, T. F., Chen, W., Ma, W. D., et al. (2017).
– volume: 90
  start-page: 12
  year: 2019
  end-page: 18
  ident: b0250
  article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier
  publication-title: Tunnelling and Underground Space Technology
– volume: 133
  start-page: 213
  year: 2022
  end-page: 227
  ident: b0410
  article-title: On IoT intrusion detection based on data augmentation for enhancing learning on unbalanced samples
  publication-title: Future Generation Computer Systems-the International Journal of Escience
– reference: Ribeiro, M. T., Singh, S., Guestrin, C., & Aaai. (2018).
– reference: (Vol. 3498, pp. 983-986).
– volume: 5
  start-page: 336
  year: 2022
  end-page: 365
  ident: b0160
  article-title: Surrogate models in machine learning for computational stochastic multi-scale modelling in composite materials design
  publication-title: International Journal of Hydromechatronics
– volume: 11
  start-page: 838
  year: 2023
  ident: b0330
  article-title: rockburst intensity classification prediction based on multi-model ensemble learning algorithms
  publication-title: Mathematics
– volume: 79
  start-page: 4891
  year: 2020
  end-page: 4903
  ident: b0405
  article-title: Rockburst prediction model based on comprehensive weight and extension methods and its engineering application
  publication-title: Bulletin of Engineering Geology and the Environment
– volume: 273
  start-page: 114269
  year: 2021
  ident: b0175
  article-title: A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms
  publication-title: Composite Structures
– volume: 98
  year: 2020
  ident: b0375
  article-title: Predicting rockburst with database using particle swarm optimization and extreme learning machine
  publication-title: Tunnelling and Underground Space Technology
– volume: 35
  start-page: 1461
  year: 2010
  end-page: 1465
  ident: b0400
  article-title: Application of extension evaluation method in rockburst prediction based on rough set theory
  publication-title: Journal of China Coal Society
– volume: 237
  year: 2024
  ident: b0290
  article-title: Supervised contrastive representation learning with tree-structured parzen estimator Bayesian optimization for imbalanced tabular data
  publication-title: Expert Systems with Applications
– reference: .
– volume: 37
  start-page: 859
  year: 2016
  end-page: 866
  ident: b0080
  article-title: Application of cloud model to rating of rockburst based on rough set of FCM algorithm
  publication-title: Rock and Soil Mechanics
– reference: (Publication No.1 page-94) [Master’s thesis, Chongqing University]. (in Chinese).
– volume: 277
  year: 2023
  ident: b0300
  article-title: Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data
  publication-title: Neuroimage
– volume: 2021
  year: 2022
  ident: b0325
  article-title: A rockburst proneness evaluation method based on ultidimensional cloud model improved by control variable method and rockburst database
  publication-title: Lithosphere
– reference: Chen, T. Q., Guestrin, C., & Assoc Comp, M. (2016).
– volume: 54
  start-page: 1799
  year: 2021
  end-page: 1814
  ident: b0150
  article-title: Probability Estimates of Short-Term Rockburst Risk with Ensemble Classifiers
  publication-title: Rock Mechanics and Rock Engineering
– volume: 9
  start-page: 55879
  year: 2021
  end-page: 55897
  ident: b0235
  article-title: Deep Generative Models to Counter Class Imbalance: A Model-Metric Mapping With Proportion Calibration Methodology
  publication-title: IEEE Access
– year: 2008
  ident: b0390
  article-title: Comparison of parameter sensitivity analysis methods for lumped watershed model
  publication-title: Paper presented at the World Environmental & Water Resources Congress
– volume: 268
  year: 2020
  ident: b0370
  article-title: A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria
  publication-title: Engineering Geology
– volume: 20
  start-page: 2141023
  year: 2023
  ident: b0465
  article-title: Prediction of Early Compressive Strength of Ultrahigh-Performance Concrete Using Machine Learning Methods
  publication-title: International Journal of Computational Methods
– reference: Jia, Y. P. (2014).
– reference: Yao, J. M., & He, F. L. (2008).
– reference: . doi:10.48550/arXiv.1406.2661.
– volume: 29
  start-page: 2720
  year: 2010
  end-page: 2726
  ident: b0280
  article-title: Application of unascertained measurement model to prediction of classification of rockburst intensity
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– reference: Paper presented at the 32nd AAAI Conference on Artificial Intelligence / 30th Innovative Applications of Artificial Intelligence Conference / 8th AAAI Symposium on Educational Advances in Artificial Intelligence, Feb 02-07, New Orleans, LA.
– volume: 44
  start-page: 3016
  year: 2022
  end-page: 3035
  ident: b0360
  article-title: Study on rock burst characteristics of coal mine roadway in China
  publication-title: Energy Sources Part a-Recovery Utilization and Environmental Effects
– volume: 20
  start-page: 96
  year: 2019
  ident: b0440
  article-title: PyOD: A Python Toolbox for Scalable Outlier Detection
  publication-title: Journal of Machine Learning Research
– reference: Du, Z. J., Xu, M. G., Liu, Z. P., & Wu, X. (2006). Laboratory integratedevaluation method for engineering wall rock rock-burst.
– volume: 49
  start-page: 2055
  year: 2016
  end-page: 2064
  ident: b0130
  article-title: Experimental Study of Estimating the Subgrade Reaction Modulus on Jointed Rock Foundations
  publication-title: Rock Mechanics and Rock Engineering
– volume: 11
  start-page: 30628
  year: 2023
  end-page: 30638
  ident: b0230
  article-title: A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection
  publication-title: IEEE Access
– reference: (Publication No.5 page-143) [Doctoral dissertation, Inner Mongolia University Of Science & Technology]. (in Chinese).
– reference: Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative Adversarial Networks. arXiv:1406.2661. Retrieved from
– volume: 142
  start-page: 103280
  year: 2020
  ident: b0195
  article-title: Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites
  publication-title: Mechanics of Materials
– volume: 3
  start-page: 12298
  year: 2020
  ident: b0285
  article-title: The balancing trick: Optimized sampling of imbalanced datasets—A brief survey of the recent State of the Art
  publication-title: Engineering Reports
– reference: .
– volume: 224
  year: 2022
  ident: b0185
  article-title: Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites
  publication-title: Composites Science and Technology
– volume: 20
  start-page: 38
  year: 2001
  end-page: 42
  ident: b0020
  article-title: Analysis on energy distribution and prediction of rock burst during deep mining excavation in linglong gold mine
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– reference: Paper presented at the 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 20-24, Opatija, CROATIA.
– reference: Paper presented at the International Young Scholars Symposium on Rock Mechanics, Apr 28-May 02, Beijing, Peoples R China.
– reference: Tian, R. (2021).
– volume: 34
  year: 2023
  ident: b0335
  article-title: A class imbalanced wafer defect classification framework based on variational autoencoder generative adversarial network
  publication-title: Measurement Science and Technology
– volume: 78
  start-page: 567
  year: 2006
  end-page: 574
  ident: b0015
  article-title: Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation
  publication-title: Analytical Chemistry
– reference: Puh, M., & Brkic, L. (2019).
– volume: 121
  year: 2023
  ident: b0435
  article-title: Forecasting the eddy current loss of a large turbo generator using hybrid ensemble Gaussian process regression
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 240
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0265
  article-title: An evaluation strategy to select and discard sampling preprocessing methods for imbalanced datasets: A focus on classification models
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2023.104933
– volume: 121
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0435
  article-title: Forecasting the eddy current loss of a large turbo generator using hybrid ensemble Gaussian process regression
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.106022
– volume: 52
  start-page: 1417
  issue: 5
  year: 2019
  ident: 10.1016/j.undsp.2023.11.008_b0315
  article-title: Deep mining: A rock engineering challenge
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-019-01799-4
– volume: 78
  start-page: 567
  issue: 2
  year: 2006
  ident: 10.1016/j.undsp.2023.11.008_b0015
  article-title: Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation
  publication-title: Analytical Chemistry
  doi: 10.1021/ac051495j
– ident: 10.1016/j.undsp.2023.11.008_b0420
– volume: 29
  start-page: 2720
  issue: S1
  year: 2010
  ident: 10.1016/j.undsp.2023.11.008_b0280
  article-title: Application of unascertained measurement model to prediction of classification of rockburst intensity
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 90
  start-page: 12
  year: 2019
  ident: 10.1016/j.undsp.2023.11.008_b0250
  article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2019.04.019
– volume: 83
  start-page: 324
  year: 2019
  ident: 10.1016/j.undsp.2023.11.008_b0005
  article-title: Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 1: Literature review and data preprocessing procedure
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2018.09.022
– volume: 49
  start-page: 2055
  issue: 6
  year: 2016
  ident: 10.1016/j.undsp.2023.11.008_b0130
  article-title: Experimental Study of Estimating the Subgrade Reaction Modulus on Jointed Rock Foundations
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-015-0905-9
– year: 2008
  ident: 10.1016/j.undsp.2023.11.008_b0390
  article-title: Comparison of parameter sensitivity analysis methods for lumped watershed model
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.undsp.2023.11.008_b0125
  article-title: Deep learning. [Review]
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 59
  start-page: 57
  issue: 1
  year: 2019
  ident: 10.1016/j.undsp.2023.11.008_b0470
  article-title: The Prediction of Self-Healing Capacity of Bacteria-Based Concrete Using Machine Learning Approaches
  publication-title: Cmc-Computers Materials & Continua
  doi: 10.32604/cmc.2019.04589
– volume: 13
  start-page: 3950
  issue: 6
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0340
  article-title: A comprehensive review of mechanisms, predictive techniques, and control strategies of rockburst
  publication-title: Applied Sciences-Basel
  doi: 10.3390/app13063950
– ident: 10.1016/j.undsp.2023.11.008_b0260
  doi: 10.1609/aaai.v32i1.11491
– ident: 10.1016/j.undsp.2023.11.008_b0270
  doi: 10.1002/9780470725184
– volume: 33
  start-page: 1065
  issue: 9
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0085
  article-title: Rock dynamics in deep mining
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2023.07.006
– volume: 27
  start-page: 2834
  issue: 10
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0320
  article-title: Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-020-4506-8
– ident: 10.1016/j.undsp.2023.11.008_b0045
– ident: 10.1016/j.undsp.2023.11.008_b0305
– volume: 80
  start-page: 89
  year: 2015
  ident: 10.1016/j.undsp.2023.11.008_b0060
  article-title: Microseismic sequences associated with rockbursts in the tunnels of the Jinping II hydropower station
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2015.06.011
– ident: 10.1016/j.undsp.2023.11.008_b0215
– ident: 10.1016/j.undsp.2023.11.008_b0145
  doi: 10.1007/11427469_155
– volume: 3
  start-page: 27
  issue: 1
  year: 2001
  ident: 10.1016/j.undsp.2023.11.008_b0225
  article-title: A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/507533.507538
– volume: 78
  start-page: 417
  issue: 1
  year: 2019
  ident: 10.1016/j.undsp.2023.11.008_b0380
  article-title: Prediction of rock burst in underground caverns based on rough set and extensible comprehensive evaluation
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-017-1117-1
– volume: 28
  start-page: 1386
  issue: 06
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0450
  article-title: Efficiency coefficient method and ground stress field inversion for rockburst prediction in deep and long tunnel
  publication-title: Journal of Engineering Geology
– volume: 20
  start-page: 38
  issue: 1
  year: 2001
  ident: 10.1016/j.undsp.2023.11.008_b0020
  article-title: Analysis on energy distribution and prediction of rock burst during deep mining excavation in linglong gold mine
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 54
  start-page: 1799
  issue: 4
  year: 2021
  ident: 10.1016/j.undsp.2023.11.008_b0150
  article-title: Probability Estimates of Short-Term Rockburst Risk with Ensemble Classifiers
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-021-02369-3
– volume: 176
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0190
  article-title: Al-DeMat: A web-based expert system platform for computationally expensive models in materials design
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2022.103398
– volume: 24
  start-page: 2105
  issue: 9
  year: 2017
  ident: 10.1016/j.undsp.2023.11.008_b0140
  article-title: Rock burst prediction based on genetic algorithms and extreme learning machine
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-017-3619-1
– volume: 327
  year: 2024
  ident: 10.1016/j.undsp.2023.11.008_b0165
  article-title: Stochastic interpretable machine learning based multiscale modeling in thermal conductivity of Polymeric graphene-enhanced composites
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2023.117601
– volume: 273
  start-page: 114269
  year: 2021
  ident: 10.1016/j.undsp.2023.11.008_b0175
  article-title: A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2021.114269
– ident: 10.1016/j.undsp.2023.11.008_b0205
  doi: 10.1109/IJCNN.2019.8852155
– volume: 11
  start-page: 30628
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0230
  article-title: A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3262020
– ident: 10.1016/j.undsp.2023.11.008_b0385
  doi: 10.1201/9780203883204.ch160
– ident: 10.1016/j.undsp.2023.11.008_b0395
– ident: 10.1016/j.undsp.2023.11.008_b0070
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.undsp.2023.11.008_b0025
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 224
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0185
  article-title: Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2022.109425
– volume: 140
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0350
  article-title: Prediction of bending strength of glass fiber reinforced methacrylate-based pipeline UV-CIPP rehabilitation materials based on machine learning
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2023.105319
– volume: 37
  start-page: 1633
  issue: 4
  year: 2021
  ident: 10.1016/j.undsp.2023.11.008_b0050
  article-title: Interpretability in healthcare: A comparative study of local machine learning interpretability techniques
  publication-title: Computational Intelligence
  doi: 10.1111/coin.12410
– volume: 35
  start-page: 1461
  issue: 9
  year: 2010
  ident: 10.1016/j.undsp.2023.11.008_b0400
  article-title: Application of extension evaluation method in rockburst prediction based on rough set theory
  publication-title: Journal of China Coal Society
– ident: 10.1016/j.undsp.2023.11.008_b0120
– volume: 14
  start-page: 2897
  issue: 12
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0295
  article-title: Bias and class imbalance in oncologic data-towards inclusive and transferrable ai in large scale oncology data sets
  publication-title: Cancers
  doi: 10.3390/cancers14122897
– volume: 3
  start-page: 12298
  issue: 4
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0285
  article-title: The balancing trick: Optimized sampling of imbalanced datasets—A brief survey of the recent State of the Art
  publication-title: Engineering Reports
  doi: 10.1002/eng2.12298
– volume: 11
  start-page: 838
  issue: 4
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0330
  article-title: rockburst intensity classification prediction based on multi-model ensemble learning algorithms
  publication-title: Mathematics
  doi: 10.3390/math11040838
– ident: 10.1016/j.undsp.2023.11.008_b0040
– ident: 10.1016/j.undsp.2023.11.008_b0155
  doi: 10.1007/s10999-023-09679-0
– volume: 12
  start-page: 2990
  issue: 12
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0460
  article-title: Global Sensitivity Analysis for the Polymeric Microcapsules in Self-Healing Cementitious Composites
  publication-title: Polymers
  doi: 10.3390/polym12122990
– volume: 14
  start-page: 241
  issue: 2
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0035
  article-title: A survey on ensemble learning
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-019-8208-z
– volume: 7
  start-page: 392
  issue: 02
  year: 2011
  ident: 10.1016/j.undsp.2023.11.008_b0415
  article-title: Method of identifying rockburst grades based on gaussian process machine learning
  publication-title: Chinese Journal of Underground Space and Engineering
– ident: 10.1016/j.undsp.2023.11.008_b0200
  doi: 10.1016/j.renene.2023.119565
– volume: 277
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0300
  article-title: Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120253
– volume: S1
  start-page: 2921
  year: 2008
  ident: 10.1016/j.undsp.2023.11.008_b0365
  article-title: Rockburst prediction of chengchao iron mine during deep mining
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– ident: 10.1016/j.undsp.2023.11.008_b0110
– volume: 98
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0375
  article-title: Predicting rockburst with database using particle swarm optimization and extreme learning machine
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2020.103287
– volume: 2022
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0010
  article-title: Prediction of Rockburst Intensity Grade in Deep Underground Excavation Using Adaptive Boosting Classifier
  publication-title: Complexity
  doi: 10.1155/2022/6156210
– volume: 30
  start-page: 4016003
  issue: 5
  year: 2016
  ident: 10.1016/j.undsp.2023.11.008_b0455
  article-title: Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– volume: 154
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0310
  article-title: Machine learning in architecture
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2023.105012
– volume: 75
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0170
  article-title: Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden
  publication-title: Technology in Society
  doi: 10.1016/j.techsoc.2023.102347
– ident: 10.1016/j.undsp.2023.11.008_b0345
– volume: 9
  start-page: 109960
  year: 2021
  ident: 10.1016/j.undsp.2023.11.008_b0115
  article-title: A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3102399
– ident: 10.1016/j.undsp.2023.11.008_b0255
  doi: 10.23919/MIPRO.2019.8757212
– volume: 44
  start-page: 3016
  issue: 2
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0360
  article-title: Study on rock burst characteristics of coal mine roadway in China
  publication-title: Energy Sources Part a-Recovery Utilization and Environmental Effects
  doi: 10.1080/15567036.2019.1655114
– volume: 133
  start-page: 213
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0410
  article-title: On IoT intrusion detection based on data augmentation for enhancing learning on unbalanced samples
  publication-title: Future Generation Computer Systems-the International Journal of Escience
  doi: 10.1016/j.future.2022.03.007
– volume: 192
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0220
  article-title: A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110888
– volume: 238
  start-page: 62
  year: 2018
  ident: 10.1016/j.undsp.2023.11.008_b0355
  article-title: Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2018.03.010
– volume: 37
  start-page: 859
  issue: 3
  year: 2016
  ident: 10.1016/j.undsp.2023.11.008_b0080
  article-title: Application of cloud model to rating of rockburst based on rough set of FCM algorithm
  publication-title: Rock and Soil Mechanics
– volume: 1
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0240
  article-title: Disturbance response instability theory of rock bursts in coal mines and its application
  publication-title: Geohazard Mechanics
  doi: 10.1016/j.ghm.2022.12.002
– ident: 10.1016/j.undsp.2023.11.008_b0030
  doi: 10.1145/2939672.2939785
– volume: 4
  start-page: 97
  issue: 2
  year: 2012
  ident: 10.1016/j.undsp.2023.11.008_b0090
  article-title: Studies on classification, criteria and control of rockbursts
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.3724/SP.J.1235.2012.00097
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.undsp.2023.11.008_b0275
  article-title: Deep learning in neural networks: An overview.
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 10
  start-page: 50427
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0075
  article-title: Research on Rockburst Classification Prediction Based on BP-SVM Model
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2022.3173059
– ident: 10.1016/j.undsp.2023.11.008_b0100
– volume: 2020
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0430
  article-title: Data-Driven Model for Rockburst Prediction
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2020/5735496
– volume: 79
  start-page: 4891
  issue: 9
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0405
  article-title: Rockburst prediction model based on comprehensive weight and extension methods and its engineering application
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-020-01861-4
– ident: 10.1016/j.undsp.2023.11.008_b0425
– volume: 2
  start-page: 97
  issue: 9
  year: 2017
  ident: 10.1016/j.undsp.2023.11.008_b0095
  article-title: SALib: An open-source Python library for Sensitivity Analysis
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.00097
– volume: 26
  start-page: 1012
  issue: 5
  year: 2007
  ident: 10.1016/j.undsp.2023.11.008_b0065
  article-title: A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 34
  issue: 2
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0335
  article-title: A class imbalanced wafer defect classification framework based on variational autoencoder generative adversarial network
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ac9ed3
– volume: 268
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0370
  article-title: A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2020.105515
– volume: 13
  start-page: 103
  issue: 1
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0210
  article-title: Ensemble Tree Model for Long-Term Rockburst Prediction in Incomplete Datasets
  publication-title: Minerals
  doi: 10.3390/min13010103
– volume: 20
  start-page: 2141023
  issue: 8
  year: 2023
  ident: 10.1016/j.undsp.2023.11.008_b0465
  article-title: Prediction of Early Compressive Strength of Ultrahigh-Performance Concrete Using Machine Learning Methods
  publication-title: International Journal of Computational Methods
  doi: 10.1142/S0219876221410231
– volume: 5
  start-page: 336
  issue: 4
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0160
  article-title: Surrogate models in machine learning for computational stochastic multi-scale modelling in composite materials design
  publication-title: International Journal of Hydromechatronics
  doi: 10.1504/IJHM.2022.127037
– ident: 10.1016/j.undsp.2023.11.008_b0245
– volume: 2021
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0325
  article-title: A rockburst proneness evaluation method based on ultidimensional cloud model improved by control variable method and rockburst database
  publication-title: Lithosphere
  doi: 10.2113/2022/5354402
– volume: 237
  year: 2024
  ident: 10.1016/j.undsp.2023.11.008_b0290
  article-title: Supervised contrastive representation learning with tree-structured parzen estimator Bayesian optimization for imbalanced tabular data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121294
– volume: 119
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0055
  article-title: The propensity of the over-stressed rock masses to different failure mechanisms based on a hybrid probabilistic approach
  publication-title: Tunnelling and Underground Space Technology
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0135
  article-title: Novel ensemble intelligence methodologies for rockburst assessment in complex and variable environments. [Article]
  publication-title: Scientific Reports
– ident: 10.1016/j.undsp.2023.11.008_b0105
– volume: 289
  year: 2022
  ident: 10.1016/j.undsp.2023.11.008_b0180
  article-title: Stochastic full-range multiscale modeling of thermal conductivity of Polymeric carbon nanotubes composites: A machine learning approach
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2022.115393
– volume: 142
  start-page: 103280
  year: 2020
  ident: 10.1016/j.undsp.2023.11.008_b0195
  article-title: Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites
  publication-title: Mechanics of Materials
  doi: 10.1016/j.mechmat.2019.103280
– volume: 9
  start-page: 55879
  year: 2021
  ident: 10.1016/j.undsp.2023.11.008_b0235
  article-title: Deep Generative Models to Counter Class Imbalance: A Model-Metric Mapping With Proportion Calibration Methodology
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071389
– volume: 80
  start-page: 3885
  issue: 5
  year: 2021
  ident: 10.1016/j.undsp.2023.11.008_b0445
  article-title: Rockburst prediction for hard rock and deep-lying long tunnels based on the entropy weight ideal point method and geostress field inversion: A case study of the Sangzhuling Tunnel
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-021-02175-9
– volume: 20
  start-page: 96
  year: 2019
  ident: 10.1016/j.undsp.2023.11.008_b0440
  article-title: PyOD: A Python Toolbox for Scalable Outlier Detection
  publication-title: Journal of Machine Learning Research
SSID ssj0002087875
ssib044764025
ssib057785332
Score 2.3327842
Snippet We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a variational autoencoder...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 226
SubjectTerms Algorithms
Artificial intelligence
Coal mining
Correlation analysis
Datasets
Deep learning
Energy consumption
Engineering
Ensemble learning
Explainable artificial intelligence
Explainable artificial intelligence (XAI)
Gradient boosting
Machine learning
Mechanics
Methods
Mines
Neural networks
Regression models
Resampling
Rock burst
Rockbursts
Scientific visualization
Sensitivity analysis
Underground construction
VAE
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgywGQeBQQCwX5wJHQrO3E3hMqiIoeqPYAUjlZfmXbss0uSbbAv2fGcZaFw5645uEkmi_zsD9_Q8grbk0lp1OXGV-4TFQMfiklWJZPXe4dZOzOi9hsQp6eqrOz6Sxtj24TrXLwidFR92rPyNsGJ3zolw5nzA8BmUIhliZvV98z7CGFa62pocZNsofCW_mI7M1OPs2-DvgSQpZia1WtkBKCVdpXeRkX5RTgF1mPDDL7jMlCDEJFkRK2rn2LGpeMv0HlT2xJuRXMoub_XzHtH-8eQ9bx_f_7sQ_IvZS60qMeaw_JjVDvk7tHWysR--TOlr7hI_Lj5MoiddIFTyFQfqNgwbajZqMGSpF2P6fXULCnSUlq1t0SxTV9aLJQn_c3z5vITOso1AQtErWpWczhFbvzq5aa2tPwc7WI-8CQ6vvrMfly_OHz-49Z6vSQOSFYl5lSBs-VENYYFmRRBjBTqKCUya3iFe4HtixA6sI5FHQyFM47blVhJyo3Ljj-hIzqZR2eEgoZTMWDzx03VnhRTWEIiLkTWwlmjQhjwgaTaZdk0LEbx0IPfLdLHe2s0c5QIGmw85i83ty06lVAdl_-DrGwuRQlvOOBZTPXySNowa2f8ELxEjLwUBpVsbLycFA4Yysrx6QckKRTNtRnOTDUxe6nHwyg0skhtfoPhp7tPv2c3IaxRM9xPCCjrlmHF-SWu-4u2uZl-qN-AwQtMQs
  priority: 102
  providerName: ProQuest
Title Imbalanced rock burst assessment using variational autoencoder-enhanced gradient boosting algorithms and explainability
URI https://dx.doi.org/10.1016/j.undsp.2023.11.008
https://www.proquest.com/docview/3074817941
https://doaj.org/article/43bd135836774e6a8f26fd3bd4cabfb7
Volume 17
WOSCitedRecordID wos001189024000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2467-9674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087875
  issn: 2467-9674
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2467-9674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044764025
  issn: 2467-9674
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2467-9674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087875
  issn: 2467-9674
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2467-9674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087875
  issn: 2467-9674
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2467-9674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087875
  issn: 2467-9674
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQywEhVeUllpaVDxwJZG0ncY4t2ooeWK14SOVk-THebtlmqyRb4MJvZ-wkq4VDuXDJwYmTyDPxfON8_oaQV9xoX5SlTbTLbCI8w09KCpakpU2dRcRunYjFJorZTF5clPOdUl-BE9bJA3cD91Zw4yY8kzxHoAK5lp7l3mGjsNp4E_eRp0W5k0xdxd9rEj0xG2SGIqFrU7kmKFQy_ibodoaCkjuhKCr2_xGR_pqbY8A5OyQHPVKkJ90bPiL3oHpMHp7sLPw_Id_Pr03gJlpwFCPRN4pD1LRUb-U2aeC1L-gtZsT9qh_Vm3Yd1Csd1AlUl13nRR2pXy1F0N0EJjTVq8W6XraX1w3VlaPw42YVN1oFLu3Pp-TL2fTzu_dJX0ohsUKwNtF5AY5LIYzWDIosB8Q64DFXSI3kPmy4NQwQG3COGVMBmXWWG5mZiUy1Bcufkb1qXcFzQhEieA4utVwb4YQv8RYY1CbGC2a0gBFhw6gq2-uMh3IXKzUQyq5UNIUKpsAMRKEpRuT1ttNNJ7Nx9-WnwVzbS4NGdmxAz1G956h_ec6I5IOxVQ83OhiBt1re_fTjwTVU_8U3CudKIcPsNnnxP17uiDzAJ4qOanhM9tp6Ay_JfXvbLpt6TPZPp7P5x3F0-nHgq34Kx19TPDM__zD_-hsxuQ7K
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFImHxKOACBTYA9wwOLvrRw4IlUfVqG2UQ5HKadmX05TUCbbT0j_Fb2R2bYfAIbceuNresbT-dmfG-803AC-ZklnS7-tAmkgHPKO4pFJOg7CvQ6MxYteG-2YTyXCYHh_3Rxvwq62FcbTKdk_0G7WZafeP_C1ikacOPb338x-B6xrlTlfbFho1LPbt5QWmbOW7wSf8vq8o3f189HEvaLoKBJpzWgUyTqxhKedKSmqTKLbo9m2GYXOoUpa52lNFLbpJxjB5SGykjWYqjVQvDaW2mqHda7CJtqKwA5ujweHoa4tgzpOYr5zbRUmC7rCp3Dz1x34prhDHq6SYOwQ0iXgrheRJZ4vclE5Fk7I3TlvUNb1ccZe-q8BfXvMf_-Gd4u7d_20678GdJvwmO_V6uQ8bNt-C2zsrpylbcGtFo_EBXAzOlKN_amsIOvvvBFFYVkQuFU2JKx0Yk3NZTJofq0QuqpkTCDW2CGx-Ug8eF55dVxHMa0pHNidyOsYpqU7OSiJzQ-zP-dTXsjm68uVD-HIlE_EIOvkst4-BYBSWMWtCzaTihmd9NIFxQ09lnCrJbRdoCwqhGyl311FkKlrO3qnwSBIOSZjkCURSF14vB81rJZP1j39waFs-6mTI_YVZMRbNriY4U6bHopTFmEXYWKYZjTODF7mWKlNJF-IWq6KJ6OpIDU1N1r99u4WtaDbVUvzB7JP1t1_Ajb2jwwNxMBjuP4WbaJfXnM1t6FTFwj6D6_q8mpTF82b9Evh21Rj_DbVxghU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imbalanced+rock+burst+assessment+using+variational+autoencoder-enhanced+gradient+boosting+algorithms+and+explainability&rft.jtitle=Underground+space+%28Beijing%29&rft.au=Shan+Lin&rft.au=Zenglong+Liang&rft.au=Miao+Dong&rft.au=Hongwei+Guo&rft.date=2024-08-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2467-9674&rft.volume=17&rft.spage=226&rft.epage=245&rft_id=info:doi/10.1016%2Fj.undsp.2023.11.008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43bd135836774e6a8f26fd3bd4cabfb7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2467-9674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2467-9674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2467-9674&client=summon