Anisotropic dense collagen hydrogels with two ranges of porosity to mimic the skeletal muscle extracellular matrix

Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle EC...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomaterials advances Ročník 144; s. 213219
Hlavní autoři: Camman, Marie, Joanne, Pierre, Brun, Julie, Marcellan, Alba, Dumont, Julien, Agbulut, Onnik, Hélary, Christophe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier 01.01.2023
Témata:
ISSN:2772-9508, 2772-9516, 2772-9508
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle ECM was developed reproducing these four crucial characteristics of the native ECM. An anisotropic hydrogel mimicking the muscle fascia was obtained thanks to unidirectional 3D printing of dense collagen with aligned collagen fibrils. The space between the different layers was tuned to generate an intrinsic network of pores (100 μm) suitable for nutrient and oxygen diffusion. By modulating the gelling conditions, the mechanical properties of the construct reached those measured in the physiological muscle ECM. This artificial matrix was thus evaluated for myoblast differentiation. The addition of large channels (600 μm) by molding permitted to create a second range of porosity suitable for cell colonization without altering the physical properties of the hydrogel. Skeletal myoblasts embedded in Matrigel®, seeded within the channels, organized in 3D, and differentiated into multinucleated myotubes. These results show that porous and anisotropic dense collagen hydrogels are promising biomaterials to model skeletal muscle ECM.
AbstractList Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle ECM was developed reproducing these four crucial characteristics of the native ECM. An anisotropic hydrogel mimicking the muscle fascia was obtained thanks to unidirectional 3D printing of dense collagen with aligned collagen fibrils. The space between the different layers was tuned to generate an intrinsic network of pores (100 μm) suitable for nutrient and oxygen diffusion. By modulating the gelling conditions, the mechanical properties of the construct reached those measured in the physiological muscle ECM. This artificial matrix was thus evaluated for myoblast differentiation. The addition of large channels (600 μm) by molding permitted to create a second range of porosity suitable for cell colonization without altering the physical properties of the hydrogel. Skeletal myoblasts embedded in Matrigel®, seeded within the channels, organized in 3D, and differentiated into multinucleated myotubes. These results show that porous and anisotropic dense collagen hydrogels are promising biomaterials to model skeletal muscle ECM.
Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle ECM was developed reproducing these four crucial characteristics of the native ECM. An anisotropic hydrogel mimicking the muscle fascia was obtained thanks to unidirectional 3D printing of dense collagen with aligned collagen fibrils. The space between the different layers was tuned to generate an intrinsic network of pores (100 μm) suitable for nutrient and oxygen diffusion. By modulating the gelling conditions, the mechanical properties of the construct reached those measured in the physiological muscle ECM. This artificial matrix was thus evaluated for myoblast differentiation. The addition of large channels (600 μm) by molding permitted to create a second range of porosity suitable for cell colonization without altering the physical properties of the hydrogel. Skeletal myoblasts embedded in Matrigel®, seeded within the channels, organized in 3D, and differentiated into multinucleated myotubes. These results show that porous and anisotropic dense collagen hydrogels are promising biomaterials to model skeletal muscle ECM.Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle ECM was developed reproducing these four crucial characteristics of the native ECM. An anisotropic hydrogel mimicking the muscle fascia was obtained thanks to unidirectional 3D printing of dense collagen with aligned collagen fibrils. The space between the different layers was tuned to generate an intrinsic network of pores (100 μm) suitable for nutrient and oxygen diffusion. By modulating the gelling conditions, the mechanical properties of the construct reached those measured in the physiological muscle ECM. This artificial matrix was thus evaluated for myoblast differentiation. The addition of large channels (600 μm) by molding permitted to create a second range of porosity suitable for cell colonization without altering the physical properties of the hydrogel. Skeletal myoblasts embedded in Matrigel®, seeded within the channels, organized in 3D, and differentiated into multinucleated myotubes. These results show that porous and anisotropic dense collagen hydrogels are promising biomaterials to model skeletal muscle ECM.
Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle ECM was developed reproducing these four crucial characteristics of the native ECM. An anisotropic hydrogel mimicking the muscle fascia was obtained thanks to unidirectional 3D printing of dense collagen with aligned collagen fibrils. The space between the different layers was tuned to generate an intrinsic network of pores (100 μm) suitable for nutrient and oxygen diffusion. By modulating the gelling conditions, the mechanical properties of the construct reached those measured in the physiological muscle ECM. This artificial matrix was thus evaluated for myoblast differentiation. The addition of large channels (600 μm) by molding permitted to create a second range of porosity suitable for cell colonization without altering the physical properties of the hydrogel. Skeletal myoblasts embedded in Matrigel®, seeded within the channels, organized in 3D, and differentiated into multinucleated myotubes. These results show that porous and anisotropic dense collagen hydrogels are promising biomaterials to model skeletal muscle ECM.
Author Dumont, Julien
Hélary, Christophe
Joanne, Pierre
Agbulut, Onnik
Brun, Julie
Marcellan, Alba
Camman, Marie
Author_xml – sequence: 1
  givenname: Marie
  surname: Camman
  fullname: Camman, Marie
  organization: Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France; Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, UMR 8256, Inserm U1164, Biological Adaptation and Ageing, F-75005, Paris, France
– sequence: 2
  givenname: Pierre
  surname: Joanne
  fullname: Joanne, Pierre
  organization: Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, UMR 8256, Inserm U1164, Biological Adaptation and Ageing, F-75005, Paris, France
– sequence: 3
  givenname: Julie
  surname: Brun
  fullname: Brun, Julie
  organization: Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, F-75005, Paris, France
– sequence: 4
  givenname: Alba
  surname: Marcellan
  fullname: Marcellan, Alba
  organization: Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, F-75005, Paris, France
– sequence: 5
  givenname: Julien
  surname: Dumont
  fullname: Dumont, Julien
  organization: CIRB Microscopy facility, Collège de France, CNRS, UMR 7241, Inserm U1050, F-75005, Paris, France
– sequence: 6
  givenname: Onnik
  surname: Agbulut
  fullname: Agbulut, Onnik
  email: onnik.agbulut@sorbonne-universite.fr
  organization: Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, UMR 8256, Inserm U1164, Biological Adaptation and Ageing, F-75005, Paris, France. Electronic address: onnik.agbulut@sorbonne-universite.fr
– sequence: 7
  givenname: Christophe
  surname: Hélary
  fullname: Hélary, Christophe
  email: christophe.helary@sorbonne-universite.fr
  organization: Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France. Electronic address: christophe.helary@sorbonne-universite.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36481519$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-03894624$$DView record in HAL
BookMark eNpNkEtPWzEQRq2KqlDKP6gqL9tFgt-PZYRoQYrUDV1f-TFJTH2vU9sXyL9vELRiNaPR-Y5G30d0MpUJEPpMyZISqi7vlz4VFx-WjDC2ZJQzat-hM6Y1W1hJzMmb_RRdtHZPCOGMKyn5B3TKlTBUUnuG6mpKrfRa9ingCFMDHErObgsT3h1iLVvIDT-mvsP9seDqpi00XDZ4X2ppqR9wL3hM4zHdd4Dbb8jQXcbj3EIGDE-9ugA5z9lVPLpe09Mn9H7jcoOL13mOfn2_vru6Wax__ri9Wq0XQQjWF9ZTJq3hzjAVtCEkRAVKB6uMoE4QH7X32gbjhdJOyY3xgUsJPkoudYz8HH178e5cHvY1ja4ehuLScLNaD883wo0ViokHemS_vrD7Wv7M0Powpvb8t5ugzG1gWnJOKRX2iH55RWc_Qvxv_tcp_wuIp356
CitedBy_id crossref_primary_10_1039_D3BM01025B
crossref_primary_10_1016_j_eurpolymj_2024_112906
crossref_primary_10_1016_j_ijbiomac_2024_135546
crossref_primary_10_1002_adma_202502279
crossref_primary_10_1002_mame_202300029
crossref_primary_10_1016_j_polymer_2025_128990
crossref_primary_10_1002_jsfa_70112
crossref_primary_10_3390_polym15204052
crossref_primary_10_1038_s41598_025_03504_8
crossref_primary_10_1093_rb_rbaf059
crossref_primary_10_1016_j_microc_2024_112296
crossref_primary_10_34133_cbsystems_0279
crossref_primary_10_1016_j_celbio_2025_100127
crossref_primary_10_1016_j_jmbbm_2025_106922
ContentType Journal Article
Copyright Copyright © 2022 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2022 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1016/j.bioadv.2022.213219
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2772-9508
ExternalDocumentID oai:HAL:hal-03894624v1
36481519
Genre Journal Article
GroupedDBID 53G
AABNK
AALRI
AAXUO
ABJNI
ACRLP
AEIPS
AEZYN
AFJKZ
AFRZQ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
CGR
CUY
CVF
EBS
ECM
EFJIC
EIF
FDB
FYGXN
M41
NPM
ROL
SPC
SSM
0R~
7X8
AATTM
AAYWO
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
EFKBS
1XC
VOOES
ID FETCH-LOGICAL-c442t-9b125983a826c7800cd6e67c96841a40bd7bb79c8b467a65f8bc355ebd5357dd3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030398200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2772-9508
2772-9516
IngestDate Mon Nov 03 06:45:39 EST 2025
Thu Oct 02 07:01:43 EDT 2025
Wed Feb 19 02:26:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dense collagen
Porosity
Anisotropy
3D printing
Muscle extracellular matrix
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-9b125983a826c7800cd6e67c96841a40bd7bb79c8b467a65f8bc355ebd5357dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0788-2320
0000-0001-9312-7278
0000-0002-5873-7000
0000-0001-5098-4835
OpenAccessLink https://hal.sorbonne-universite.fr/hal-03894624
PMID 36481519
PQID 2753311149
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_03894624v1
proquest_miscellaneous_2753311149
pubmed_primary_36481519
PublicationCentury 2000
PublicationDate 2023-Jan
20230101
2023-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials advances
PublicationTitleAlternate Biomater Adv
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0003236553
ssib050729471
Score 2.3252633
Snippet Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its...
SourceID hal
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 213219
SubjectTerms Anisotropy
Bioengineering
Chemical Sciences
Collagen - analysis
Extracellular Matrix - chemistry
Hydrogels - analysis
Life Sciences
Material chemistry
Muscle, Skeletal
Porosity
Title Anisotropic dense collagen hydrogels with two ranges of porosity to mimic the skeletal muscle extracellular matrix
URI https://www.ncbi.nlm.nih.gov/pubmed/36481519
https://www.proquest.com/docview/2753311149
https://hal.sorbonne-universite.fr/hal-03894624
Volume 144
WOSCitedRecordID wos001030398200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2772-9508
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050729471
  issn: 2772-9508
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELApZHeawMQlyqrFrHefgYLbsqYltVYpF6i2wnoYE2rtK0dC_8H_4lYztpU1ZIy4GLVblVUmc-jb8ZfzNB6F0GLl_0fe7wJCAOlQPqMJ8wJ4PYuc-JL0KZmJdNBONxOJ2ySafzq6mF2cyDogi3W7b8r6aGOTC2Lp39B3PvLgoT8BmMDiOYHcZbGT4q8pWqSrXMZQ-cipGjg63h973ZdVKqr7Ab1unXH6pX6uICI-cAIq6MQAPY6CLXknnNSVffYV_SBZOL9Qpu1ANfXnKd7Tfy1YVu8L89OBjOFUzadTYCgx1tP-OLOuE60iH6Xr3DC5tYncAmXbbO-ddFU8PdkuiawwZ7mWgueDtvQdw_8hZNQc3e3xEg-g4QvrozdnuuHx44bNsx8obzt3mIb6ciV7A-iP0JOSUQbdc--aDX9jD6HE8-XMSXH8efDr9tCRSH0SWMMz53dBtC6hO6gUD7Lgk8ph3o6Od547o83YCd1sxakwCXuL5neqDultUUbhp14c3_CORmprW4fwt0DOG5eoge1JEKjizCHqFOWjxGx1HBK7W4xu-x0Q6bQ5ljVLZAhw3ocAM6vAMd1qDDADpsQYdVhhvQ4UphAzoMoMMN6LAFHT4AHbage4K-XJxfnQ2d-m0ejqSUVA4TwKVZ6HIIaGUAcYpM_NQPJPNDOuC0L5JAiIDJUMDezX0vC4UEMpyKxHO9IEncp-ioUEX6HOHMTRjtE0m5cKmfAcWnMiVUV2Fzksmki97Co4yXtl9LrDuogyljPbc3ZBe9aZ50DC7VQjdV61UM9nVd4ACUddEza4LdtVxfdzcasBe3ucVLdH-P_FfoqCrX6Wt0T26qfFWeoDvBNDwxMIJxPBn9BgPtpHU
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+dense+collagen+hydrogels+with+two+ranges+of+porosity+to+mimic+the+skeletal+muscle+extracellular+matrix&rft.jtitle=Biomaterials+advances&rft.au=Camman%2C+Marie&rft.au=Joanne%2C+Pierre&rft.au=Brun%2C+Julie&rft.au=Marcellan%2C+Alba&rft.date=2023-01-01&rft.pub=Elsevier&rft.issn=2772-9516&rft.eissn=2772-9508&rft.volume=144&rft_id=info:doi/10.1016%2Fj.bioadv.2022.213219&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03894624v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-9508&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-9508&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-9508&client=summon