A Two-Step Ensemble-based Genetic Algorithm for Land Cover Classification
Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization technology, genetic algorithm (GA) has been successfully applied to various image classification tasks in recent years. However, simple GA f...
Uloženo v:
| Vydáno v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 16; s. 1 - 9 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization technology, genetic algorithm (GA) has been successfully applied to various image classification tasks in recent years. However, simple GA faces challenges such as complex calculation, poor noise immunity, and slow convergence. This research proposes a two-step ensemble protocol for LULC classification using a grayscale-spatial-based genetic algorithm model. The first ensemble framework uses FCM to classify pixels into those that are difficult to cluster and those that are easy to cluster, which aids in reducing the search space for evolutionary computation. The second ensemble framework uses neighborhood windows as heuristic information to adaptively modify the objective function and mutation probability of the genetic algorithm, which brings valuable benefits to the discrimination and decision of GA. In this study, three research areas in Dangyang, China, are utilized to validate the effectiveness of the proposed method. The experiments show that the proposed method can effectively maintain the image details, restrain noise, and achieve rapid algorithm convergence. Compared with the reference methods, the best overall accuracy obtained by the proposed algorithm is 88.72%. |
|---|---|
| AbstractList | Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization technology, genetic algorithm (GA) has been successfully applied to various image classification tasks in recent years. However, simple GA faces challenges, such as complex calculation, poor noise immunity, and slow convergence. This research proposes a two-step ensemble protocol for LULC classification using a grayscale-spatial-based GA model. The first ensemble framework uses fuzzy c-means to classify pixels into those that are difficult to cluster and those that are easy to cluster, which aids in reducing the search space for evolutionary computation. The second ensemble framework uses neighborhood windows as heuristic information to adaptively modify the objective function and mutation probability of the GA, which brings valuable benefits to the discrimination and decision of GA. In this study, three research areas in Dangyang, China, are utilized to validate the effectiveness of the proposed method. The experiments show that the proposed method can effectively maintain the image details, restrain noise, and achieve rapid algorithm convergence. Compared with the reference methods, the best overall accuracy obtained by the proposed algorithm is 88.72%. Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization technology, genetic algorithm (GA) has been successfully applied to various image classification tasks in recent years. However, simple GA faces challenges such as complex calculation, poor noise immunity, and slow convergence. This research proposes a two-step ensemble protocol for LULC classification using a grayscale-spatial-based genetic algorithm model. The first ensemble framework uses FCM to classify pixels into those that are difficult to cluster and those that are easy to cluster, which aids in reducing the search space for evolutionary computation. The second ensemble framework uses neighborhood windows as heuristic information to adaptively modify the objective function and mutation probability of the genetic algorithm, which brings valuable benefits to the discrimination and decision of GA. In this study, three research areas in Dangyang, China, are utilized to validate the effectiveness of the proposed method. The experiments show that the proposed method can effectively maintain the image details, restrain noise, and achieve rapid algorithm convergence. Compared with the reference methods, the best overall accuracy obtained by the proposed algorithm is 88.72%. |
| Author | Dauphin, Gabriel Quan, Yinghui Bao, Wenxing Cao, Yang Feng, Wei Song, Yijia Xing, Mengdao Ren, Aifeng |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0003-1907-2664 surname: Cao fullname: Cao, Yang organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China – sequence: 2 givenname: Wei surname: Feng fullname: Feng, Wei organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China – sequence: 3 givenname: Yinghui orcidid: 0000-0001-6541-9441 surname: Quan fullname: Quan, Yinghui organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China – sequence: 4 givenname: Wenxing surname: Bao fullname: Bao, Wenxing organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, China – sequence: 5 givenname: Gabriel orcidid: 0000-0002-0677-6702 surname: Dauphin fullname: Dauphin, Gabriel organization: Laboratory of Information Processing and Transmission, L2TI, Institut Galilée, University Paris XIII, France – sequence: 6 givenname: Yijia surname: Song fullname: Song, Yijia organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China – sequence: 7 givenname: Aifeng orcidid: 0000-0003-1129-5601 surname: Ren fullname: Ren, Aifeng organization: Department of remote sensing science and technology, School of Electronic Engineering, Xidian University, Xi'an, China – sequence: 8 givenname: Mengdao orcidid: 0000-0002-4084-0915 surname: Xing fullname: Xing, Mengdao organization: Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, China |
| BackLink | https://hal.science/hal-03915376$$DView record in HAL |
| BookMark | eNp9kU1r3DAQhkVIoZu0vyAXQ049eKtP2zqaJU22LBS627MYy6NEi9faSE5K_321cVpIDz0Jhvd5GM17Qc7HMCIhV4wuGaP689ftrv2-XXLK-VJwrqpKnZEFZ4qVTAl1ThZMC10ySeV7cpHSntKK11osyLotdj9DuZ3wWNyMCQ_dgGUHCfviFkecvC3a4T5EPz0cChdisYGxL1bhGWOxGiAl77yFyYfxA3nnYEj48fW9JD--3OxWd-Xm2-161W5KKyWfSs07y5x1PWXOSQ1oHYVG1bJrUFFtnaOKdr22knZUyBztGxDcyk5RDgDikqxnbx9gb47RHyD-MgG8eRmEeG8g5r0HNAJ1liFQ2VWyr0WnGujBSdk32cUxuz7NrgcY3qju2o05zajQ-YB19cxy9nrOHmN4fMI0mX14imP-quG1klrVoqlySs8pG0NKEZ2xfnq5zxTBD4ZRc2rMzI2ZU2PmtbHMin_YPyv9n7qaKY-Ifwmtq6qhQvwGv-mjHw |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_math13172709 crossref_primary_10_1007_s12040_024_02298_z |
| Cites_doi | 10.1109/TFUZZ.2018.2796074 10.1109/TIP.2010.2040763 10.1016/j.mlwa.2021.100044 10.1109/TFUZZ.2018.2883033 10.1109/JSTARS.2019.2922297 10.1109/TEMC.2022.3161298 10.1016/j.isprsjprs.2021.12.005 10.1109/TCE.2021.3066431 10.1109/JSTARS.2017.2756864 10.1109/TCBB.2019.2921961 10.1109/IEMBS.2003.1279866 10.1109/JSTARS.2019.2918242 10.3390/rs13193945 10.1016/j.mcm.2009.10.023 10.3390/rs13183745 10.1109/TGRS.2017.2702061 10.1016/j.inffus.2021.11.014 10.1016/j.jag.2022.102675 10.1016/j.rse.2021.112670 10.1016/j.ins.2021.06.059 10.1109/TGRS.2019.2903794 10.1109/TII.2020.2969709 10.1109/TEVC.2017.2745715 10.1016/j.eswa.2021.115107 10.1109/TCYB.2018.2877663 10.1109/TEVC.2017.2657556 10.1109/JSTARS.2009.2023802 10.1016/j.isprsjprs.2014.08.006 10.1109/TGRS.2020.3020804 10.1109/JSTARS.2013.2294956 10.3390/rs13091623 10.1109/TIP.2007.901238 10.1016/j.asoc.2020.106318 10.3390/rs12223801 10.1109/CISP.2014.7003861 10.1016/j.rse.2021.112780 10.1109/JSTARS.2012.2185822 10.1016/j.isprsjprs.2021.10.014 10.1016/j.patcog.2006.07.011 10.1109/TGRS.2020.3000296 10.1016/j.asr.2022.05.052 10.1109/JSTARS.2015.2504371 10.1016/j.eswa.2015.11.016 10.1016/j.engappai.2019.05.004 10.1016/j.asoc.2021.108006 10.1109/TLA.2020.9099762 10.1109/TCBB.2019.2930505 10.1016/j.isprsjprs.2021.11.024 10.1016/j.knosys.2019.07.016 10.1109/TCYB.2018.2845661 10.1109/LGRS.2019.2913387 10.1109/TEVC.2022.3159087 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 1XC DOA |
| DOI | 10.1109/JSTARS.2022.3225665 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Environmental Sciences |
| EISSN | 2151-1535 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_3e9050ea04b64d73b58adaf44d802a2e oai:HAL:hal-03915376v1 10_1109_JSTARS_2022_3225665 9966803 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shaanxi Forestry Science and Technology Innovation Key Special grantid: SXLK2022-02-8 – fundername: National Natural Science Foundation of China grantid: 62201438; 61772397; 12005159 funderid: 10.13039/501100001809 – fundername: Science Technology and Development Project of Yulin Science and Technology Bureau grantid: CXY-2020-094 – fundername: Natural Science Basic Research Program of Shaanxi grantid: 2021JC-23 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD 7UA 8FD ABAZT C1K F1W FR3 H8D H96 KR7 L.G L7M 1XC |
| ID | FETCH-LOGICAL-c442t-92bc1fcfd01ff49aecf0a8574b8e509cff050bd9c40b0341fcd8a32c4b502aaa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900007800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:52:12 EDT 2025 Wed Dec 10 12:34:07 EST 2025 Fri Jul 25 22:08:15 EDT 2025 Tue Nov 18 21:02:36 EST 2025 Sat Nov 29 04:51:15 EST 2025 Tue Nov 25 14:44:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-92bc1fcfd01ff49aecf0a8574b8e509cff050bd9c40b0341fcd8a32c4b502aaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1129-5601 0000-0002-4084-0915 0000-0001-6541-9441 0000-0002-0677-6702 0000-0003-1907-2664 0000-0001-5517-7143 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9966803 |
| PQID | 2754957386 |
| PQPubID | 75722 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2754957386 crossref_citationtrail_10_1109_JSTARS_2022_3225665 ieee_primary_9966803 hal_primary_oai_HAL_hal_03915376v1 doaj_primary_oai_doaj_org_article_3e9050ea04b64d73b58adaf44d802a2e crossref_primary_10_1109_JSTARS_2022_3225665 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 ref38 hamad (ref31) 2019; 2 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref27 doi: 10.1109/TFUZZ.2018.2796074 – ident: ref25 doi: 10.1109/TIP.2010.2040763 – ident: ref16 doi: 10.1016/j.mlwa.2021.100044 – ident: ref24 doi: 10.1109/TFUZZ.2018.2883033 – ident: ref12 doi: 10.1109/JSTARS.2019.2922297 – ident: ref36 doi: 10.1109/TEMC.2022.3161298 – ident: ref10 doi: 10.1016/j.isprsjprs.2021.12.005 – ident: ref34 doi: 10.1109/TCE.2021.3066431 – ident: ref8 doi: 10.1109/JSTARS.2017.2756864 – ident: ref35 doi: 10.1109/TCBB.2019.2921961 – ident: ref22 doi: 10.1109/IEMBS.2003.1279866 – ident: ref2 doi: 10.1109/JSTARS.2019.2918242 – ident: ref52 doi: 10.3390/rs13193945 – ident: ref29 doi: 10.1016/j.mcm.2009.10.023 – ident: ref37 doi: 10.3390/rs13183745 – ident: ref26 doi: 10.1109/TGRS.2017.2702061 – ident: ref51 doi: 10.1016/j.inffus.2021.11.014 – ident: ref20 doi: 10.1016/j.jag.2022.102675 – ident: ref3 doi: 10.1016/j.rse.2021.112670 – ident: ref48 doi: 10.1016/j.ins.2021.06.059 – volume: 2 start-page: 1 year: 2019 ident: ref31 article-title: A remote sensing and GIS-based analysis of Urban Sprawl in Soran district, Iraqi Kurdistan publication-title: SN Appl Sci – ident: ref14 doi: 10.1109/TGRS.2019.2903794 – ident: ref50 doi: 10.1109/TII.2020.2969709 – ident: ref42 doi: 10.1109/TEVC.2017.2745715 – ident: ref40 doi: 10.1016/j.eswa.2021.115107 – ident: ref49 doi: 10.1109/TCYB.2018.2877663 – ident: ref30 doi: 10.1109/TEVC.2017.2657556 – ident: ref41 doi: 10.1109/JSTARS.2009.2023802 – ident: ref18 doi: 10.1016/j.isprsjprs.2014.08.006 – ident: ref4 doi: 10.1109/TGRS.2020.3020804 – ident: ref9 doi: 10.1109/JSTARS.2013.2294956 – ident: ref44 doi: 10.3390/rs13091623 – ident: ref53 doi: 10.1109/TIP.2007.901238 – ident: ref28 doi: 10.1016/j.asoc.2020.106318 – ident: ref5 doi: 10.3390/rs12223801 – ident: ref17 doi: 10.1109/CISP.2014.7003861 – ident: ref1 doi: 10.1016/j.rse.2021.112780 – ident: ref32 doi: 10.1109/JSTARS.2012.2185822 – ident: ref21 doi: 10.1016/j.isprsjprs.2021.10.014 – ident: ref23 doi: 10.1016/j.patcog.2006.07.011 – ident: ref15 doi: 10.1109/TGRS.2020.3000296 – ident: ref6 doi: 10.1016/j.asr.2022.05.052 – ident: ref7 doi: 10.1109/JSTARS.2015.2504371 – ident: ref33 doi: 10.1016/j.eswa.2015.11.016 – ident: ref19 doi: 10.1016/j.engappai.2019.05.004 – ident: ref46 doi: 10.1016/j.asoc.2021.108006 – ident: ref43 doi: 10.1109/TLA.2020.9099762 – ident: ref39 doi: 10.1109/TCBB.2019.2930505 – ident: ref13 doi: 10.1016/j.isprsjprs.2021.11.024 – ident: ref11 doi: 10.1016/j.knosys.2019.07.016 – ident: ref45 doi: 10.1109/TCYB.2018.2845661 – ident: ref47 doi: 10.1109/LGRS.2019.2913387 – ident: ref38 doi: 10.1109/TEVC.2022.3159087 |
| SSID | ssj0062793 |
| Score | 2.3216937 |
| Snippet | Accurate land use and land cover (LULC) maps are effective tools to help achieve sound urban planning and precision agriculture. As an intelligent optimization... |
| SourceID | doaj hal proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Classification Classification algorithms Clustering algorithms Clusters Computation Convergence Engineering Sciences Environmental Sciences Evolutionary computation Gene mapping genetic algorithm Genetic algorithm (GA) Genetic algorithms Genetics Global Changes Image classification Immunity Land cover Land use land use and land cover land use and land cover (LULC) Methods neighborhood window Neighborhoods Objective function Optimization Precision agriculture Probability theory remote sensing image classification Signal and Image processing Task analysis Task complexity Two-step ensemble Urban agriculture Urban planning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4iCl7Ex4rjiyAetzWdST9ybMUXiMiugreQTiWrMPaIMyr-e6vSPYMiuBevIQnpryqpVHf19zG2pzNfasCNZAE3uVL0s7KFkBSQlpDmgVjQothEcXlZ3t7qqw9SX1QT1tIDt8Ad9L0WmfBWqDpXUPTrDOeyQSkohbTS0-krCj1JptozOJfodh3HUCr0ATp59ecvZoNS7pMH5xRLPsShSNeP0eWOiiGjysqXoznGm5MltthdFHnVLnCZzfhmhc2fRiHet1V2XvHr12FCRVr8uBn5h3rgk0MMScCJSRoH8Wrwb4ip_90Dx4spv7AN8CMq2ORRCJNKhKJVfrGbk-Pro7Okk0VInFJynGhZuzS4ACINQWnrXRC2zApVlx7DvwsBAatBOyVqgUEqOChtXzpVZ4iYtf01NtsMG7_OuM8LLxVo-jqqghYWcshVACiECJi79picgGRcxxlO0hUDE3MHoU2LrCFkTYdsj_2eDnpsKTO-735I6E-7Et91bEAvMJ0XmP95QY_tou0-zXFWXRhqixT4eIy-pD22Sqad9qJUrxT4kFsTU5tuA4-MLDBxzkgRdeMn1rfJFkinvn13s8Vmx0_PfpvNuZfx_ehpJ_ruOyGI7p8 priority: 102 providerName: Directory of Open Access Journals |
| Title | A Two-Step Ensemble-based Genetic Algorithm for Land Cover Classification |
| URI | https://ieeexplore.ieee.org/document/9966803 https://www.proquest.com/docview/2754957386 https://hal.science/hal-03915376 https://doaj.org/article/3e9050ea04b64d73b58adaf44d802a2e |
| Volume | 16 |
| WOSCitedRecordID | wos000900007800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB5UWvDFtlpxrZVQ-uhqNpfdbB63orUgUloLvoVsflTh3JO7U-l_35ns3mFpEfq2hGTZzTeTmUkm3wB81GWotUdFsh6VXEq6rGx9zJUval9UkVjQUrEJdXFRX13prytwsLwLE0JIyWfhkB7TWb6fuHvaKjsi37wmas9Vpar-rtZi1a2ESgS76I_onChjBoahgusjFPHm23eMBYU4JPmtyJI8sUKJrB9tyzWlQqYaK38tzMnanL76v-98DRuDV8maXgzewEroNuHl51S199cWfGnY5eMkp4wudtLNwm07DjnZL8-IdhoHsWb8czK9mV_fMvRi2bntPDum7E6WqmZSPlGC8C38OD25PD7LhxoKuZNSzHMtWldEFz0vYpTaBhe5rUsl2zqgr-Bi5CVvvXaStxwtWnS-tiPhZFtyYa0dbcNaN-nCDrBQqSCk13SUKqPm1le-ktF7xXnEQDcDsZhT4waCcapzMTYp0ODa9EAYAsIMQGRwsBx01_NrPN_9E4G17Erk2KkB598MumZGQeNPBctlW0mvRm2J4mejlL7GfxIhgw8I9R_vOGvODbUlvnxccx-KDLYI2GWvAdMM9haSYQZtnxmhMMouqXzq7r9HvYN1KlPfb93swdp8eh_ewwv3ML-ZTffTPsB-EuffHv_uZA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQSX8iiI9AEW4ti0jtd5-JhWLVuxrBAsUm-W40dbaZtFu9si_j0zTnYFokLiFll2lPib8czY428A3qvcV8qhIhmHSi4lXVY2LqSlyyqXFYFY0GKxiXI8ri4u1OcNOFjfhfHex-Qzf0iP8SzfzewtbZUdkW9eEbXng1xKwbvbWqt1txBlpNhFj0SlRBrTcwxlXB2hkNdfvmI0KMQhSXBBtuQ3OxTp-tG6XFEyZKyy8tfSHO3N2dP_-9JnsNX7lazuBOE5bPj2BTz6EOv2_tyG85pNfsxSyulip-3C3zRTn5IFc4yIp3EQq6eXs_n18uqGoR_LRqZ17ITyO1msm0kZRRHEl_Dt7HRyMkz7KgqpxUlapko0Ngs2OJ6FIJXxNnBT5aVsKo_egg2B57xxykrecLRpwbrKDISVTc6FMWbwCjbbWetfA_NF6YV0ig5TZVDcuMIVMjhXch4w1E1ArOZU255inCpdTHUMNbjSHRCagNA9EAkcrAd97xg2_t39mMBadyV67NiA8697bdMDr_CnvOGyKaQrB02OAmiClK7CfxI-gXcI9R_vGNYjTW2RMR9X3bssgW0Cdt2rxzSBvZVk6F7fF1qUGGfnVEB15_5Rb-HxcPJppEfn44-78ISK1ncbOXuwuZzf-n14aO-W14v5myjUvwAK0vC2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Step+Ensemble-based+Genetic+Algorithm+for+Land+Cover+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Cao%2C+Yang&rft.au=Feng%2C+Wei&rft.au=Quan%2C+Yinghui&rft.au=Bao%2C+Wenxing&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1939-1404&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FJSTARS.2022.3225665&rft.externalDocID=9966803 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |