Pre-existing humoral immunity and complement pathway contribute to immunogenicity of adeno-associated virus (AAV) vector in human blood
AAV gene transfer is a promising treatment for many patients with life-threatening genetic diseases. However, host immune response to the vector poses a significant challenge for the durability and safety of AAV-mediated gene therapy. Here, we characterize the innate immune response to AAV in human...
Gespeichert in:
| Veröffentlicht in: | Frontiers in immunology Jg. 13; S. 999021 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frontiers Media S.A
16.09.2022
|
| Schlagworte: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | AAV gene transfer is a promising treatment for many patients with life-threatening genetic diseases. However, host immune response to the vector poses a significant challenge for the durability and safety of AAV-mediated gene therapy. Here, we characterize the innate immune response to AAV in human whole blood. We identified neutrophils, monocyte-related dendritic cells, and monocytes as the most prevalent cell subsets able to internalize AAV particles, while conventional dendritic cells were the most activated in terms of the CD86 co-stimulatory molecule upregulation. Although low titers (≤1:10) of AAV neutralizing antibodies (NAb) in blood did not have profound effects on the innate immune response to AAV, higher NAb titers (≥1:100) significantly increased pro-inflammatory cytokine/chemokine secretion, vector uptake by antigen presenting cells (APCs) and complement activation. Interestingly, both full and empty viral particles were equally potent in inducing complement activation and cytokine secretion. By using a compstatin-based C3 and C3b inhibitor, APL-9, we demonstrated that complement pathway inhibition lowered CD86 levels on APCs, AAV uptake, and cytokine/chemokine secretion in response to AAV. Together these results suggest that the pre-existing humoral immunity to AAV may contribute to trigger adverse immune responses observed in AAV-based gene therapy, and that blockade of complement pathway may warrant further investigation as a potential strategy for decreasing immunogenicity of AAV-based therapeutics. |
|---|---|
| AbstractList | AAV gene transfer is a promising treatment for many patients with life-threatening genetic diseases. However, host immune response to the vector poses a significant challenge for the durability and safety of AAV-mediated gene therapy. Here, we characterize the innate immune response to AAV in human whole blood. We identified neutrophils, monocyte-related dendritic cells, and monocytes as the most prevalent cell subsets able to internalize AAV particles, while conventional dendritic cells were the most activated in terms of the CD86 co-stimulatory molecule upregulation. Although low titers (≤1:10) of AAV neutralizing antibodies (NAb) in blood did not have profound effects on the innate immune response to AAV, higher NAb titers (≥1:100) significantly increased pro-inflammatory cytokine/chemokine secretion, vector uptake by antigen presenting cells (APCs) and complement activation. Interestingly, both full and empty viral particles were equally potent in inducing complement activation and cytokine secretion. By using a compstatin-based C3 and C3b inhibitor, APL-9, we demonstrated that complement pathway inhibition lowered CD86 levels on APCs, AAV uptake, and cytokine/chemokine secretion in response to AAV. Together these results suggest that the pre-existing humoral immunity to AAV may contribute to trigger adverse immune responses observed in AAV-based gene therapy, and that blockade of complement pathway may warrant further investigation as a potential strategy for decreasing immunogenicity of AAV-based therapeutics. AAV gene transfer is a promising treatment for many patients with life-threatening genetic diseases. However, host immune response to the vector poses a significant challenge for the durability and safety of AAV-mediated gene therapy. Here, we characterize the innate immune response to AAV in human whole blood. We identified neutrophils, monocyte-related dendritic cells, and monocytes as the most prevalent cell subsets able to internalize AAV particles, while conventional dendritic cells were the most activated in terms of the CD86 co-stimulatory molecule upregulation. Although low titers (≤1:10) of AAV neutralizing antibodies (NAb) in blood did not have profound effects on the innate immune response to AAV, higher NAb titers (≥1:100) significantly increased pro-inflammatory cytokine/chemokine secretion, vector uptake by antigen presenting cells (APCs) and complement activation. Interestingly, both full and empty viral particles were equally potent in inducing complement activation and cytokine secretion. By using a compstatin-based C3 and C3b inhibitor, APL-9, we demonstrated that complement pathway inhibition lowered CD86 levels on APCs, AAV uptake, and cytokine/chemokine secretion in response to AAV. Together these results suggest that the pre-existing humoral immunity to AAV may contribute to trigger adverse immune responses observed in AAV-based gene therapy, and that blockade of complement pathway may warrant further investigation as a potential strategy for decreasing immunogenicity of AAV-based therapeutics.AAV gene transfer is a promising treatment for many patients with life-threatening genetic diseases. However, host immune response to the vector poses a significant challenge for the durability and safety of AAV-mediated gene therapy. Here, we characterize the innate immune response to AAV in human whole blood. We identified neutrophils, monocyte-related dendritic cells, and monocytes as the most prevalent cell subsets able to internalize AAV particles, while conventional dendritic cells were the most activated in terms of the CD86 co-stimulatory molecule upregulation. Although low titers (≤1:10) of AAV neutralizing antibodies (NAb) in blood did not have profound effects on the innate immune response to AAV, higher NAb titers (≥1:100) significantly increased pro-inflammatory cytokine/chemokine secretion, vector uptake by antigen presenting cells (APCs) and complement activation. Interestingly, both full and empty viral particles were equally potent in inducing complement activation and cytokine secretion. By using a compstatin-based C3 and C3b inhibitor, APL-9, we demonstrated that complement pathway inhibition lowered CD86 levels on APCs, AAV uptake, and cytokine/chemokine secretion in response to AAV. Together these results suggest that the pre-existing humoral immunity to AAV may contribute to trigger adverse immune responses observed in AAV-based gene therapy, and that blockade of complement pathway may warrant further investigation as a potential strategy for decreasing immunogenicity of AAV-based therapeutics. |
| Author | Deschatelets, Pascal Kuranda, Klaudia Mingozzi, Federico Ross, Nikki Kim, Kevin Y. Quinn, William J. Kropf, Elizabeth Singh, Inderpal Smith, Corinne J. Majowicz, Anna Francois, Cedric Kamal, Ali |
| AuthorAffiliation | 2 Research Department, Apellis Pharmaceuticals , Waltham, MA , United States 1 Immunology Department, Spark Therapeutics, Inc. , Philadelphia, PA , United States |
| AuthorAffiliation_xml | – name: 2 Research Department, Apellis Pharmaceuticals , Waltham, MA , United States – name: 1 Immunology Department, Spark Therapeutics, Inc. , Philadelphia, PA , United States |
| Author_xml | – sequence: 1 givenname: Corinne J. surname: Smith fullname: Smith, Corinne J. – sequence: 2 givenname: Nikki surname: Ross fullname: Ross, Nikki – sequence: 3 givenname: Ali surname: Kamal fullname: Kamal, Ali – sequence: 4 givenname: Kevin Y. surname: Kim fullname: Kim, Kevin Y. – sequence: 5 givenname: Elizabeth surname: Kropf fullname: Kropf, Elizabeth – sequence: 6 givenname: Pascal surname: Deschatelets fullname: Deschatelets, Pascal – sequence: 7 givenname: Cedric surname: Francois fullname: Francois, Cedric – sequence: 8 givenname: William J. surname: Quinn fullname: Quinn, William J. – sequence: 9 givenname: Inderpal surname: Singh fullname: Singh, Inderpal – sequence: 10 givenname: Anna surname: Majowicz fullname: Majowicz, Anna – sequence: 11 givenname: Federico surname: Mingozzi fullname: Mingozzi, Federico – sequence: 12 givenname: Klaudia surname: Kuranda fullname: Kuranda, Klaudia |
| BookMark | eNp1kk1v1DAQhiNUJErpD-DmYzlk8Vfi9QVpVfFRqRIcgKs1cSa7rhJ7sZ0t-wv42zjdIlEkfLE1M-8zo_H7sjrzwWNVvWZ0JcRavx3cNM0rTjlfaa0pZ8-qc9a2shacy7O_3i-qy5TuaDlSCyGa8-rXl4g1_nQpO78lu3kKEUay8LzLRwK-JzZM-xEn9JnsIe_u4VhCPkfXzRlJDqfqsEXv7KIJA4EefaghpWAdZOzJwcU5kavN5vsbckCbQyTOL-3Ak24MoX9VPR9gTHj5eF9U3z68_3r9qb79_PHmenNbWyl5rrWSDcOWo2joWgvsrYBWW0DBlKBKtx3jQlMKsGYMZN-rVgxWSCVANQ204qK6OXH7AHdmH90E8WgCOPMQCHFrIGZnRzS97mgvlFSUD7JZN51oO7qmVrQoS3MsrHcn1n7upjJK2VBZ3hPo04x3O7MNB6MbXrjLMFePgBh-zJiymVyyOI7gMczJcMWp5ooJVUrVqdTGkFLEwZRdQ3bLR4AbDaNmsYJ5sIJZrGBOVihK9o_yz4D_1_wGwai8zQ |
| CitedBy_id | crossref_primary_10_1089_hum_2023_018 crossref_primary_10_1089_hum_2023_117 crossref_primary_10_1016_j_cellimm_2024_104823 crossref_primary_10_1177_10430342251378524 crossref_primary_10_3390_ijms241310447 crossref_primary_10_3390_microorganisms11122985 crossref_primary_10_1089_hum_2023_056 crossref_primary_10_1261_rna_080334_124 crossref_primary_10_1016_j_omtm_2023_06_002 crossref_primary_10_1089_hum_2023_194 crossref_primary_10_1007_s40259_023_00585_7 crossref_primary_10_1016_j_omtm_2025_101408 crossref_primary_10_1016_j_ymthe_2025_03_037 crossref_primary_10_1038_s41434_025_00528_7 crossref_primary_10_1089_hum_2024_040 crossref_primary_10_3390_v17091260 crossref_primary_10_1016_j_omtm_2024_101349 crossref_primary_10_1016_j_ymthe_2023_03_031 crossref_primary_10_1038_s41575_022_00729_0 crossref_primary_10_3390_ijms26020578 crossref_primary_10_1016_j_omtm_2025_101551 crossref_primary_10_1038_s41434_025_00512_1 crossref_primary_10_1016_j_ymthe_2024_07_016 crossref_primary_10_1002_jmv_70447 crossref_primary_10_1016_j_gendis_2025_101785 crossref_primary_10_1016_S0929_693X_23_00227_0 crossref_primary_10_1038_s41467_025_58778_3 crossref_primary_10_3390_v16030400 crossref_primary_10_1208_s12248_025_01127_5 crossref_primary_10_3390_ijms26020816 crossref_primary_10_1016_j_ymthe_2025_06_032 crossref_primary_10_1089_hum_2024_114 crossref_primary_10_1055_a_2413_4345 crossref_primary_10_3390_biomedicines11082227 crossref_primary_10_1007_s40291_024_00733_x crossref_primary_10_1002_jmv_29305 crossref_primary_10_1016_j_ymthe_2023_01_010 crossref_primary_10_1038_s41434_023_00390_5 crossref_primary_10_3389_fimmu_2024_1354055 crossref_primary_10_1016_j_ymthe_2025_03_065 crossref_primary_10_3390_biomedicines12071523 crossref_primary_10_1007_s11095_023_03625_7 crossref_primary_10_1038_s41392_024_01780_w crossref_primary_10_1089_hum_2023_119 crossref_primary_10_3389_fimmu_2024_1450524 |
| Cites_doi | 10.1182/blood-2016-11-751040 10.1038/s41598-018-28583-8 10.1371/journal.pone.0006782 10.1016/j.ymthe.2019.11.014 10.1007/s00281-017-0644-y 10.1128/JVI.76.9.4580-4590.2002 10.1089/hum.2021.287 10.1038/mt.2011.108 10.1016/j.omtm.2018.02.003 10.1038/nm1358 10.3389/fcell.2021.624025 10.1086/595830 10.3389/fimmu.2021.672449 10.1089/hum.2009.182 10.1172/JCI143780 10.1016/j.immuni.2008.02.001 10.3389/fimmu.2019.03049 10.1172/JCI122372 10.1126/science.271.5247.348 10.1126/scitranslmed.abd3438 10.1161/CIRCRESAHA.117.312153 10.3389/fimmu.2018.02664 10.1038/nri3712 10.1089/hgtb.2019.013 10.1016/j.ymthe.2019.12.010 10.3389/fimmu.2015.00262 10.1172/jci.insight.139881 10.1111/cei.12952 10.1182/blood-2010-05-283564 10.1016/j.ymthe.2020.07.006 10.1038/nri3405 10.1089/hum.2021.116 10.1089/genbio.2022.0007 10.1182/blood-2010-02-258558 10.2215/CJN.00620117 10.1056/NEJMoa1407309 10.3389/fimmu.2020.00670 10.1089/hgtb.2015.037 10.1038/mtm.2014.33 10.1182/blood-2010-10-314518 10.1080/14712598.2022.2060737 10.1172/JCI68205 10.4049/jimmunol.158.9.4444 10.1016/j.jpeds.2020.11.054 10.1172/JCI37607 10.1038/nrneph.2017.156 10.1016/j.ymthe.2021.04.019 10.1038/s41591-020-0911-7 10.3389/fmed.2021.809118 10.1182/blood.2019004625 10.1016/j.cellimm.2017.07.012 10.1016/j.ymthe.2020.12.007 10.1111/j.1538-7836.2012.04674.x 10.1182/blood-2008-04-151068 10.3390/biomedicines2010080 10.1084/jem.20121525 10.1016/j.coi.2005.03.001 10.1038/mt.2011.280 10.1128/JVI.01990-07 10.1038/s41598-020-57893-z 10.1016/j.molimm.2008.06.034 10.1038/d41573-021-00164-x 10.1016/j.semnephrol.2013.08.001 10.1016/j.ymthe.2019.11.011 10.1002/jmv.21360 10.1111/j.1749-6632.1983.tb18116.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Smith, Ross, Kamal, Kim, Kropf, Deschatelets, Francois, Quinn, Singh, Majowicz, Mingozzi and Kuranda. Copyright © 2022 Smith, Ross, Kamal, Kim, Kropf, Deschatelets, Francois, Quinn, Singh, Majowicz, Mingozzi and Kuranda 2022 Smith, Ross, Kamal, Kim, Kropf, Deschatelets, Francois, Quinn, Singh, Majowicz, Mingozzi and Kuranda |
| Copyright_xml | – notice: Copyright © 2022 Smith, Ross, Kamal, Kim, Kropf, Deschatelets, Francois, Quinn, Singh, Majowicz, Mingozzi and Kuranda. – notice: Copyright © 2022 Smith, Ross, Kamal, Kim, Kropf, Deschatelets, Francois, Quinn, Singh, Majowicz, Mingozzi and Kuranda 2022 Smith, Ross, Kamal, Kim, Kropf, Deschatelets, Francois, Quinn, Singh, Majowicz, Mingozzi and Kuranda |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2022.999021 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_d9b0d374702f4585b36b080c36e4089e PMC9523746 10_3389_fimmu_2022_999021 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c442t-97451e62e350893edc3a69cae31730796b123900aa811a4dd763fc3473a755a63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862625300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:45:34 EDT 2025 Thu Aug 21 18:39:31 EDT 2025 Fri Sep 05 10:47:26 EDT 2025 Tue Nov 18 21:07:27 EST 2025 Sat Nov 29 03:28:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-97451e62e350893edc3a69cae31730796b123900aa811a4dd763fc3473a755a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Phillip Tai, University of Massachusetts Medical School, United States; Chengwen Li, University of North Carolina at Chapel Hill, United States This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology Edited by: David Markusic, Purdue University Indianapolis, United States |
| OpenAccessLink | https://doaj.org/article/d9b0d374702f4585b36b080c36e4089e |
| PQID | 2720927137 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d9b0d374702f4585b36b080c36e4089e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9523746 proquest_miscellaneous_2720927137 crossref_citationtrail_10_3389_fimmu_2022_999021 crossref_primary_10_3389_fimmu_2022_999021 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-16 |
| PublicationDateYYYYMMDD | 2022-09-16 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in immunology |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Gaya Da Costa (B37) 2018; 9 Lalli (B54) 2008; 112 Boutin (B4) 2010; 21 Ronzitti (B2) 2020; 11 Zaiss (B24) 2008; 82 Dempsey (B55) 1996; 271 Mullard (B17) 2021; 20 Verdera (B1) 2020; 28 (B12) 2021 Calcedo (B3) 2009; 199 Zhu (B49) 2009; 119 Fitzpatrick (B51) 2018; 9 Wirthmueller (B60) 1997; 158 Rogers (B42) 2017; 129 Chen (B21) 2018; 122 Wu (B66) 2012; 20 Ricklin (B25) 2018; 14 Wexler (B14) 2022 Kuranda (B43) 2018; 128 Hordeaux (B58) 2021; 29 Elmore (B9) 2020; 5 Nascimento (B36) 2009; 4 Corti (B7) 2014; 1 Pangburn (B56) 1983; 421 Wright (B64) 2014; 2 Shirley (B33) 2020; 28 Bertin (B8) 2020; 10 Murphy (B50) 2009; 81 Noris (B18) 2013; 33 Martino (B65) 2011; 117 Klamroth (B5) 2022; 33 Merle (B19) 2015; 6 Rickert (B22) 2005; 17 Chand (B13) 2021; 231 Chen (B32) 2013; 13 Yang (B26) 2022; 1 Chan (B45) 2021; 13 Palazzi (B59) 2022; 33 Mendell (B11) 2021; 29 Lubbers (B57) 2017; 188 Guilliams (B30) 2014; 14 Xiang (B68) 2020; 28 Kishimoto (B63) 2022 Strainic (B52) 2008; 28 Kwan (B20) 2013; 210 Zaiss (B62) 2002; 76 Brocklebank (B16) 2018; 13 Meliani (B28) 2015; 26 Reti (B35) 2012; 10 Camous (B34) 2011; 117 Nathwani (B39) 2014; 371 (B15) 2022 Butterfield (B47) 2019; 30 Kemper (B61) 2008; 45 Muhuri (B40) 2021; 131 Manno (B38) 2006; 12 Faust (B67) 2013; 123 Strobel (B27) 2018; 8 Ziegler-Heitbrock (B29) 2010; 116 Herzog (B48) 2019; 342 Monteilhet (B6) 2011; 19 Acharya (B31) 2020; 10 Vandendriessche (B53) 2021; 9 Bertolini (B69) 2021; 12 Killick (B23) 2018; 40 Konkle (B46) 2021; 137 Wright (B44) 2020; 28 Leborgne (B10) 2020; 26 Au (B41) 2022; 8 |
| References_xml | – volume: 129 year: 2017 ident: B42 article-title: Plasmacytoid and conventional dendritic cells cooperate in crosspriming AAV capsid-specific CD8+ T cells publication-title: Blood J Am Soc Hematol doi: 10.1182/blood-2016-11-751040 – volume: 8 start-page: 10225 year: 2018 ident: B27 article-title: Anticoagulants impact on innate immune responses and bacterial survival in whole blood models of neisseria meningitidis infection publication-title: Sci Rep doi: 10.1038/s41598-018-28583-8 – volume: 4 start-page: e6782 year: 2009 ident: B36 article-title: Alternative complement pathway deregulation is correlated with dengue severity publication-title: PloS One doi: 10.1371/journal.pone.0006782 – volume: 28 year: 2020 ident: B68 article-title: The effect of CpG sequences on capsid-specific CD8(+) T cell responses to AAV vector gene transfer publication-title: Mol Ther doi: 10.1016/j.ymthe.2019.11.014 – volume: 40 start-page: 37 year: 2018 ident: B23 article-title: Complement as a regulator of adaptive immunity publication-title: Semin Immunopathol doi: 10.1007/s00281-017-0644-y – volume: 76 year: 2002 ident: B62 article-title: Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors publication-title: J Virol doi: 10.1128/JVI.76.9.4580-4590.2002 – volume: 33 year: 2022 ident: B5 article-title: Global seroprevalence of pre-existing immunity against AAV5 and other AAV serotypes in people with hemophilia a publication-title: Hum Gene Ther doi: 10.1089/hum.2021.287 – volume: 19 year: 2011 ident: B6 article-title: A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8 publication-title: Mol Ther doi: 10.1038/mt.2011.108 – volume: 9 year: 2018 ident: B51 article-title: Influence of pre-existing anti-capsid neutralizing and binding antibodies on AAV vector transduction publication-title: Mol Ther - Methods Clin Dev doi: 10.1016/j.omtm.2018.02.003 – volume: 12 year: 2006 ident: B38 article-title: Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response publication-title: Nat Med doi: 10.1038/nm1358 – volume: 9 year: 2021 ident: B53 article-title: Complement receptors and their role in leukocyte recruitment and phagocytosis publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.624025 – volume: 199 year: 2009 ident: B3 article-title: Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses publication-title: J Infect Dis doi: 10.1086/595830 – volume: 12 year: 2021 ident: B69 article-title: Effect of CpG depletion of vector genome on CD8+ T cell responses in AAV gene therapy publication-title: Front Immunol doi: 10.3389/fimmu.2021.672449 – volume: 21 year: 2010 ident: B4 article-title: Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors publication-title: Hum Gene Ther doi: 10.1089/hum.2009.182 – volume: 131 year: 2021 ident: B40 article-title: Overcoming innate immune barriers that impede AAV gene therapy vectors publication-title: J Clin Invest doi: 10.1172/JCI143780 – volume: 28 year: 2008 ident: B52 article-title: Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells publication-title: Immunity doi: 10.1016/j.immuni.2008.02.001 – volume: 10 year: 2020 ident: B31 article-title: Complement receptor-mediated phagocytosis induces proinflammatory cytokine production in murine macrophages publication-title: Front Immunol doi: 10.3389/fimmu.2019.03049 – volume: 128 year: 2018 ident: B43 article-title: Exposure to wild-type AAV drives distinct capsid immunity profiles in humans publication-title: J Clin Invest doi: 10.1172/JCI122372 – volume: 271 year: 1996 ident: B55 article-title: C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity publication-title: Science doi: 10.1126/science.271.5247.348 – volume: 13 start-page: eabd3438 year: 2021 ident: B45 article-title: Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses publication-title: Sci Trans Med doi: 10.1126/scitranslmed.abd3438 – year: 2022 ident: B14 article-title: #MDA2022 – DMD gene therapy PF-06939926 safe at high dose: Trial publication-title: Muscular Dystrophy News Today – volume: 122 year: 2018 ident: B21 article-title: Deficiency of complement C3a and C5a receptors prevents angiotensin II–induced hypertension via regulatory T cells publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.312153 – volume: 9 year: 2018 ident: B37 article-title: Age and sex-associated changes of complement activity and complement levels in a healthy Caucasian population publication-title: Front Immunol doi: 10.3389/fimmu.2018.02664 – volume: 14 year: 2014 ident: B30 article-title: Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny publication-title: Nat Rev Immunol doi: 10.1038/nri3712 – volume-title: 4D molecular therapeutics reports interim results from the 4D-310 phase 1/2 clinical trial in patients with fabry disease and provides clinical data update from the 4D-110 phase 1/2 clinical trial in patients with choroideremia year: 2021 ident: B12 – volume: 30 start-page: 81 year: 2019 ident: B47 article-title: TLR9-activating CpG-b ODN but not TLR7 agonists triggers antibody formation to factor IX in muscle gene transfer publication-title: Hum Gene Ther Methods doi: 10.1089/hgtb.2019.013 – volume: 28 year: 2020 ident: B1 article-title: AAV vector immunogenicity in humans: A long journey to successful gene transfer publication-title: Mol Ther doi: 10.1016/j.ymthe.2019.12.010 – volume: 6 year: 2015 ident: B19 article-title: Complement system part I – molecular mechanisms of activation and regulation publication-title: Front Immunol doi: 10.3389/fimmu.2015.00262 – volume: 5 start-page: e139881 year: 2020 ident: B9 article-title: Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme publication-title: JCI Insight doi: 10.1172/jci.insight.139881 – volume: 188 year: 2017 ident: B57 article-title: Production of complement components by cells of the immune system publication-title: Clin Exp Immunol doi: 10.1111/cei.12952 – volume: 117 year: 2011 ident: B34 article-title: Complement alternative pathway acts as a positive feedback amplification of neutrophil activation publication-title: Blood doi: 10.1182/blood-2010-05-283564 – volume: 28 year: 2020 ident: B44 article-title: Quantification of CpG motifs in rAAV genomes: Avoiding the toll publication-title: Mol Ther doi: 10.1016/j.ymthe.2020.07.006 – volume: 13 year: 2013 ident: B32 article-title: Molecular mechanisms of T cell co-stimulation and co-inhibition publication-title: Nat Rev Immunol doi: 10.1038/nri3405 – volume: 33 year: 2022 ident: B59 article-title: Biodistribution and tolerability of AAV-PHP.B-CBh-SMN1 in wistar han rats and cynomolgus macaques reveal different toxicologic profiles publication-title: Hum Gene Ther doi: 10.1089/hum.2021.116 – volume: 1 year: 2022 ident: B26 article-title: Rapid quality control assessment of adeno-associated virus vectors Via stunner publication-title: Gen Biotechnol doi: 10.1089/genbio.2022.0007 – volume: 116 year: 2010 ident: B29 article-title: Nomenclature of monocytes and dendritic cells in blood publication-title: Blood doi: 10.1182/blood-2010-02-258558 – volume: 13 year: 2018 ident: B16 article-title: Thrombotic microangiopathy and the kidney publication-title: Clin J Am Soc Nephrol doi: 10.2215/CJN.00620117 – volume: 371 start-page: 1994 year: 2014 ident: B39 article-title: Long-term safety and efficacy of factor IX gene therapy in publication-title: New Engl J Med doi: 10.1056/NEJMoa1407309 – volume: 11 year: 2020 ident: B2 article-title: Human immune responses to adeno-associated virus (AAV) vectors publication-title: Front Immunol doi: 10.3389/fimmu.2020.00670 – volume: 26 start-page: 45 year: 2015 ident: B28 article-title: Determination of anti-adeno-associated virus vector neutralizing antibody titer with an in vitro reporter system publication-title: Hum Gene Ther Methods doi: 10.1089/hgtb.2015.037 – volume: 1 start-page: 14033 year: 2014 ident: B7 article-title: B-cell depletion is protective against anti-AAV capsid immune response: A human subject case study publication-title: Mol Ther - Methods Clin Dev doi: 10.1038/mtm.2014.33 – volume: 117 year: 2011 ident: B65 article-title: The genome of self-complementary adeno-associated viral vectors increases toll-like receptor 9–dependent innate immune responses in the liver publication-title: Blood doi: 10.1182/blood-2010-10-314518 – year: 2022 ident: B63 article-title: Addressing high dose AAV toxicity – ‘one and done’ or ‘slower and lower’ publication-title: Expert Opin Biol Ther doi: 10.1080/14712598.2022.2060737 – volume: 123 start-page: 2994 year: 2013 ident: B67 article-title: CpG-depleted adeno-associated virus vectors evade immune detection publication-title: J Clin Invest doi: 10.1172/JCI68205 – volume: 158 year: 1997 ident: B60 article-title: Properdin, a positive regulator of complement activation, is released from secondary granules of stimulated peripheral blood neutrophils publication-title: J Immunol doi: 10.4049/jimmunol.158.9.4444 – volume: 231 year: 2021 ident: B13 article-title: Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: A case series publication-title: J Pediatr doi: 10.1016/j.jpeds.2020.11.054 – volume: 119 year: 2009 ident: B49 article-title: The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice publication-title: J Clin Invest doi: 10.1172/JCI37607 – volume: 14 start-page: 26 year: 2018 ident: B25 article-title: The renaissance of complement therapeutics publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2017.156 – volume: 29 start-page: 23 year: 2021 ident: B58 article-title: Characterization of acute toxicity after high-dose systemic adeno-associated virus in nonhuman primates, including impact of vector characteristics publication-title: Mol Ther doi: 10.1016/j.ymthe.2021.04.019 – volume: 26 year: 2020 ident: B10 article-title: IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies publication-title: Nat Med doi: 10.1038/s41591-020-0911-7 – volume: 8 year: 2022 ident: B41 article-title: Gene therapy advances: A meta-analysis of AAV usage in clinical settings publication-title: Front Med doi: 10.3389/fmed.2021.809118 – volume: 137 year: 2021 ident: B46 article-title: BAX 335 hemophilia b gene therapy clinical trial results: Potential impact of CpG sequences on gene expression publication-title: Blood doi: 10.1182/blood.2019004625 – volume: 342 start-page: 103682 year: 2019 ident: B48 article-title: Regulatory T cells and TLR9 activation shape antibody formation to a secreted transgene product in AAV muscle gene transfer publication-title: Cell Immunol doi: 10.1016/j.cellimm.2017.07.012 – volume: 29 year: 2021 ident: B11 article-title: Current clinical applications of in vivo gene therapy with AAVs publication-title: Mol Ther: J Am Soc Gene Ther doi: 10.1016/j.ymthe.2020.12.007 – volume: 10 year: 2012 ident: B35 article-title: Complement activation in thrombotic thrombocytopenic purpura publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2012.04674.x – volume: 112 year: 2008 ident: B54 article-title: Locally produced C5a binds to T cell–expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis publication-title: Blood doi: 10.1182/blood-2008-04-151068 – volume: 2 start-page: 80 year: 2014 ident: B64 article-title: Product-related impurities in clinical-grade recombinant AAV vectors: Characterization and risk assessment publication-title: Biomedicines doi: 10.3390/biomedicines2010080 – volume: 210 year: 2013 ident: B20 article-title: Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells publication-title: J Exp Med doi: 10.1084/jem.20121525 – volume-title: LogicBio therapeutics provides update on LB-001 clinical development program year: 2022 ident: B15 – volume: 17 year: 2005 ident: B22 article-title: Regulation of b lymphocyte activation by complement C3 and the b cell coreceptor complex publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2005.03.001 – volume: 20 year: 2012 ident: B66 article-title: Self-complementary AAVs induce more potent transgene product-specific immune responses compared to a single-stranded genome publication-title: Mol Ther: J Am Soc Gene Ther doi: 10.1038/mt.2011.280 – volume: 82 year: 2008 ident: B24 article-title: Complement is an essential component of the immune response to adeno-associated virus vectors publication-title: J Virol doi: 10.1128/JVI.01990-07 – volume: 10 start-page: 864 year: 2020 ident: B8 article-title: Capsid-specific removal of circulating antibodies to adeno-associated virus vectors publication-title: Sci Rep doi: 10.1038/s41598-020-57893-z – volume: 45 year: 2008 ident: B61 article-title: Properdin: New roles in pattern recognition and target clearance publication-title: Mol Immunol doi: 10.1016/j.molimm.2008.06.034 – volume: 20 year: 2021 ident: B17 article-title: Gene therapy community grapples with toxicity issues, as pipeline matures publication-title: Nat Rev Drug Discovery doi: 10.1038/d41573-021-00164-x – volume: 33 year: 2013 ident: B18 article-title: Overview of complement activation and regulation publication-title: Semin Nephrol doi: 10.1016/j.semnephrol.2013.08.001 – volume: 28 year: 2020 ident: B33 article-title: Type I IFN sensing by cDCs and CD4+ T cell help are both requisite for cross-priming of AAV capsid-specific CD8+ T cells publication-title: Mol Ther doi: 10.1016/j.ymthe.2019.11.011 – volume: 81 start-page: 65 year: 2009 ident: B50 article-title: Diverse IgG subclass responses to adeno-associated virus infection and vector administration publication-title: J Med Virol doi: 10.1002/jmv.21360 – volume: 421 year: 1983 ident: B56 article-title: Initiation of the alternative complement pathway due to spontaneous hydrolysis of the thioester of C3 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1983.tb18116.x |
| SSID | ssj0000493335 |
| Score | 2.5171173 |
| Snippet | AAV gene transfer is a promising treatment for many patients with life-threatening genetic diseases. However, host immune response to the vector poses a... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 999021 |
| SubjectTerms | AAV complement gene therapy Immunology innate immunity neutralizing antibodies |
| Title | Pre-existing humoral immunity and complement pathway contribute to immunogenicity of adeno-associated virus (AAV) vector in human blood |
| URI | https://www.proquest.com/docview/2720927137 https://pubmed.ncbi.nlm.nih.gov/PMC9523746 https://doaj.org/article/d9b0d374702f4585b36b080c36e4089e |
| Volume | 13 |
| WOSCitedRecordID | wos000862625300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV0xb9QwFLZKVSQWVAqIo7RypQ6AFOrYjhOPB2rVoa06ALrNchxbTcUl6C656hZW_jbPdlpdFrp0iZTEUWy_9-zv2c_fQ-hYuExS52wC1mYTziyYlCyLpHJVpiXh1kQS14v86qqYzeT1RqovHxMW6YFjx51UsiQVA9BLqOOAbUsmSkA5hgnLSSGtH33hfsOZuo24lzGWxW1M8MLkiavn8x78QUq_ACYiNB1NRIGvfwQyxyGSG3PO2S56OYBFPI2VfIW2bLOHnsf0kevX6O_1wiaeytKHLuObfu5P2-M6nPjo1lg3FQ4R42EFEPvcw3d6jUNwus9yZXHXxtItaFFt_DetwxpGojbRg9hshVf1ol_ij9Ppz094FRb5cd3gkNwPh7j3N-jH2en3b-fJkFghMZzTLgEfIkutoJYBPJMMWsm0kEZbABNg81KUMJ9JQrQu0lTzqoJByBnGc6bzLNOCvUXbTdvYdwhrnRJTcl06xrgxpeaEg5OTU2cyGAzYBJH7XlZmYB33yS9-KfA-vGBUEIzyglFRMBP0-eGT35Fy43-Fv3rRPRT0bNnhAeiQGnRIPaZDE3R0L3gF1uW3THRj236p_C61pODI5xOUjzRi9Mfxm6a-CTzdEpz8nIv3T1HFffTCt9pHqqTiA9ruFr09QDtm1dXLxSF6ls-Kw2ACcL38c_oPUzIOYw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre-existing+humoral+immunity+and+complement+pathway+contribute+to+immunogenicity+of+adeno-associated+virus+%28AAV%29+vector+in+human+blood&rft.jtitle=Frontiers+in+immunology&rft.au=Smith%2C+Corinne+J.&rft.au=Ross%2C+Nikki&rft.au=Kamal%2C+Ali&rft.au=Kim%2C+Kevin+Y.&rft.date=2022-09-16&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.999021&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2022_999021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |