Gamma Delta T-Cell Based Cancer Immunotherapy: Past-Present-Future

γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in immunology Ročník 13; s. 915837
Hlavní autoři: Saura-Esteller, José, de Jong, Milon, King, Lisa A., Ensing, Erik, Winograd, Benjamin, de Gruijl, Tanja D., Parren, Paul W. H. I., van der Vliet, Hans J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 16.06.2022
Témata:
ISSN:1664-3224, 1664-3224
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors ( i.e. Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential. Vδ2 T-cells, in contrast, are enriched in circulation and consist of a large, relatively homogeneous, pro-inflammatory effector T-cell subset. Healthy individuals typically harbor in the order of 50-500 million Vγ9Vδ2 T-cells in the peripheral blood alone (1-10% of the total CD3 + T-cell population), which can rapidly expand upon stimulation. The Vγ9Vδ2 T-cell receptor senses intracellular phosphorylated metabolites, which accumulate in cancer cells as a result of mevalonate pathway dysregulation or upon pharmaceutical intervention. Early clinical studies investigating the therapeutic potential of Vγ9Vδ2 T-cells were based on either ex vivo expansion and adoptive transfer or their systemic activation with aminobisphosphonates or synthetic phosphoantigens, either alone or combined with low dose IL-2. Immune-related adverse events (irAE) were generally \mild, but the clinical efficacy of these approaches provided overall limited benefit. In recent years, critical advances have renewed the excitement for the potential of Vγ9Vδ2 T-cells in cancer immunotherapy. Here, we review γδ T-cell-based therapeutic strategies and discuss the prospects of those currently evaluated in clinical studies in cancer patients as well as future therapies that might arise from current promising pre-clinical results.
AbstractList γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors (i.e. Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential. Vδ2 T-cells, in contrast, are enriched in circulation and consist of a large, relatively homogeneous, pro-inflammatory effector T-cell subset. Healthy individuals typically harbor in the order of 50-500 million Vγ9Vδ2 T-cells in the peripheral blood alone (1-10% of the total CD3+ T-cell population), which can rapidly expand upon stimulation. The Vγ9Vδ2 T-cell receptor senses intracellular phosphorylated metabolites, which accumulate in cancer cells as a result of mevalonate pathway dysregulation or upon pharmaceutical intervention. Early clinical studies investigating the therapeutic potential of Vγ9Vδ2 T-cells were based on either ex vivo expansion and adoptive transfer or their systemic activation with aminobisphosphonates or synthetic phosphoantigens, either alone or combined with low dose IL-2. Immune-related adverse events (irAE) were generally \mild, but the clinical efficacy of these approaches provided overall limited benefit. In recent years, critical advances have renewed the excitement for the potential of Vγ9Vδ2 T-cells in cancer immunotherapy. Here, we review γδ T-cell-based therapeutic strategies and discuss the prospects of those currently evaluated in clinical studies in cancer patients as well as future therapies that might arise from current promising pre-clinical results.γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors (i.e. Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential. Vδ2 T-cells, in contrast, are enriched in circulation and consist of a large, relatively homogeneous, pro-inflammatory effector T-cell subset. Healthy individuals typically harbor in the order of 50-500 million Vγ9Vδ2 T-cells in the peripheral blood alone (1-10% of the total CD3+ T-cell population), which can rapidly expand upon stimulation. The Vγ9Vδ2 T-cell receptor senses intracellular phosphorylated metabolites, which accumulate in cancer cells as a result of mevalonate pathway dysregulation or upon pharmaceutical intervention. Early clinical studies investigating the therapeutic potential of Vγ9Vδ2 T-cells were based on either ex vivo expansion and adoptive transfer or their systemic activation with aminobisphosphonates or synthetic phosphoantigens, either alone or combined with low dose IL-2. Immune-related adverse events (irAE) were generally \mild, but the clinical efficacy of these approaches provided overall limited benefit. In recent years, critical advances have renewed the excitement for the potential of Vγ9Vδ2 T-cells in cancer immunotherapy. Here, we review γδ T-cell-based therapeutic strategies and discuss the prospects of those currently evaluated in clinical studies in cancer patients as well as future therapies that might arise from current promising pre-clinical results.
γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors (i.e. Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential. Vδ2 T-cells, in contrast, are enriched in circulation and consist of a large, relatively homogeneous, pro-inflammatory effector T-cell subset. Healthy individuals typically harbor in the order of 50-500 million Vγ9Vδ2 T-cells in the peripheral blood alone (1-10% of the total CD3+ T-cell population), which can rapidly expand upon stimulation. The Vγ9Vδ2 T-cell receptor senses intracellular phosphorylated metabolites, which accumulate in cancer cells as a result of mevalonate pathway dysregulation or upon pharmaceutical intervention. Early clinical studies investigating the therapeutic potential of Vγ9Vδ2 T-cells were based on either ex vivo expansion and adoptive transfer or their systemic activation with aminobisphosphonates or synthetic phosphoantigens, either alone or combined with low dose IL-2. Immune-related adverse events (irAE) were generally but the clinical efficacy of these approaches provided overall limited benefit. In recent years, critical advances have renewed the excitement for the potential of Vγ9Vδ2 T-cells in cancer immunotherapy. Here, we review γδ T-cell-based therapeutic strategies and discuss the prospects of those currently evaluated in clinical studies in cancer patients as well as future therapies that might arise from current promising pre-clinical results.
γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors ( i.e. Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential. Vδ2 T-cells, in contrast, are enriched in circulation and consist of a large, relatively homogeneous, pro-inflammatory effector T-cell subset. Healthy individuals typically harbor in the order of 50-500 million Vγ9Vδ2 T-cells in the peripheral blood alone (1-10% of the total CD3 + T-cell population), which can rapidly expand upon stimulation. The Vγ9Vδ2 T-cell receptor senses intracellular phosphorylated metabolites, which accumulate in cancer cells as a result of mevalonate pathway dysregulation or upon pharmaceutical intervention. Early clinical studies investigating the therapeutic potential of Vγ9Vδ2 T-cells were based on either ex vivo expansion and adoptive transfer or their systemic activation with aminobisphosphonates or synthetic phosphoantigens, either alone or combined with low dose IL-2. Immune-related adverse events (irAE) were generally \mild, but the clinical efficacy of these approaches provided overall limited benefit. In recent years, critical advances have renewed the excitement for the potential of Vγ9Vδ2 T-cells in cancer immunotherapy. Here, we review γδ T-cell-based therapeutic strategies and discuss the prospects of those currently evaluated in clinical studies in cancer patients as well as future therapies that might arise from current promising pre-clinical results.
γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors (i.e. Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential. Vδ2 T-cells, in contrast, are enriched in circulation and consist of a large, relatively homogeneous, pro-inflammatory effector T-cell subset. Healthy individuals typically harbor in the order of 50-500 million Vγ9Vδ2 T-cells in the peripheral blood alone (1-10% of the total CD3+ T-cell population), which can rapidly expand upon stimulation. The Vγ9Vδ2 T-cell receptor senses intracellular phosphorylated metabolites, which accumulate in cancer cells as a result of mevalonate pathway dysregulation or upon pharmaceutical intervention. Early clinical studies investigating the therapeutic potential of Vγ9Vδ2 T-cells were based on either ex vivo expansion and adoptive transfer or their systemic activation with aminobisphosphonates or synthetic phosphoantigens, either alone or combined with low dose IL-2. Immune-related adverse events (irAE) were generally \mild, but the clinical efficacy of these approaches provided overall limited benefit. In recent years, critical advances have renewed the excitement for the potential of Vγ9Vδ2 T-cells in cancer immunotherapy. Here, we review γδ T-cell-based therapeutic strategies and discuss the prospects of those currently evaluated in clinical studies in cancer patients as well as future therapies that might arise from current promising pre-clinical results.
Author Parren, Paul W. H. I.
King, Lisa A.
Winograd, Benjamin
de Jong, Milon
van der Vliet, Hans J.
Ensing, Erik
de Gruijl, Tanja D.
Saura-Esteller, José
AuthorAffiliation 3 LAVA Therapeutics , Philadelphia, PA , United States
4 Department of Immunology, Leiden University Medical Center , Leiden , Netherlands
2 LAVA Therapeutics , Utrecht , Netherlands
1 Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam , Amsterdam , Netherlands
AuthorAffiliation_xml – name: 4 Department of Immunology, Leiden University Medical Center , Leiden , Netherlands
– name: 3 LAVA Therapeutics , Philadelphia, PA , United States
– name: 2 LAVA Therapeutics , Utrecht , Netherlands
– name: 1 Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam , Amsterdam , Netherlands
Author_xml – sequence: 1
  givenname: José
  surname: Saura-Esteller
  fullname: Saura-Esteller, José
– sequence: 2
  givenname: Milon
  surname: de Jong
  fullname: de Jong, Milon
– sequence: 3
  givenname: Lisa A.
  surname: King
  fullname: King, Lisa A.
– sequence: 4
  givenname: Erik
  surname: Ensing
  fullname: Ensing, Erik
– sequence: 5
  givenname: Benjamin
  surname: Winograd
  fullname: Winograd, Benjamin
– sequence: 6
  givenname: Tanja D.
  surname: de Gruijl
  fullname: de Gruijl, Tanja D.
– sequence: 7
  givenname: Paul W. H. I.
  surname: Parren
  fullname: Parren, Paul W. H. I.
– sequence: 8
  givenname: Hans J.
  surname: van der Vliet
  fullname: van der Vliet, Hans J.
BookMark eNp9kU1P3DAQhq2KqlDgB_SWYy_Z-iuO00Olsi10JaRygLM1scdglMRb20Hi3zfLoqpwwJexxvM-45n3IzmY4oSEfGJ0JYTuvvgwjvOKU85XHWu0aN-RI6aUrAXn8uC_-yE5zfmeLkd2QojmAzkUTaul4OqInF3AOEL1A4cC1XW9xmGoziCjq9YwWUzVZukyxXKHCbaPX6sryKW-SphxKvX5XOaEJ-S9hyHj6XM8JjfnP6_Xv-rL3xeb9ffL2krJS605w4ZKlB6pVRaF01qDtH2vGsWsdN47JpxTvnFMcWdBOSuk1QwEtUyJY7LZc12Ee7NNYYT0aCIE85SI6dZAKsEOaJoWWt8z4TvbScFsDz1jTFstteJeyoX1bc_azv2Izi7TJBheQF--TOHO3MYH03HZCM0WwOdnQIp_ZszFjCHbZXswYZyz4Uovw1JBd6VsX2pTzDmh_9eGUbOz0jxZaXZWmr2Vi6Z9pbGhQAlx95swvKH8C5W4pVM
CitedBy_id crossref_primary_10_1186_s12943_024_02123_7
crossref_primary_10_3390_cells12131693
crossref_primary_10_1080_14712598_2022_2147424
crossref_primary_10_1002_ctm2_1617
crossref_primary_10_1158_0008_5472_CAN_24_0195
crossref_primary_10_3390_ijms24108722
crossref_primary_10_1136_jitc_2023_007955
crossref_primary_10_3390_biom14020225
crossref_primary_10_1002_cbf_4081
crossref_primary_10_1002_cti2_1492
crossref_primary_10_3390_ijms26062778
crossref_primary_10_1136_jitc_2025_011704
crossref_primary_10_1177_10732748241284863
crossref_primary_10_3389_fimmu_2025_1453344
crossref_primary_10_1111_imr_13273
crossref_primary_10_1016_j_jfma_2024_07_011
crossref_primary_10_1158_0008_5472_CAN_23_2115
crossref_primary_10_1016_j_compbiomed_2024_109488
crossref_primary_10_1016_j_beha_2023_101475
crossref_primary_10_3389_fimmu_2024_1401852
crossref_primary_10_1371_journal_pone_0325389
crossref_primary_10_1002_btm2_70018
crossref_primary_10_3389_fimmu_2024_1433785
crossref_primary_10_1016_j_clml_2024_05_018
crossref_primary_10_3390_cimb47030153
crossref_primary_10_1007_s12672_024_01057_2
crossref_primary_10_1007_s00405_023_08022_9
crossref_primary_10_1016_j_jcyt_2024_10_002
crossref_primary_10_1038_s41598_025_15642_0
crossref_primary_10_3389_fimmu_2022_1012051
crossref_primary_10_3389_fimmu_2024_1360237
crossref_primary_10_3389_fimmu_2024_1369202
crossref_primary_10_1186_s12943_023_01722_0
crossref_primary_10_1016_j_jcyt_2024_11_003
crossref_primary_10_3389_fimmu_2023_1140623
crossref_primary_10_1038_s41416_023_02303_0
crossref_primary_10_1002_hem3_70182
crossref_primary_10_1038_s41577_023_00982_7
crossref_primary_10_3389_fendo_2023_1168186
crossref_primary_10_1186_s12885_025_14383_7
crossref_primary_10_1038_s41571_022_00722_1
crossref_primary_10_24287_1726_1708_2024_23_2_128_139
crossref_primary_10_1038_s41598_023_47096_7
crossref_primary_10_1093_jleuko_qiad129
crossref_primary_10_1038_s41598_024_53453_x
crossref_primary_10_1111_nyas_14976
crossref_primary_10_1158_2326_6066_CIR_23_0189
crossref_primary_10_59598_ME_2305_6053_2025_114_1_105_115
crossref_primary_10_1038_s41598_023_30972_7
crossref_primary_10_1016_j_smim_2022_101662
crossref_primary_10_1002_mco2_714
crossref_primary_10_3390_cimb47090747
crossref_primary_10_1002_eji_202451075
crossref_primary_10_1136_jitc_2023_007981
crossref_primary_10_3390_cancers17071063
crossref_primary_10_1093_jleuko_qiad131
crossref_primary_10_3390_biomedicines11102693
crossref_primary_10_3390_vaccines11091465
crossref_primary_10_3389_fmed_2022_1070529
crossref_primary_10_3389_fonc_2024_1474007
crossref_primary_10_1186_s12967_024_05043_8
crossref_primary_10_3389_fimmu_2023_1069749
crossref_primary_10_3390_cancers15194855
crossref_primary_10_4251_wjgo_v16_i2_458
crossref_primary_10_2147_IJGM_S493800
crossref_primary_10_3389_fimmu_2023_1273986
crossref_primary_10_1016_j_canlet_2024_217018
crossref_primary_10_3389_fimmu_2023_1294434
crossref_primary_10_1016_j_jbo_2023_100481
crossref_primary_10_1038_s41587_025_02629_5
crossref_primary_10_3389_fimmu_2023_1167443
crossref_primary_10_3390_biology13030196
crossref_primary_10_1002_eji_70025
crossref_primary_10_1038_s41573_024_00896_6
crossref_primary_10_1111_imm_70012
crossref_primary_10_1111_imr_13233
crossref_primary_10_1080_1750743X_2024_2365622
crossref_primary_10_3389_fgene_2025_1604541
crossref_primary_10_3389_fimmu_2022_1065495
crossref_primary_10_3389_fimmu_2024_1336870
crossref_primary_10_1007_s11307_024_01923_z
crossref_primary_10_1038_s41392_023_01653_8
crossref_primary_10_3390_ijms241612893
crossref_primary_10_1159_000532130
crossref_primary_10_1007_s12672_025_03234_3
crossref_primary_10_3389_fimmu_2024_1432015
crossref_primary_10_1016_j_heliyon_2024_e32910
crossref_primary_10_3390_cancers17060998
crossref_primary_10_3389_fgene_2025_1499121
crossref_primary_10_3389_fimmu_2023_1200003
crossref_primary_10_1016_j_jcyt_2022_10_002
crossref_primary_10_30895_1991_2919_2025_752
crossref_primary_10_1016_j_molimm_2024_09_007
crossref_primary_10_1002_advs_202400024
crossref_primary_10_3390_cancers16142608
crossref_primary_10_3390_cells13020146
crossref_primary_10_3389_fcell_2024_1359451
crossref_primary_10_1089_genbio_2023_0008
crossref_primary_10_3390_ijms25147960
crossref_primary_10_3389_fonc_2023_1216829
crossref_primary_10_1007_s00281_025_01047_8
crossref_primary_10_1002_eji_202451028
crossref_primary_10_3389_fimmu_2024_1331322
crossref_primary_10_1080_2162402X_2022_2160094
crossref_primary_10_3389_fonc_2023_1167266
crossref_primary_10_3390_cells13100808
crossref_primary_10_3389_fendo_2024_1434705
crossref_primary_10_1096_fj_202402975
crossref_primary_10_1097_CM9_0000000000002781
crossref_primary_10_1093_jleuko_qiae023
crossref_primary_10_3390_cells13030213
Cites_doi 10.1182/blood-2021-149095
10.1016/j.cellimm.2015.04.009
10.15252/emmm.202114291
10.1111/imm.12635
10.1186/s12967-017-1378-2
10.1016/j.jcyt.2017.01.002
10.1038/s41598-021-00536-8
10.1182/blood-2013-02-485623
10.4049/jimmunol.1300121
10.1158/1538-7445.AM2021-LB148
10.1084/jem.169.5.1847
10.1038/s41423-020-0515-7
10.1097/MD.0000000000004909
10.1136/jitc-2021-003441
10.1002/cncr.32909
10.1038/s41375-021-01122-7
10.1056/NEJMoa2024850
10.1038/s41573-019-0028-1
10.1136/jitc-2021-003850
10.3389/fimmu.2018.00800
10.1084/jem.20021500
10.1097/CJI.0b013e318245bb1e
10.1016/j.immuni.2020.02.014
10.1038/s41416-020-01225-5
10.1200/JCO.2014.56.2025
10.2174/157340607779317544
10.4161/onci.21659
10.3389/fimmu.2020.619954
10.1158/0008-5472.CAN-13-0675
10.1016/S0140-6736(20)31366-0
10.1136/jitc-2020-001185
10.1056/NEJMoa1709919
10.1016/j.canlet.2016.07.001
10.1080/2162402X.2017.1347742
10.1056/NEJMoa1804980
10.1038/nri3904
10.1089/scd.1.1996.5.503
10.1038/s41577-018-0007-5
10.1158/0008-5472.CAN-07-0199
10.1182/blood.V96.2.384
10.1007/s00262-006-0199-6
10.1158/2326-6066.CIR-20-0138
10.1038/375155a0
10.1038/sj.bmt.1705650
10.1038/s41598-018-26338-z
10.1016/j.jcyt.2017.12.014
10.1080/2162402X.2017.1353858
10.1126/science.2524098
10.4161/21624011.2014.953410
10.1016/j.nbt.2012.07.001
10.1186/1479-5876-12-45
10.1002/cam4.196
10.1158/1078-0432.CCR-16-0597
10.1038/s41392-020-00260-1
10.1016/j.omto.2020.04.013
10.1007/s00262-011-1021-7
10.1007/s00262-010-0879-0
10.1038/mt.2012.267
10.1016/S0140-6736(14)61403-3
10.1080/2162402X.2017.1375641
10.3389/fimmu.2020.573920
10.1007/s00262-008-0491-8
10.1016/S0014-5793(03)00483-6
10.1016/S0014-5793(01)03191-X
10.1093/intimm/9.8.1065
10.1016/j.jcyt.2012.12.004
10.1146/annurev-biochem-063011-092449
10.1038/nm.3909
10.1186/s12885-017-3539-3
10.1177/2040620719899897
10.1016/j.ymthe.2017.12.001
10.1056/NEJMoa1707447
10.1097/CJI.0b013e318207ecfb
10.1182/blood-2012-07-441030
10.1038/nature22395
10.1002/cti2.1373
10.1371/journal.pone.0051805
10.1016/j.exphem.2009.04.008
10.3389/fimmu.2017.01589
10.3390/antib8030041
10.1126/science.aay5516
10.3389/fimmu.2020.01347
10.1158/1538-7445.AM2021-1736
10.3389/fimmu.2018.00984
10.1016/j.immuni.2013.11.001
10.1007/s00262-011-1049-8
10.1038/s41573-019-0038-z
10.1111/j.1365-2141.2004.05077.x
10.1002/hep.31412
10.1016/j.cellimm.2015.04.008
10.1038/bjc.2011.293
10.1080/2162402X.2017.1372080
10.1038/mt.2014.104
10.1016/j.celrep.2021.109359
10.1182/blood-2012-05-430470
10.1182/blood-2002-12-3665
10.1002/JLB.5MA1119-265R
10.1002/ijc.28372
10.1158/1078-0432.CCR-20-4576
10.1038/s41408-021-00459-7
10.1016/j.omto.2020.06.003
10.1056/NEJMoa1914347
10.4161/2162402X.2014.992749
10.1126/scitranslmed.abj0835
10.4161/2162402X.2014.994441
10.1016/j.ejcts.2009.11.051
10.1126/science.1063916
10.1080/2162402X.2017.1284723
ContentType Journal Article
Copyright Copyright © 2022 Saura-Esteller, de Jong, King, Ensing, Winograd, de Gruijl, Parren and van der Vliet.
Copyright © 2022 Saura-Esteller, de Jong, King, Ensing, Winograd, de Gruijl, Parren and van der Vliet 2022 Saura-Esteller, de Jong, King, Ensing, Winograd, de Gruijl, Parren and van der Vliet
Copyright_xml – notice: Copyright © 2022 Saura-Esteller, de Jong, King, Ensing, Winograd, de Gruijl, Parren and van der Vliet.
– notice: Copyright © 2022 Saura-Esteller, de Jong, King, Ensing, Winograd, de Gruijl, Parren and van der Vliet 2022 Saura-Esteller, de Jong, King, Ensing, Winograd, de Gruijl, Parren and van der Vliet
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fimmu.2022.915837
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_57a7fb13f9c9431cbab1118c84862f44
PMC9245381
10_3389_fimmu_2022_915837
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c442t-821e504e4fe0c6ce3d888a4cbb6561c4dffd13dd6f5d162dca6dc34c81a30c163
IEDL.DBID DOA
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819193000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-3224
IngestDate Fri Oct 03 12:53:28 EDT 2025
Tue Sep 30 16:57:09 EDT 2025
Thu Oct 02 07:07:29 EDT 2025
Tue Nov 18 21:24:11 EST 2025
Sat Nov 29 05:52:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-821e504e4fe0c6ce3d888a4cbb6561c4dffd13dd6f5d162dca6dc34c81a30c163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Alice Cheung, Singapore General Hospital, Singapore
Reviewed by: Alessandro Poggi, San Martino Hospital (IRCCS), Italy; Emmanuel Scotet, Université de Nantes, France
This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology
OpenAccessLink https://doaj.org/article/57a7fb13f9c9431cbab1118c84862f44
PMID 35784326
PQID 2685040301
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_57a7fb13f9c9431cbab1118c84862f44
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9245381
proquest_miscellaneous_2685040301
crossref_primary_10_3389_fimmu_2022_915837
crossref_citationtrail_10_3389_fimmu_2022_915837
PublicationCentury 2000
PublicationDate 2022-06-16
PublicationDateYYYYMMDD 2022-06-16
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-16
  day: 16
PublicationDecade 2020
PublicationTitle Frontiers in immunology
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Park (B63) 2018; 378
Neelapu (B67) 2017; 377
Hinz (B14) 1997; 9
Oberg (B95) 2015; 296
Wallet (B79) 2021
Rigau (B24) 2020; 367
de Weerdt (B103) 2021; 9
Wang (B65) 2020; 382
Abramson (B69) 2020; 396
Arbabi-Ghahroudi (B99) 2017; 8
Einsele (B89) 2020; 126
Wilhelm (B35) 2003; 102
Zhao (B10) 2020; 73
Gruenbacher (B16) 2014; 3
Tanaka (B17) 1995; 375
Kunz (B101) 2018; 8
Nakajima (B44) 2010; 37
Kobayashi (B43) 2011; 60
Harly (B21) 2012; 120
Capsomidis (B76) 2018; 26
Donia (B8) 2012; 1
Eberl (B18) 2003; 544
Rischer (B71) 2004; 126
Zhao (B4) 2018; 16
Koristka (B93) 2015; 4
Jain (B90) 2020; 11
Schuster (B68) 2019; 380
Strohl (B91) 2019; 8
Harrer (B72) 2017; 17
Cano (B22) 2021; 36
Deusch (B30) 1991; 173
Rozenbaum (B78) 2020; 11
Mirzaei (B60) 2016; 380
Kakimi (B46); 8
Pistoia (B2) 2018; 9
Oberg (B94) 2020; 107
Gober (B25) 2003; 197
Lamb (B106) 2021; 11
Lang (B37) 2011; 60
de Weerdt (B104) 2021; 27
Deniger (B75) 2013; 21
La Gruta (B20) 2018; 18
Almeida (B59) 2016; 22
De Gassart (B84) 2021; 13
van Diest (B108) 2021; 9
Kobayashi (B41) 2007; 56
Ganesan (B97) 2021; 35
Singh (B86) 2021; 124
Wada (B48) 2014; 3
Girardi (B5) 2001; 294
Dieli (B36) 2007; 67
Mangan (B29) 2013; 191
Kochenderfer (B64) 2015; 33
Makkouk (B81) 2021; 9
Nishimoto (B82) 2022; 11
Luoma (B28) 2013; 39
Xu (B58) 2021; 18
Sterner (B70) 2021; 11
Xiao (B74) 2018; 20
Bennouna (B33) 2010; 59
Labrijn (B87) 2019; 18
Wang (B7) 2017; 6
Muyldermans (B100) 2013; 82
Gentles (B11) 2015; 21
Lamb (B55) 1996; 5
Lamb (B107) 2013; 8
Meraviglia (B6) 2017; 6
Lin (B57) 2020; 5
Sebestyen (B52) 2020; 19
Bennouna (B42) 2008; 57
Lee (B62) 2015; 385
Ang (B73) 2020; 17
Li (B32) 2021; 11
Topp (B88) 2012; 120
Wilhelm (B54) 2014; 12
Fleischer (B77) 2020; 18
Cui (B49) 2014; 134
Dhar (B27) 2013; 30
Tosolini (B12) 2017; 6
Adams (B3) 2015; 296
Lu (B9) 2020; 11
de Silva (B98) 2021; 81
Aoki (B51) 2017; 19
Sadelain (B61) 2017; 545
Sakamoto (B47) 2011; 34
Wang (B85) 2021; 13
Abe (B40) 2009; 37
Munshi (B66) 2021; 384
Silva-Santos (B13) 2015; 15
Janis (B15) 1989; 244
Siegers (B80) 2014; 22
Nicol (B50) 2011; 105
Oberg (B96) 2014; 74
Teachey (B92) 2013; 121
Tanaka (B34) 2007; 3
Izumi (B45) 2013; 15
Pressey (B39) 2016; 95
Barber (B109) 2021
Wu (B31) 2015; 4
Benyamine (B83) 2017; 7
Kunzmann (B26) 2000; 96
Kunzmann (B38) 2012; 35
de Bruin (B102) 2018; 7
Hintz (B19) 2001; 509
Karunakaran (B23) 2020; 52
Kozbor (B1) 1989; 169
Godder (B56) 2007; 39
Hoeres (B53) 2018; 9
Lameris (B105) 2016; 149
References_xml – start-page: 2771
  year: 2021
  ident: B79
  article-title: Induced Pluripotent Stem Cell-Derived Gamma Delta CAR-T-Cells for Cancer Immunotherapy
  publication-title: Blood
  doi: 10.1182/blood-2021-149095
– volume: 296
  year: 2015
  ident: B95
  article-title: Gammadelta T Cell Activation by Bispecific Antibodies
  publication-title: Cell Immunol
  doi: 10.1016/j.cellimm.2015.04.009
– volume: 13
  year: 2021
  ident: B85
  article-title: The State of the Art of Bispecific Antibodies for Treating Human Malignancies
  publication-title: EMBO Mol Med
  doi: 10.15252/emmm.202114291
– volume: 149
  year: 2016
  ident: B105
  article-title: Generation and Characterization of CD1d-Specific Single-Domain Antibodies With Distinct Functional Features
  publication-title: Immunology
  doi: 10.1111/imm.12635
– volume: 16
  start-page: 3
  year: 2018
  ident: B4
  article-title: Gamma-Delta (Gammadelta) T Cells: Friend or Foe in Cancer Development
  publication-title: J Transl Med
  doi: 10.1186/s12967-017-1378-2
– volume: 19
  year: 2017
  ident: B51
  article-title: Adjuvant Combination Therapy With Gemcitabine and Autologous γδ T-Cell Transfer in Patients With Curatively Resected Pancreatic Cancer
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2017.01.002
– volume: 11
  start-page: 21133
  year: 2021
  ident: B106
  article-title: A Combined Treatment Regimen of MGMT-Modified γδ T Cells and Temozolomide Chemotherapy Is Effective Against Primary High Grade Gliomas
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-00536-8
– volume: 121
  year: 2013
  ident: B92
  article-title: Cytokine Release Syndrome After Blinatumomab Treatment Related to Abnormal Macrophage Activation and Ameliorated With Cytokine-Directed Therapy
  publication-title: Blood
  doi: 10.1182/blood-2013-02-485623
– volume: 191
  year: 2013
  ident: B29
  article-title: Cutting Edge: CD1d Restriction and Th1/Th2/Th17 Cytokine Secretion by Human Vδ3 T Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300121
– year: 2021
  ident: B109
  article-title: Abstract LB148: Gamma Delta T Cells Engineered With a Chimeric PD-1 Receptor Effectively Control PD-L1 Positive Tumors In Vitro and In Vivo With Minimal Toxicities
  publication-title: Cancer Res
  doi: 10.1158/1538-7445.AM2021-LB148
– volume: 169
  year: 1989
  ident: B1
  article-title: Human TCR-Gamma+/Delta+, CD8+ T Lymphocytes Recognize Tetanus Toxoid in an MHC-Restricted Fashion
  publication-title: J Exp Med
  doi: 10.1084/jem.169.5.1847
– volume: 18
  year: 2021
  ident: B58
  article-title: Allogeneic Vγ9vδ2 T-Cell Immunotherapy Exhibits Promising Clinical Safety and Prolongs the Survival of Patients With Late-Stage Lung or Liver Cancer
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-020-0515-7
– volume: 95
  year: 2016
  ident: B39
  article-title: In Vivo Expansion and Activation of Gd T Cells as Immunotherapy for Refractory Neuroblastoma A Phase 1 Study
  publication-title: Med (United States)
  doi: 10.1097/MD.0000000000004909
– volume: 9
  year: 2021
  ident: B81
  article-title: Off-The-Shelf Vdelta1 Gamma Delta T Cells Engineered With Glypican-3 (GPC-3)-Specific Chimeric Antigen Receptor (CAR) and Soluble IL-15 Display Robust Antitumor Efficacy Against Hepatocellular Carcinoma
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2021-003441
– volume: 126
  year: 2020
  ident: B89
  article-title: The BiTE (Bispecific T-Cell Engager) Platform: Development and Future Potential of a Targeted Immuno-Oncology Therapy Across Tumor Types
  publication-title: Cancer
  doi: 10.1002/cncr.32909
– volume: 35
  year: 2021
  ident: B97
  article-title: Selective Recruitment of Gammadelta T Cells by a Bispecific Antibody for the Treatment of Acute Myeloid Leukemia
  publication-title: Leukemia
  doi: 10.1038/s41375-021-01122-7
– volume: 384
  year: 2021
  ident: B66
  article-title: Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2024850
– volume: 18
  start-page: 585
  year: 2019
  ident: B87
  article-title: Bispecific Antibodies: A Mechanistic Review of the Pipeline
  publication-title: Nat Rev Drug Discovery
  doi: 10.1038/s41573-019-0028-1
– volume: 9
  year: 2021
  ident: B108
  article-title: Gamma Delta TCR Anti-CD3 Bispecific Molecules (GABs) as Novel Immunotherapeutic Compounds
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2021-003850
– volume: 9
  year: 2018
  ident: B53
  article-title: Improving the Efficiency of Vγ9vδ2 T-Cell Immunotherapy in Cancer
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00800
– volume: 173
  year: 1991
  ident: B30
  article-title: Phenotypic and Functional Characterization of Human TCR Gamma Delta+ Intestinal Intraepithelial Lymphocytes
  publication-title: Curr Top Microbiol Immunol
– volume: 197
  year: 2003
  ident: B25
  article-title: Human T Cell Receptor γδ Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20021500
– volume: 35
  year: 2012
  ident: B38
  article-title: Tumor-Promoting Versus Tumor-Antagonizing Roles of Gd T Cells in Cancer Immunotherapy: Results From a Prospective Phase I/II Trial
  publication-title: J Immunother
  doi: 10.1097/CJI.0b013e318245bb1e
– volume: 52
  start-page: 487
  year: 2020
  ident: B23
  article-title: Butyrophilin-2a1 Directly Binds Germline-Encoded Regions of the Vγ9vδ2 TCR and Is Essential for Phosphoantigen Sensing
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.02.014
– volume: 124
  year: 2021
  ident: B86
  article-title: Overcoming the Challenges Associated With CD3+ T-Cell Redirection in Cancer
  publication-title: Br J Cancer
  doi: 10.1038/s41416-020-01225-5
– volume: 33
  year: 2015
  ident: B64
  article-title: Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies can be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.56.2025
– volume: 3
  start-page: 85
  year: 2007
  ident: B34
  article-title: Synthesis of Pyrophosphate-Containing Compounds That Stimulate Vgamma2Vdelta2 T Cells: Application to Cancer Immunotherapy
  publication-title: Med Chem
  doi: 10.2174/157340607779317544
– volume: 1
  year: 2012
  ident: B8
  article-title: Analysis of Vδ1 T Cells in Clinical Grade Melanoma-Infiltrating Lymphocytes
  publication-title: OncoImmunology
  doi: 10.4161/onci.21659
– volume: 11
  year: 2021
  ident: B32
  article-title: The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.619954
– volume: 74
  year: 2014
  ident: B96
  article-title: Novel Bispecific Antibodies Increase Gammadelta T-Cell Cytotoxicity Against Pancreatic Cancer Cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-0675
– volume: 396
  year: 2020
  ident: B69
  article-title: Lisocabtagene Maraleucel for Patients With Relapsed or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31366-0
– volume: 8
  ident: B46
  article-title: Adoptive Transfer of Zoledronate-Expanded Autologous Vgamma9Vdelta2 T-Cells in Patients With Treatment-Refractory Non-Small-Cell Lung Cancer: A Multicenter, Open-Label, Single-Arm, Phase 2 Study
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-001185
– volume: 378
  year: 2018
  ident: B63
  article-title: Long-Term Follow-Up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1709919
– volume: 380
  year: 2016
  ident: B60
  article-title: Prospects for Chimeric Antigen Receptor (CAR) γδ T Cells: A Potential Game Changer for Adoptive T Cell Cancer Immunotherapy
  publication-title: Cancer Letters
  doi: 10.1016/j.canlet.2016.07.001
– volume: 6
  year: 2017
  ident: B6
  article-title: Distinctive Features of Tumor-Infiltrating γδ T Lymphocytes in Human Colorectal Cancer
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1347742
– volume: 380
  start-page: 45
  year: 2019
  ident: B68
  article-title: Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1804980
– volume: 15
  year: 2015
  ident: B13
  article-title: γδt Cells in Cancer
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3904
– volume: 5
  year: 1996
  ident: B55
  article-title: Increased Frequency of TCR Gamma Delta + T Cells in Disease-Free Survivors Following T Cell-Depleted, Partially Mismatched, Related Donor Bone Marrow Transplantation for Leukemia
  publication-title: J Hematother
  doi: 10.1089/scd.1.1996.5.503
– volume: 18
  year: 2018
  ident: B20
  article-title: Understanding the Drivers of MHC Restriction of T Cell Receptors
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-018-0007-5
– volume: 67
  year: 2007
  ident: B36
  article-title: Targeting Human γδ T Cells With Zoledronate and Interleukin-2 for Immunotherapy of Hormone-Refractory Prostate Cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-0199
– volume: 96
  year: 2000
  ident: B26
  article-title: Stimulation of Gammadelta T Cells by Aminobisphosphonates and Induction of Antiplasma Cell Activity in Multiple Myeloma
  publication-title: Blood
  doi: 10.1182/blood.V96.2.384
– volume: 56
  year: 2007
  ident: B41
  article-title: Safety Profile and Anti-Tumor Effects of Adoptive Immunotherapy Using Gamma-Delta T Cells Against Advanced Renal Cell Carcinoma: A Pilot Study
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-006-0199-6
– volume: 9
  start-page: 50
  year: 2021
  ident: B103
  article-title: A Bispecific Antibody Antagonizes Prosurvival CD40 Signaling and Promotes Vγ9vδ2 T Cell-Mediated Antitumor Responses in Human B-Cell Malignancies
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-20-0138
– volume: 375
  year: 1995
  ident: B17
  article-title: Natural and Synthetic non-Peptide Antigens Recognized by Human Gamma Delta T Cells
  publication-title: Nature
  doi: 10.1038/375155a0
– volume: 39
  year: 2007
  ident: B56
  article-title: Long Term Disease-Free Survival in Acute Leukemia Patients Recovering With Increased γδ T Cells After Partially Mismatched Related Donor Bone Marrow Transplantation
  publication-title: Bone Marrow Transplantation
  doi: 10.1038/sj.bmt.1705650
– volume: 8
  year: 2018
  ident: B101
  article-title: The Structural Basis of Nanobody Unfolding Reversibility and Thermoresistance
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-26338-z
– volume: 20
  year: 2018
  ident: B74
  article-title: Large-Scale Expansion of Vγ9vδ2 T Cells With Engineered K562 Feeder Cells in G-Rex Vessels and Their Use as Chimeric Antigen Receptor–Modified Effector Cells
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2017.12.014
– volume: 6
  year: 2017
  ident: B7
  article-title: Tumor-Infiltrating γδt Cells Predict Prognosis and Adjuvant Chemotherapeutic Benefit in Patients With Gastric Cancer
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1353858
– volume: 244
  year: 1989
  ident: B15
  article-title: Activation of Gamma Delta T Cells in the Primary Immune Response to Mycobacterium Tuberculosis
  publication-title: Science
  doi: 10.1126/science.2524098
– volume: 3
  start-page: 1
  year: 2014
  ident: B16
  article-title: Stress-Related and Homeostatic Cytokines Regulate Vγ9vδ2 T-Cell Surveillance of Mevalonate Metabolism
  publication-title: OncoImmunology
  doi: 10.4161/21624011.2014.953410
– volume: 30
  year: 2013
  ident: B27
  article-title: Farnesyl Pyrophosphate Synthase: A Key Enzyme in Isoprenoid Biosynthetic Pathway and Potential Molecular Target for Drug Development
  publication-title: N Biotechnol
  doi: 10.1016/j.nbt.2012.07.001
– volume: 12
  start-page: 45
  year: 2014
  ident: B54
  article-title: Successful Adoptive Transfer and In Vivo Expansion of Haploidentical Gammadelta T Cells
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-12-45
– volume: 3
  year: 2014
  ident: B48
  article-title: Intraperitoneal Injection of In Vitro Expanded Vγ9vδ2 T Cells Together With Zoledronate for the Treatment of Malignant Ascites Due to Gastric Cancer
  publication-title: Cancer Med
  doi: 10.1002/cam4.196
– volume: 22
  year: 2016
  ident: B59
  article-title: Delta One T Cells for Immunotherapy of Chronic Lymphocytic Leukemia: Clinical-Grade Expansion/Differentiation and Preclinical Proof of Concept
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-16-0597
– volume: 5
  start-page: 215
  year: 2020
  ident: B57
  article-title: Irreversible Electroporation Plus Allogenic Vγ9vδ2 T Cells Enhances Antitumor Effect for Locally Advanced Pancreatic Cancer Patients
  publication-title: Signal Transduction Targeted Ther
  doi: 10.1038/s41392-020-00260-1
– volume: 17
  year: 2020
  ident: B73
  article-title: Electroporation of NKG2D RNA CAR Improves Vgamma9Vdelta2 T Cell Responses Against Human Solid Tumor Xenografts
  publication-title: Mol Ther Oncolytics
  doi: 10.1016/j.omto.2020.04.013
– volume: 60
  year: 2011
  ident: B43
  article-title: Phase I/II Study of Adoptive Transfer of γδ T Cells in Combination With Zoledronic Acid and IL-2 to Patients With Advanced Renal Cell Carcinoma
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-011-1021-7
– volume: 59
  year: 2010
  ident: B33
  article-title: Phase I Study of Bromohydrin Pyrophosphate (BrHPP, IPH 1101), a Vγ9vδ2 T Lymphocyte Agonist in Patients With Solid Tumors
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-010-0879-0
– volume: 21
  year: 2013
  ident: B75
  article-title: Bispecific T-Cells Expressing Polyclonal Repertoire of Endogenous Gammadelta T-Cell Receptors and Introduced CD19-Specific Chimeric Antigen Receptor
  publication-title: Mol Ther
  doi: 10.1038/mt.2012.267
– volume: 385
  year: 2015
  ident: B62
  article-title: T Cells Expressing CD19 Chimeric Antigen Receptors for Acute Lymphoblastic Leukaemia in Children and Young Adults: A Phase 1 Dose-escalation Trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61403-3
– volume: 7
  year: 2018
  ident: B102
  article-title: A Bispecific Nanobody Approach to Leverage the Potent and Widely Applicable Tumor Cytolytic Capacity of Vγ9vδ2-T Cells
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1375641
– volume: 11
  year: 2020
  ident: B9
  article-title: High Abundance of Intratumoral γδ T Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.573920
– volume: 57
  year: 2008
  ident: B42
  article-title: Phase-I Study of Innacell γδ™, an Autologous Cell-Therapy Product Highly Enriched in γ9δ2 T Lymphocytes, in Combination With IL-2, in Patients With Metastatic Renal Cell Carcinoma
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-008-0491-8
– volume: 544
  start-page: 4
  year: 2003
  ident: B18
  article-title: Microbial Isoprenoid Biosynthesis and Human γδ T Cell Activation
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(03)00483-6
– volume: 509
  year: 2001
  ident: B19
  article-title: Identi¢cation of (E)-4-Hydroxy-3-Methyl-But-2-Enyl Pyrophosphate as a Major Activator for Human QN T Cells in Escherichia Coli
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)03191-X
– volume: 9
  year: 1997
  ident: B14
  article-title: Identification of the Complete Expressed Human TCR V γ Repertoire by Flow Cytometry
  publication-title: Int Immunol
  doi: 10.1093/intimm/9.8.1065
– volume: 15
  year: 2013
  ident: B45
  article-title: Ex Vivo Characterization of γδ T-Cell Repertoire in Patients After Adoptive Transfer of Vγ9vδ2 T Cells Expressing the Interleukin-2 Receptor β-Chain and the Common γ-Chain
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2012.12.004
– volume: 82
  year: 2013
  ident: B100
  article-title: Nanobodies: Natural Single-Domain Antibodies
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-063011-092449
– volume: 21
  year: 2015
  ident: B11
  article-title: The Prognostic Landscape of Genes and Infiltrating Immune Cells Across Human Cancers
  publication-title: Nat Med
  doi: 10.1038/nm.3909
– volume: 17
  start-page: 551
  year: 2017
  ident: B72
  article-title: RNA-Transfection of γ/δ T Cells With a Chimeric Antigen Receptor or an α/β T-Cell Receptor: A Safer Alternative to Genetically Engineered α/β T Cells for the Immunotherapy of Melanoma
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3539-3
– volume: 11
  start-page: 2040620719899897
  year: 2020
  ident: B90
  article-title: Management of Toxicities Associated With Novel Immunotherapy Agents in Acute Lymphoblastic Leukemia
  publication-title: Ther Adv Hematol
  doi: 10.1177/2040620719899897
– volume: 26
  year: 2018
  ident: B76
  article-title: Chimeric Antigen Receptor-Engineered Human Gamma Delta T Cells: Enhanced Cytotoxicity With Retention of Cross Presentation
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2017.12.001
– volume: 377
  year: 2017
  ident: B67
  article-title: Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1707447
– volume: 34
  year: 2011
  ident: B47
  article-title: Adoptive Immunotherapy for Advanced Non-Small Cell Lung Cancer Using Zoledronate-Expanded γδ T Cells: A Phase I Clinical Study
  publication-title: J Immunother
  doi: 10.1097/CJI.0b013e318207ecfb
– volume: 120
  year: 2012
  ident: B88
  article-title: Long-Term Follow-Up of Hematologic Relapse-Free Survival in a Phase 2 Study of Blinatumomab in Patients With MRD in B-Lineage ALL
  publication-title: Blood
  doi: 10.1182/blood-2012-07-441030
– volume: 545
  year: 2017
  ident: B61
  article-title: Therapeutic T Cell Engineering
  publication-title: Nature
  doi: 10.1038/nature22395
– volume: 11
  year: 2022
  ident: B82
  article-title: Allogeneic CD20-Targeted Gammadelta T Cells Exhibit Innate and Adaptive Antitumor Activities in Preclinical B-Cell Lymphoma Models
  publication-title: Clin Transl Immunol
  doi: 10.1002/cti2.1373
– volume: 8
  year: 2013
  ident: B107
  article-title: Engineered Drug Resistant γδ T Cells Kill Glioblastoma Cell Lines During a Chemotherapy Challenge: A Strategy for Combining Chemo- and Immunotherapy
  publication-title: PloS One
  doi: 10.1371/journal.pone.0051805
– volume: 37
  year: 2009
  ident: B40
  article-title: Clinical and Immunological Evaluation of Zoledronate-Activated Vγ9γδ T-Cell-Based Immunotherapy for Patients With Multiple Myeloma
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2009.04.008
– volume: 8
  year: 2017
  ident: B99
  article-title: Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.01589
– volume: 8
  start-page: 41
  year: 2019
  ident: B91
  article-title: Bispecific T-Cell Redirection Versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells
  publication-title: Antibodies (Basel)
  doi: 10.3390/antib8030041
– volume: 367
  year: 2020
  ident: B24
  article-title: Butyrophilin 2A1 Is Essential for Phosphoantigen Reactivity by Gd T Cells
  publication-title: Science
  doi: 10.1126/science.aay5516
– volume: 11
  year: 2020
  ident: B78
  article-title: Gamma-Delta CAR-T-Cells Show CAR-Directed and Independent Activity Against Leukemia
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.01347
– volume: 81
  start-page: 1736
  year: 2021
  ident: B98
  article-title: Antigen-Specific Targeting of Tissue-Resident Gamma Delta T Cells With Recombinant Butyrophilin Heterodimeric Fusion Proteins
  publication-title: Am Assoc Cancer Res
  doi: 10.1158/1538-7445.AM2021-1736
– volume: 9
  year: 2018
  ident: B2
  article-title: Human γδ T-Cells: From Surface Receptors to the Therapy of High-Risk Leukemias
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00984
– volume: 39
  year: 2013
  ident: B28
  article-title: Crystal Structure of Vδ1t Cell Receptor in Complex With CD1d-Sulfatide Shows MHC-Like Recognition of a Self-Lipid by Human γδ T Cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.11.001
– volume: 60
  year: 2011
  ident: B37
  article-title: Pilot Trial of Interleukin-2 and Zoledronic Acid to Augment γδ T Cells as Treatment for Patients With Refractory Renal Cell Carcinoma
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-011-1049-8
– volume: 19
  year: 2020
  ident: B52
  article-title: Translating Gammadelta (γδ) T Cells and Their Receptors Into Cancer Cell Therapies
  publication-title: Nat Rev Drug Discovery
  doi: 10.1038/s41573-019-0038-z
– volume: 126
  year: 2004
  ident: B71
  article-title: Human Gammadelta T Cells as Mediators of Chimaeric-Receptor Redirected Anti-Tumour Immunity
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2004.05077.x
– volume: 73
  start-page: 2021
  year: 2020
  ident: B10
  article-title: Intratumoral γδ T-Cell Infiltrates, Chemokine (C-C Motif ) Ligand 4/Chemokine (C-C Motif ) Ligand 5 Protein Expression and Survival in Patients With Hepatocellular Carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.31412
– volume: 296
  start-page: 31
  year: 2015
  ident: B3
  article-title: Human Gamma Delta T Cells: Evolution and Ligand Recognition
  publication-title: Cell Immunol
  doi: 10.1016/j.cellimm.2015.04.008
– volume: 105
  year: 2011
  ident: B50
  article-title: Clinical Evaluation of Autologous Gamma Delta T Cell-Based Immunotherapy for Metastatic Solid Tumours
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2011.293
– volume: 7
  year: 2017
  ident: B83
  article-title: BTN3A Is a Prognosis Marker and a Promising Target for Vgamma9Vdelta2 T Cells Based-Immunotherapy in Pancreatic Ductal Adenocarcinoma (PDAC)
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1372080
– volume: 22
  year: 2014
  ident: B80
  article-title: Cytotoxic and Regulatory Properties of Circulating Vdelta1+ Gammadelta T Cells: A New Player on the Cell Therapy Field
  publication-title: Mol Ther
  doi: 10.1038/mt.2014.104
– volume: 36
  start-page: 109359
  year: 2021
  ident: B22
  article-title: BTN2A1, an Immune Checkpoint Targeting Vγ9vδ2 T Cell Cytotoxicity Against Malignant Cells
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109359
– volume: 120
  year: 2012
  ident: B21
  article-title: Key Implication of CD277/butyrophilin-3 (BTN3A) in Cellular Stress Sensing by a Major Human γδ T-Cell Subset
  publication-title: Blood
  doi: 10.1182/blood-2012-05-430470
– volume: 102
  year: 2003
  ident: B35
  article-title: T Cells for Immune Therapy of Patients With Lymphoid Malignancies
  publication-title: Blood
  doi: 10.1182/blood-2002-12-3665
– volume: 107
  year: 2020
  ident: B94
  article-title: Bispecific Antibodies Enhance Tumor-Infiltrating T Cell Cytotoxicity Against Autologous HER-2-Expressing High-Grade Ovarian Tumors
  publication-title: J Leukoc Biol
  doi: 10.1002/JLB.5MA1119-265R
– volume: 134
  year: 2014
  ident: B49
  article-title: Combination of Radiofrequency Ablation and Sequential Cellular Immunotherapy Improves Progression-Free Survival for Patients With Hepatocellular Carcinoma
  publication-title: Int J Cancer
  doi: 10.1002/ijc.28372
– volume: 27
  year: 2021
  ident: B104
  article-title: A Bispecific Single-Domain Antibody Boosts Autologous Vgamma9Vdelta2-T Cell Responses Toward CD1d in Chronic Lymphocytic Leukemia
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-20-4576
– volume: 11
  start-page: 69
  year: 2021
  ident: B70
  article-title: CAR-T-Cell Therapy: Current Limitations and Potential Strategies
  publication-title: Blood Cancer J
  doi: 10.1038/s41408-021-00459-7
– volume: 18
  year: 2020
  ident: B77
  article-title: Non-Signaling Chimeric Antigen Receptors Enhance Antigen-Directed Killing by Gammadelta T Cells in Contrast to Alphabeta T Cells
  publication-title: Mol Ther Oncolytics
  doi: 10.1016/j.omto.2020.06.003
– volume: 382
  year: 2020
  ident: B65
  article-title: KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1914347
– volume: 4
  year: 2015
  ident: B31
  article-title: Ex Vivo Expanded Human Circulating Vdelta1 gammadeltaT Cells Exhibit Favorable Therapeutic Potential for Colon Cancer
  publication-title: Oncoimmunology
  doi: 10.4161/2162402X.2014.992749
– volume: 13
  year: 2021
  ident: B84
  article-title: Development of ICT01, a First-in-Class, Anti-BTN3A Antibody for Activating Vgamma9Vdelta2 T Cell-Mediated Antitumor Immune Response
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.abj0835
– volume: 4
  start-page: 1
  year: 2015
  ident: B93
  article-title: Tregs Activated by Bispecific Antibodies: Killers or Suppressors
  publication-title: OncoImmunology
  doi: 10.4161/2162402X.2014.994441
– volume: 37
  year: 2010
  ident: B44
  article-title: A Phase I Study of Adoptive Immunotherapy for Recurrent non-Small-Cell Lung Cancer Patients With Autologous γδ T Cells
  publication-title: Eur J Cardio-thoracic Surgery
  doi: 10.1016/j.ejcts.2009.11.051
– volume: 294
  year: 2001
  ident: B5
  article-title: Regulation of Cutaneous Malignancy by Gammadelta T Cells
  publication-title: Science
  doi: 10.1126/science.1063916
– volume: 6
  year: 2017
  ident: B12
  article-title: Assessment of Tumor-Infiltrating Tcrvγ9vδ2 γδ Lymphocyte Abundance by Deconvolution of Human Cancers Microarrays
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1284723
SSID ssj0000493335
Score 2.6220853
SecondaryResourceType review_article
Snippet γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 915837
SubjectTerms adoptive cell transfer
aminobisphosphonates
cancer
gamma delta T-cell
Immunology
immunotherapy
phosphoantigens
Title Gamma Delta T-Cell Based Cancer Immunotherapy: Past-Present-Future
URI https://www.proquest.com/docview/2685040301
https://pubmed.ncbi.nlm.nih.gov/PMC9245381
https://doaj.org/article/57a7fb13f9c9431cbab1118c84862f44
Volume 13
WOSCitedRecordID wos000819193000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgAokL4qcosClInJAM9Y84Dre1rIAEUw8D9WY5z7ZW1GaoTZF24W_n2c6m5sIuu-SQOEryvVjv-2S_7xHyVjoeqkooCqkkp-KWWhUaCo4zq6D0Idku_vxWnZ7qxaKe77X6invCsj1wBg4Fu61Cw0SoocZkB41tcHpq0BK5eJDJCRRZz56Y-pV5rxCizMuYqMLqD2G5Xu9QD3L-vmaljn3P9xJR8usfkMzhFsm9nDN7RB72ZLE4zi_5mNzx7RNyP7ePvHxKJp_tem2LT37V2eKMTv1qVUwwK7liGmO5Kb7G4o--xOryYzG3247Oc70RnSUzkWfkx-zkbPqF9j0RKEjJO6o58-VYehn8GBR44VDCWglNg8SMgXQhOCacU6F0THEHVjkQEjSzYgxIvp6Tg_ai9S9IoXTgECc4AIrEYG1saFcqcI30jpd-RMZXABnoDcNj34qVQeEQMTUJUxMxNRnTEXl3fcvv7Jbxv8GTiPr1wGh0nU5g-E0ffnNT-EfkzVXMDE6MuNphW3-x2xquNAIVFd-IVINgDp44vNIuz5PFNqpSzATs5W284ivyIH513F_G1Gty0G12_pDcgz_dcrs5InerhT5Kfy8ev_89-QcFOfXc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gamma+Delta+T-Cell+Based+Cancer+Immunotherapy%3A+Past-Present-Future&rft.jtitle=Frontiers+in+immunology&rft.au=Saura-Esteller%2C+Jos%C3%A9&rft.au=de+Jong%2C+Milon&rft.au=King%2C+Lisa+A.&rft.au=Ensing%2C+Erik&rft.date=2022-06-16&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.915837&rft_id=info%3Apmid%2F35784326&rft.externalDocID=PMC9245381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon