A Two-Step Ensemble-based Genetic Algorithm for Land Cover Classification

Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization technology, genetic algorithm (GA) has been successfully applied to various image classification tasks in recent years. However, simple GA f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 16; pp. 1 - 9
Main Authors: Cao, Yang, Feng, Wei, Quan, Yinghui, Bao, Wenxing, Dauphin, Gabriel, Song, Yijia, Ren, Aifeng, Xing, Mengdao
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization technology, genetic algorithm (GA) has been successfully applied to various image classification tasks in recent years. However, simple GA faces challenges such as complex calculation, poor noise immunity, and slow convergence. This research proposes a two-step ensemble protocol for LULC classification using a grayscale-spatial-based genetic algorithm model. The first ensemble framework uses FCM to classify pixels into those that are difficult to cluster and those that are easy to cluster, which aids in reducing the search space for evolutionary computation. The second ensemble framework uses neighborhood windows as heuristic information to adaptively modify the objective function and mutation probability of the genetic algorithm, which brings valuable benefits to the discrimination and decision of GA. In this study, three research areas in Dangyang, China, are utilized to validate the effectiveness of the proposed method. The experiments show that the proposed method can effectively maintain the image details, restrain noise, and achieve rapid algorithm convergence. Compared with the reference methods, the best overall accuracy obtained by the proposed algorithm is 88.72%.
AbstractList Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization technology, genetic algorithm (GA) has been successfully applied to various image classification tasks in recent years. However, simple GA faces challenges, such as complex calculation, poor noise immunity, and slow convergence. This research proposes a two-step ensemble protocol for LULC classification using a grayscale-spatial-based GA model. The first ensemble framework uses fuzzy c-means to classify pixels into those that are difficult to cluster and those that are easy to cluster, which aids in reducing the search space for evolutionary computation. The second ensemble framework uses neighborhood windows as heuristic information to adaptively modify the objective function and mutation probability of the GA, which brings valuable benefits to the discrimination and decision of GA. In this study, three research areas in Dangyang, China, are utilized to validate the effectiveness of the proposed method. The experiments show that the proposed method can effectively maintain the image details, restrain noise, and achieve rapid algorithm convergence. Compared with the reference methods, the best overall accuracy obtained by the proposed algorithm is 88.72%.
Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization technology, genetic algorithm (GA) has been successfully applied to various image classification tasks in recent years. However, simple GA faces challenges such as complex calculation, poor noise immunity, and slow convergence. This research proposes a two-step ensemble protocol for LULC classification using a grayscale-spatial-based genetic algorithm model. The first ensemble framework uses FCM to classify pixels into those that are difficult to cluster and those that are easy to cluster, which aids in reducing the search space for evolutionary computation. The second ensemble framework uses neighborhood windows as heuristic information to adaptively modify the objective function and mutation probability of the genetic algorithm, which brings valuable benefits to the discrimination and decision of GA. In this study, three research areas in Dangyang, China, are utilized to validate the effectiveness of the proposed method. The experiments show that the proposed method can effectively maintain the image details, restrain noise, and achieve rapid algorithm convergence. Compared with the reference methods, the best overall accuracy obtained by the proposed algorithm is 88.72%.
Author Dauphin, Gabriel
Quan, Yinghui
Bao, Wenxing
Cao, Yang
Feng, Wei
Song, Yijia
Xing, Mengdao
Ren, Aifeng
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0003-1907-2664
  surname: Cao
  fullname: Cao, Yang
  organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 2
  givenname: Wei
  surname: Feng
  fullname: Feng, Wei
  organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 3
  givenname: Yinghui
  orcidid: 0000-0001-6541-9441
  surname: Quan
  fullname: Quan, Yinghui
  organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 4
  givenname: Wenxing
  surname: Bao
  fullname: Bao, Wenxing
  organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, China
– sequence: 5
  givenname: Gabriel
  orcidid: 0000-0002-0677-6702
  surname: Dauphin
  fullname: Dauphin, Gabriel
  organization: Laboratory of Information Processing and Transmission, L2TI, Institut Galilée, University Paris XIII, France
– sequence: 6
  givenname: Yijia
  surname: Song
  fullname: Song, Yijia
  organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 7
  givenname: Aifeng
  orcidid: 0000-0003-1129-5601
  surname: Ren
  fullname: Ren, Aifeng
  organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 8
  givenname: Mengdao
  orcidid: 0000-0002-4084-0915
  surname: Xing
  fullname: Xing, Mengdao
  organization: Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, China
BackLink https://hal.science/hal-03915376$$DView record in HAL
BookMark eNp9kU1r3DAQhkVIoZu0vyAXQ049eKtP2zqaJU22LBS627MYy6NEi9faSE5K_321cVpIDz0Jhvd5GM17Qc7HMCIhV4wuGaP689ftrv2-XXLK-VJwrqpKnZEFZ4qVTAl1ThZMC10ySeV7cpHSntKK11osyLotdj9DuZ3wWNyMCQ_dgGUHCfviFkecvC3a4T5EPz0cChdisYGxL1bhGWOxGiAl77yFyYfxA3nnYEj48fW9JD--3OxWd-Xm2-161W5KKyWfSs07y5x1PWXOSQ1oHYVG1bJrUFFtnaOKdr22knZUyBztGxDcyk5RDgDikqxnbx9gb47RHyD-MgG8eRmEeG8g5r0HNAJ1liFQ2VWyr0WnGujBSdk32cUxuz7NrgcY3qju2o05zajQ-YB19cxy9nrOHmN4fMI0mX14imP-quG1klrVoqlySs8pG0NKEZ2xfnq5zxTBD4ZRc2rMzI2ZU2PmtbHMin_YPyv9n7qaKY-Ifwmtq6qhQvwGv-mjHw
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_math13172709
crossref_primary_10_1007_s12040_024_02298_z
Cites_doi 10.1109/TFUZZ.2018.2796074
10.1109/TIP.2010.2040763
10.1016/j.mlwa.2021.100044
10.1109/TFUZZ.2018.2883033
10.1109/JSTARS.2019.2922297
10.1109/TEMC.2022.3161298
10.1016/j.isprsjprs.2021.12.005
10.1109/TCE.2021.3066431
10.1109/JSTARS.2017.2756864
10.1109/TCBB.2019.2921961
10.1109/IEMBS.2003.1279866
10.1109/JSTARS.2019.2918242
10.3390/rs13193945
10.1016/j.mcm.2009.10.023
10.3390/rs13183745
10.1109/TGRS.2017.2702061
10.1016/j.inffus.2021.11.014
10.1016/j.jag.2022.102675
10.1016/j.rse.2021.112670
10.1016/j.ins.2021.06.059
10.1109/TGRS.2019.2903794
10.1109/TII.2020.2969709
10.1109/TEVC.2017.2745715
10.1016/j.eswa.2021.115107
10.1109/TCYB.2018.2877663
10.1109/TEVC.2017.2657556
10.1109/JSTARS.2009.2023802
10.1016/j.isprsjprs.2014.08.006
10.1109/TGRS.2020.3020804
10.1109/JSTARS.2013.2294956
10.3390/rs13091623
10.1109/TIP.2007.901238
10.1016/j.asoc.2020.106318
10.3390/rs12223801
10.1109/CISP.2014.7003861
10.1016/j.rse.2021.112780
10.1109/JSTARS.2012.2185822
10.1016/j.isprsjprs.2021.10.014
10.1016/j.patcog.2006.07.011
10.1109/TGRS.2020.3000296
10.1016/j.asr.2022.05.052
10.1109/JSTARS.2015.2504371
10.1016/j.eswa.2015.11.016
10.1016/j.engappai.2019.05.004
10.1016/j.asoc.2021.108006
10.1109/TLA.2020.9099762
10.1109/TCBB.2019.2930505
10.1016/j.isprsjprs.2021.11.024
10.1016/j.knosys.2019.07.016
10.1109/TCYB.2018.2845661
10.1109/LGRS.2019.2913387
10.1109/TEVC.2022.3159087
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
DOA
DOI 10.1109/JSTARS.2022.3225665
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Environmental Sciences
EISSN 2151-1535
EndPage 9
ExternalDocumentID oai_doaj_org_article_3e9050ea04b64d73b58adaf44d802a2e
oai:HAL:hal-03915376v1
10_1109_JSTARS_2022_3225665
9966803
Genre orig-research
GrantInformation_xml – fundername: Shaanxi Forestry Science and Technology Innovation Key Special
  grantid: SXLK2022-02-8
– fundername: National Natural Science Foundation of China
  grantid: 62201438; 61772397; 12005159
  funderid: 10.13039/501100001809
– fundername: Science Technology and Development Project of Yulin Science and Technology Bureau
  grantid: CXY-2020-094
– fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2021JC-23
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
7UA
8FD
ABAZT
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
ID FETCH-LOGICAL-c442t-92bc1fcfd01ff49aecf0a8574b8e509cff050bd9c40b0341fcd8a32c4b502aaa3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900007800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:52:12 EDT 2025
Wed Dec 10 12:34:07 EST 2025
Fri Jul 25 22:08:15 EDT 2025
Tue Nov 18 21:02:36 EST 2025
Sat Nov 29 04:51:15 EST 2025
Tue Nov 25 14:44:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-92bc1fcfd01ff49aecf0a8574b8e509cff050bd9c40b0341fcd8a32c4b502aaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1129-5601
0000-0002-4084-0915
0000-0001-6541-9441
0000-0002-0677-6702
0000-0003-1907-2664
0000-0001-5517-7143
OpenAccessLink https://ieeexplore.ieee.org/document/9966803
PQID 2754957386
PQPubID 75722
PageCount 9
ParticipantIDs proquest_journals_2754957386
crossref_citationtrail_10_1109_JSTARS_2022_3225665
ieee_primary_9966803
hal_primary_oai_HAL_hal_03915376v1
doaj_primary_oai_doaj_org_article_3e9050ea04b64d73b58adaf44d802a2e
crossref_primary_10_1109_JSTARS_2022_3225665
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref38
hamad (ref31) 2019; 2
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref27
  doi: 10.1109/TFUZZ.2018.2796074
– ident: ref25
  doi: 10.1109/TIP.2010.2040763
– ident: ref16
  doi: 10.1016/j.mlwa.2021.100044
– ident: ref24
  doi: 10.1109/TFUZZ.2018.2883033
– ident: ref12
  doi: 10.1109/JSTARS.2019.2922297
– ident: ref36
  doi: 10.1109/TEMC.2022.3161298
– ident: ref10
  doi: 10.1016/j.isprsjprs.2021.12.005
– ident: ref34
  doi: 10.1109/TCE.2021.3066431
– ident: ref8
  doi: 10.1109/JSTARS.2017.2756864
– ident: ref35
  doi: 10.1109/TCBB.2019.2921961
– ident: ref22
  doi: 10.1109/IEMBS.2003.1279866
– ident: ref2
  doi: 10.1109/JSTARS.2019.2918242
– ident: ref52
  doi: 10.3390/rs13193945
– ident: ref29
  doi: 10.1016/j.mcm.2009.10.023
– ident: ref37
  doi: 10.3390/rs13183745
– ident: ref26
  doi: 10.1109/TGRS.2017.2702061
– ident: ref51
  doi: 10.1016/j.inffus.2021.11.014
– ident: ref20
  doi: 10.1016/j.jag.2022.102675
– ident: ref3
  doi: 10.1016/j.rse.2021.112670
– ident: ref48
  doi: 10.1016/j.ins.2021.06.059
– volume: 2
  start-page: 1
  year: 2019
  ident: ref31
  article-title: A remote sensing and GIS-based analysis of Urban Sprawl in Soran district, Iraqi Kurdistan
  publication-title: SN Appl Sci
– ident: ref14
  doi: 10.1109/TGRS.2019.2903794
– ident: ref50
  doi: 10.1109/TII.2020.2969709
– ident: ref42
  doi: 10.1109/TEVC.2017.2745715
– ident: ref40
  doi: 10.1016/j.eswa.2021.115107
– ident: ref49
  doi: 10.1109/TCYB.2018.2877663
– ident: ref30
  doi: 10.1109/TEVC.2017.2657556
– ident: ref41
  doi: 10.1109/JSTARS.2009.2023802
– ident: ref18
  doi: 10.1016/j.isprsjprs.2014.08.006
– ident: ref4
  doi: 10.1109/TGRS.2020.3020804
– ident: ref9
  doi: 10.1109/JSTARS.2013.2294956
– ident: ref44
  doi: 10.3390/rs13091623
– ident: ref53
  doi: 10.1109/TIP.2007.901238
– ident: ref28
  doi: 10.1016/j.asoc.2020.106318
– ident: ref5
  doi: 10.3390/rs12223801
– ident: ref17
  doi: 10.1109/CISP.2014.7003861
– ident: ref1
  doi: 10.1016/j.rse.2021.112780
– ident: ref32
  doi: 10.1109/JSTARS.2012.2185822
– ident: ref21
  doi: 10.1016/j.isprsjprs.2021.10.014
– ident: ref23
  doi: 10.1016/j.patcog.2006.07.011
– ident: ref15
  doi: 10.1109/TGRS.2020.3000296
– ident: ref6
  doi: 10.1016/j.asr.2022.05.052
– ident: ref7
  doi: 10.1109/JSTARS.2015.2504371
– ident: ref33
  doi: 10.1016/j.eswa.2015.11.016
– ident: ref19
  doi: 10.1016/j.engappai.2019.05.004
– ident: ref46
  doi: 10.1016/j.asoc.2021.108006
– ident: ref43
  doi: 10.1109/TLA.2020.9099762
– ident: ref39
  doi: 10.1109/TCBB.2019.2930505
– ident: ref13
  doi: 10.1016/j.isprsjprs.2021.11.024
– ident: ref11
  doi: 10.1016/j.knosys.2019.07.016
– ident: ref45
  doi: 10.1109/TCYB.2018.2845661
– ident: ref47
  doi: 10.1109/LGRS.2019.2913387
– ident: ref38
  doi: 10.1109/TEVC.2022.3159087
SSID ssj0062793
Score 2.3216937
Snippet Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization...
SourceID doaj
hal
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Classification
Classification algorithms
Clustering algorithms
Clusters
Computation
Convergence
Engineering Sciences
Environmental Sciences
Evolutionary computation
Gene mapping
genetic algorithm
Genetic algorithm (GA)
Genetic algorithms
Genetics
Global Changes
Image classification
Immunity
Land cover
Land use
land use and land cover
land use and land cover (LULC)
Methods
neighborhood window
Neighborhoods
Objective function
Optimization
Precision agriculture
Probability theory
remote sensing image classification
Signal and Image processing
Task analysis
Task complexity
Two-step ensemble
Urban agriculture
Urban planning
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFA1SFHyRahWn1hLER2MzmcwkeZyW1gpLEa3Qt5BPK2xnpbut-O-9NzO7tAj64mtIhnDuTU7ucDmHkLceipuWO8VaOElMCm6Yr3liKBSjjeyy8iXSM3V2pi8uzKc7Vl_YEzbKA4_AHTTJ8JYnx6XvZFSNb7WLLksZNRdOJLx9uTLrYmq8gzsBaTdpDNXcHECS95-_QDUoxHvM4A655A4PFbl-YJdLbIYsLit_XM2Fb062yZPpoUj7cYNPyYM0PCOPPhQj3l875GNPz38uGDZp0eNhma78PLFDoKRIUUkaFtF-_m0Bpf_lFYWHKZ25IdIjbNikxQgTW4RKVJ6TryfH50enbLJFYEFKsWJG-FDnkCOvc5bGpZC5062SXieg_5AzAOajCZJ7DiSVQ9SuEUH6FhBzrnlBtobFkF4SWqvofJd0h6pxneQOnh9A4o1UrjExdxURa5BsmDTD0bpibkvtwI0dkbWIrJ2Qrci7zaIfo2TG36cfIvqbqah3XQYgC-yUBfZfWVCRNxC7e9847WcWx4oEPlyjt3VFdjC0m1lY6mneVGRvHWo7HeClFQoK5xYdUXf_x_5ekcfoUz_-u9kjW6vrm_SaPAy3q-_L6_2Su78BnO_tLw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Two-Step Ensemble-based Genetic Algorithm for Land Cover Classification
URI https://ieeexplore.ieee.org/document/9966803
https://www.proquest.com/docview/2754957386
https://hal.science/hal-03915376
https://doaj.org/article/3e9050ea04b64d73b58adaf44d802a2e
Volume 16
WOSCitedRecordID wos000900007800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA61KPjirUpHawniY9NmMplcHsfSGyxFtELfQq62sJ2V3W3Ff29OZnZRLELfhpAMk3wnOZc5-Q5CH112blpqJWnzTiKcUU1cTSMBohiluUjSFaQn8vxcXV7qzxtob30XJsZYks_iPjyWf_lh5m8hVHYAtrkCas9HUorhrtbq1BVMFoLdbI9oApQxI8NQTfVBFvHuy9fsCzK2D_IrQJP8oYUKWX_WLVeQCllqrPxzMBdtc_z8Yd_5Aj0brUrcDWLwEm3E_hV6clKq9v7aQmcdvvg5I5DRhY_6Rbxx00hAfwUMtNN5EO6m32fz6-XVDc5WLJ7YPuBDyO7EpWom5BMVCF-jb8dHF4enZKyhQDznbEk0c75OPgVap8S1jT5Rq1rJnYrZVvAp0Za6oD2njmaNlnxQtmGeu5Yya23zBm32sz5uI1zLYJ2ISgDFnODUZlsla_yGS9vokESF2GpNjR8JxqHOxdQUR4NqMwBhAAgzAlGhvfWgHwO_xv-7fwKw1l2BHLs05PU3414zTdR5UtFS7gQPsnGtssEmzoPKc2KxQh8y1H-947SbGGgrfPn5zL2rK7QFwK57jZhWaGclGWbc7QvDZPayWyif-vb-Ue_QUyhTP4RudtDmcn4b36PH_m55vZjvljjAbhHn366i7PQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lKvpSP6q4tWoQH5s2m81-5HEtrVdcD9ET-hby2Raud3J3rfjfO5PdOxRF8G0JSdjkN8nMJJPfEPLWgnNTclOzElYSk4IrZnMeGBLFNEpWsbYJ6a4ej5vzc_Vpixxs3sKEEFLwWTjEz3SX7-fuBo_KjtA2b5Da804podv-tdZ6361EnSh2wSJRDEljBo6hnKsjEPL28xfwBoU4RAmuUJf8oocSXT9ol0sMhkxZVv7YmpO-OX34f3_6iOwMdiVte0F4TLbC7Am59z7l7f2xS85aOvk-ZxjTRU9my3Btp4GhBvMUiaehEW2nF_PF1erymoIdSzsz8_QY4ztpypuJEUUJxKfk6-nJ5HjEhiwKzMEkrZgS1uXRRc_zGKUywUVumrKWtglgLbgYecmtV05yy0GnRecbUwgnbcmFMaZ4RrZn81l4Tmhee2Or0FRIMldJbsBaAZ1fyNoUyscqI2I9p9oNFOOY6WKqk6vBle6B0AiEHoDIyMGm0beeYePf1d8hWJuqSI-dCmD-9bDadBEUDCoYLm0lfV3YsjHeRCl9A2MSISNvAOrf-hi1ncayxJgPu-5tnpFdBHZTa8A0I_trydDDel9qUYOfXWIC1b2_t3pN7o8mHzvdnY0_vCAPMGl9f5CzT7ZXi5vwktx1t6ur5eJVEuqfkC3vRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Step+Ensemble-Based+Genetic+Algorithm+for+Land+Cover+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Cao%2C+Yang&rft.au=Feng%2C+Wei&rft.au=Quan%2C+Yinghui&rft.au=Bao%2C+Wenxing&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=16&rft.spage=409&rft.epage=418&rft_id=info:doi/10.1109%2FJSTARS.2022.3225665&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03915376v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon