Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm
Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 80; S. 535 - 544 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.02.2015
|
| Schlagworte: | |
| ISSN: | 0360-5442 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms.
•The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe.•Two examples of heat pipe design and optimization are presented.•The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence. |
|---|---|
| AbstractList | Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms.
•The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe.•Two examples of heat pipe design and optimization are presented.•The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence. Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching-Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. |
| Author | More, K.C. Rao, R.V. |
| Author_xml | – sequence: 1 givenname: R.V. surname: Rao fullname: Rao, R.V. – sequence: 2 givenname: K.C. orcidid: 0000-0002-8127-6695 surname: More fullname: More, K.C. email: kiran.imagine67@gmail.com |
| BookMark | eNqFkLtu3DAQRVk4gB_xH7hg6RRShtSDUooAiZEXsMA2TmkQI2q0y4WWVEhuALvKP-QP8yXhZlOliKuZAc69GJxLdua8I8ZuBJQCRPt6V5KjsHksJYi6FLIE6M7YBVQtFE1dy3N2GeMOAJqu7y_Yw3pJdo8zHynajeN-4mlLfEuY-GIX4odo3Ybfr96v-W0iNNt8_vrxcyYMLq_FgJFG7o8t9gmT9e4Vx3njg03b_Uv2YsI50vXfecW-fvxwf_e5WK0_fbl7typM_igVCmtFQyeVhHYcUIGADoYJCSdVSVOBMK1pRKNobMwwYgU1qh5FO4wTyIaqK3Z76l2C_3agmPTeRkPzjI78IWopRNv1bVPJZ9EMNqpXACKj9Qk1wccYaNJLyK7Coxagj7L1Tp9k66NsLaTOsnPszT8xY9MfMymgnZ8Lvz2FKev6binoaCw5Q6MNZJIevf1_wW8lZqL0 |
| CitedBy_id | crossref_primary_10_1002_ceat_201900411 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_018 crossref_primary_10_1016_j_expthermflusci_2017_02_005 crossref_primary_10_1007_s00366_018_0627_1 crossref_primary_10_1016_j_psep_2023_09_048 crossref_primary_10_1016_j_advengsoft_2022_103206 crossref_primary_10_1007_s00231_016_1861_y crossref_primary_10_1007_s11042_022_12017_9 crossref_primary_10_1061__ASCE_HE_1943_5584_0001963 crossref_primary_10_1080_23744731_2017_1296319 crossref_primary_10_1016_j_wear_2025_205750 crossref_primary_10_1016_j_applthermaleng_2023_120202 crossref_primary_10_1109_JSEN_2017_2762359 crossref_primary_10_1155_2022_7455340 crossref_primary_10_1007_s12046_016_0553_0 crossref_primary_10_1016_j_applthermaleng_2017_03_080 crossref_primary_10_1016_j_knosys_2016_06_019 crossref_primary_10_3390_en15145069 crossref_primary_10_1007_s00107_019_01416_9 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124434 crossref_primary_10_1016_j_knosys_2018_01_021 crossref_primary_10_1016_j_compchemeng_2017_01_024 crossref_primary_10_1016_j_jmapro_2025_01_092 crossref_primary_10_1016_j_asoc_2016_02_044 crossref_primary_10_1002_er_8420 crossref_primary_10_1016_j_petrol_2018_08_076 crossref_primary_10_1016_j_energy_2024_134000 crossref_primary_10_1016_j_heliyon_2023_e16955 crossref_primary_10_1016_j_applthermaleng_2024_124052 crossref_primary_10_1016_j_apenergy_2018_04_020 crossref_primary_10_1007_s13369_021_05710_8 crossref_primary_10_1016_j_matpr_2023_09_189 crossref_primary_10_1016_j_enconman_2018_03_076 crossref_primary_10_1063_5_0275856 crossref_primary_10_1007_s40430_019_2072_5 crossref_primary_10_1080_10426914_2020_1772484 crossref_primary_10_1155_2016_9837058 crossref_primary_10_1007_s12206_024_0437_x crossref_primary_10_1007_s11831_022_09766_z crossref_primary_10_1080_01457632_2017_1363629 crossref_primary_10_1007_s10462_025_11279_7 crossref_primary_10_1007_s00521_021_05980_1 crossref_primary_10_1016_j_neucom_2023_126898 crossref_primary_10_1016_j_applthermaleng_2015_10_013 crossref_primary_10_1016_j_enconman_2017_02_068 crossref_primary_10_1007_s00521_016_2738_1 crossref_primary_10_1177_0957650917717626 crossref_primary_10_1016_j_jsv_2019_02_017 crossref_primary_10_1080_10407782_2019_1630241 |
| Cites_doi | 10.1007/BF03177454 10.1016/j.applthermaleng.2011.06.026 10.1016/j.enconman.2012.06.004 10.1016/j.engappai.2014.01.016 10.1016/S0017-9310(02)00504-5 10.1016/j.applthermaleng.2010.02.010 10.1016/j.applthermaleng.2009.07.011 10.1016/S0735-1933(99)00054-8 10.1016/j.cad.2010.12.015 10.1016/j.ins.2014.02.056 10.1016/j.applthermaleng.2007.02.001 10.1016/j.applthermaleng.2009.05.008 10.1016/j.ijheatmasstransfer.2009.12.032 10.1016/j.ijheatmasstransfer.2011.06.018 10.1016/j.applthermaleng.2014.01.030 10.1016/j.egypro.2014.02.020 10.1016/j.ins.2012.11.009 10.1016/j.ijheatmasstransfer.2013.12.068 10.1016/S1359-4311(00)00066-1 10.1016/j.swevo.2013.12.005 10.1080/0305215X.2011.652103 10.1016/j.ijheatfluidflow.2010.07.002 10.1016/j.enconman.2010.03.003 10.1016/j.apm.2004.04.004 10.1016/j.ins.2011.08.006 10.1109/IECEC.1989.74435 10.1016/j.ijheatmasstransfer.2006.02.059 10.1016/j.ijheatmasstransfer.2010.09.006 10.1007/s11431-012-4885-7 10.1016/j.ijthermalsci.2011.09.017 10.1016/j.microrel.2014.02.034 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 KR7 L7M 7S9 L.6 |
| DOI | 10.1016/j.energy.2014.12.008 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EndPage | 544 |
| ExternalDocumentID | 10_1016_j_energy_2014_12_008 S0360544214013668 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7TB 8FD F28 FR3 KR7 L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c442t-7a47eb827206dba701080bfaeaf732c301c6c5157ed5cbda304a79a16bdf025e3 |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349723500049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 00:09:37 EDT 2025 Wed Oct 01 17:11:53 EDT 2025 Sat Nov 29 02:04:59 EST 2025 Tue Nov 18 22:41:10 EST 2025 Fri Feb 23 02:20:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Teaching–learning-based optimization algorithm Multi-objective optimization Heat pipe Micro-grooves |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c442t-7a47eb827206dba701080bfaeaf732c301c6c5157ed5cbda304a79a16bdf025e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8127-6695 |
| PQID | 1685797001 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2116896532 proquest_miscellaneous_1685797001 crossref_primary_10_1016_j_energy_2014_12_008 crossref_citationtrail_10_1016_j_energy_2014_12_008 elsevier_sciencedirect_doi_10_1016_j_energy_2014_12_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-02-01 |
| PublicationDateYYYYMMDD | 2015-02-01 |
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Maheshkumar, Muraleedharan (bib18) 2011; 54 Kim, Seo, Do (bib4) 2003; 46 Baykasoglu, Hamzadayi, Köse (bib42) 2014; 276 Rao, Patel (bib36) 2013; 4 Vlassov, Sousa, Takahashi (bib10) 2006; 49 Riegler (bib6) 2003 Kiseev, Vlassov, Muraoka (bib16) 2010; 30 Shabgard, Faghri (bib21) 2011; 31 Lips, Lefèvre (bib28) 2011; 72 Satapathy, Naik (bib43) 2014; 16 Maziuk, Kulakov, Rabetsky, Vasiliev, Vukovic (bib3) 2009; 21 Liang, Hung (bib14) 2010; 51 Nithiynandam, Pitchumani (bib19) 2011; 54 Chang, Jung, Lee, Choi, Kim (bib27) 2007; 27 Zhang, Chen, Shi, Peterson (bib12) 2009; 29 Senthilkumar (bib15) 2010; 2 Waghmare (bib41) 2013; 229 Wang (bib29) 2014; 54 Wu, Mochizuki, Saito, Nguyen, Wuttijumnong, Wu (bib5) 2003 Shi, Chua, Stephan, Wong, Tan (bib9) 2006; 34 Roper (bib20) 2010; 32 Agha (bib22) 2011; 1 Bertossi, Guilhem, Ayel, Romestant, Bertin (bib23) 2012; 52 Dong, Zhen, JiAn, ZhiXin (bib25) 2012; 55 Rao, Rakhade (bib30) 2011; 2 Rao, Waghmare (bib40) 2014 Jeong, Kobayami, Yoshimura (bib11) 2007; 21 Rao, More (bib38) 2014; 2 Morawietz, Hermann (bib32) 2014; 48 Rao, Savsani (bib39) 2012 Kiseev, Vlassov, Muraoka (bib13) 2010; 53 Sousa, Vlassov, Ramos (bib7) 2004; 28 Yau, Ahmadzadehtalpatapeh (bib17) 2010; 30 Wan, Wang, Tang (bib24) 2012; 64 Medina, Das, Coello, Ramirez (bib44) 2014; 32 Ornelas (bib8) 2006 Rao, Patel (bib37) 2012; 3 Said, Akash (bib2) 1999; 26 Buksa JJ, Hillianus KA. Sprite: a computer code for the optimization of space based heat pipe radiator systems. In: Energ Convers Eng Conference 1989; Proceeding of the 24th Intersociety. vol. 1:39–44. Rao, Savsani, Vakharia (bib35) 2011; 183 Rao, Savsani, Balic (bib33) 2011; 44 Yang, Karamanoglu, Luan, Koziel (bib26) 2014; 5 Cui, Zhu, Li, Shun (bib31) 2014; 65 Rao, Savsani, Vakharia (bib34) 2011; 43 Bertossi (10.1016/j.energy.2014.12.008_bib23) 2012; 52 Sousa (10.1016/j.energy.2014.12.008_bib7) 2004; 28 Cui (10.1016/j.energy.2014.12.008_bib31) 2014; 65 Rao (10.1016/j.energy.2014.12.008_bib39) 2012 Rao (10.1016/j.energy.2014.12.008_bib40) 2014 Maheshkumar (10.1016/j.energy.2014.12.008_bib18) 2011; 54 Rao (10.1016/j.energy.2014.12.008_bib35) 2011; 183 Riegler (10.1016/j.energy.2014.12.008_bib6) 2003 Liang (10.1016/j.energy.2014.12.008_bib14) 2010; 51 Rao (10.1016/j.energy.2014.12.008_bib37) 2012; 3 Maziuk (10.1016/j.energy.2014.12.008_bib3) 2009; 21 Chang (10.1016/j.energy.2014.12.008_bib27) 2007; 27 Nithiynandam (10.1016/j.energy.2014.12.008_bib19) 2011; 54 Dong (10.1016/j.energy.2014.12.008_bib25) 2012; 55 Waghmare (10.1016/j.energy.2014.12.008_bib41) 2013; 229 Baykasoglu (10.1016/j.energy.2014.12.008_bib42) 2014; 276 Kiseev (10.1016/j.energy.2014.12.008_bib13) 2010; 53 Yau (10.1016/j.energy.2014.12.008_bib17) 2010; 30 Wang (10.1016/j.energy.2014.12.008_bib29) 2014; 54 Rao (10.1016/j.energy.2014.12.008_bib36) 2013; 4 Vlassov (10.1016/j.energy.2014.12.008_bib10) 2006; 49 Agha (10.1016/j.energy.2014.12.008_bib22) 2011; 1 Rao (10.1016/j.energy.2014.12.008_bib34) 2011; 43 Lips (10.1016/j.energy.2014.12.008_bib28) 2011; 72 Said (10.1016/j.energy.2014.12.008_bib2) 1999; 26 Kim (10.1016/j.energy.2014.12.008_bib4) 2003; 46 Rao (10.1016/j.energy.2014.12.008_bib38) 2014; 2 Ornelas (10.1016/j.energy.2014.12.008_bib8) 2006 Kiseev (10.1016/j.energy.2014.12.008_bib16) 2010; 30 Shabgard (10.1016/j.energy.2014.12.008_bib21) 2011; 31 Wan (10.1016/j.energy.2014.12.008_bib24) 2012; 64 Rao (10.1016/j.energy.2014.12.008_bib30) 2011; 2 Wu (10.1016/j.energy.2014.12.008_bib5) 2003 Medina (10.1016/j.energy.2014.12.008_bib44) 2014; 32 Jeong (10.1016/j.energy.2014.12.008_bib11) 2007; 21 Yang (10.1016/j.energy.2014.12.008_bib26) 2014; 5 Morawietz (10.1016/j.energy.2014.12.008_bib32) 2014; 48 Rao (10.1016/j.energy.2014.12.008_bib33) 2011; 44 Shi (10.1016/j.energy.2014.12.008_bib9) 2006; 34 10.1016/j.energy.2014.12.008_bib1 Zhang (10.1016/j.energy.2014.12.008_bib12) 2009; 29 Senthilkumar (10.1016/j.energy.2014.12.008_bib15) 2010; 2 Satapathy (10.1016/j.energy.2014.12.008_bib43) 2014; 16 Roper (10.1016/j.energy.2014.12.008_bib20) 2010; 32 |
| References_xml | – volume: 30 start-page: 1312 year: 2010 end-page: 1319 ident: bib16 article-title: Experimental optimization of capillary structured for loop heat pipes and heat switches publication-title: Appl Therm Eng – volume: 4 start-page: 29 year: 2013 end-page: 50 ident: bib36 article-title: Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 65 start-page: 394 year: 2014 end-page: 402 ident: bib31 article-title: Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe publication-title: Appl Therm Eng – volume: 54 start-page: 1344 year: 2014 end-page: 1354 ident: bib29 article-title: U and L-shaped heat pipes heat sinks for cooling electronic components employed a least square smoothing method publication-title: Microelectron Reliab – volume: 26 start-page: 679 year: 1999 end-page: 684 ident: bib2 article-title: Experimental performance of a heat pipe publication-title: Int Commun Heat Mass Trans – reference: Buksa JJ, Hillianus KA. Sprite: a computer code for the optimization of space based heat pipe radiator systems. In: Energ Convers Eng Conference 1989; Proceeding of the 24th Intersociety. vol. 1:39–44. – volume: 64 start-page: 35 year: 2012 end-page: 42 ident: bib24 article-title: Condenser design optimization and operation characteristics of a novel miniature loop heat pipe publication-title: Energy Convers Manag – volume: 28 start-page: 911 year: 2004 end-page: 931 ident: bib7 article-title: Generalized extremal optimization: an application in heat pipe design publication-title: Appl Math Model – year: 2012 ident: bib39 article-title: Mechanical design optimization using advanced optimization techniques – volume: 32 start-page: 10 year: 2014 end-page: 20 ident: bib44 article-title: Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow- A comparative study publication-title: Eng Appl Artif Intel – start-page: 185 year: 2003 end-page: 190 ident: bib5 article-title: Analyzing and modelling on optimized L-ratio of evaporator section to condenser section for micro heat pipe heat sinks publication-title: Semiconductor therm measur manage symposium – volume: 2 start-page: 564 year: 2010 end-page: 569 ident: bib15 article-title: Thermal analysis of heat pipe using Taguchi method publication-title: Int J Eng Sci Tech – volume: 72 start-page: 288 year: 2011 end-page: 298 ident: bib28 article-title: A general analytical model for the design of conventional heat pipes publication-title: Int J Heat Mass Trans – volume: 32 start-page: 239 year: 2010 end-page: 248 ident: bib20 article-title: Multi-objective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores publication-title: Int J Heat Fluid Flow – volume: 16 start-page: 28 year: 2014 end-page: 37 ident: bib43 article-title: Modified teaching-learning-based optimization algorithm for global numerical optimization- A comparative study publication-title: Swarm Evol Comput – volume: 34 start-page: 142 year: 2006 end-page: 147 ident: bib9 article-title: Design and performance optimization of miniature heat pipes in LTCC publication-title: J Phys – volume: 49 start-page: 4584 year: 2006 end-page: 4595 ident: bib10 article-title: Comprehensive optimization of a heat pipe radiator assembly filled with ammonia or acetone publication-title: Int J Heat Mass Trans – volume: 27 start-page: 2524 year: 2007 end-page: 2535 ident: bib27 article-title: Fatigue data acquisition, evaluation and optimization of district heating pipes publication-title: Appl Therm Eng – year: 2014 ident: bib40 article-title: A comparative study of a teaching–learning-based optimization algorithm on multiobjective unconstrained and constrained functions publication-title: J King Saudi Univ Comput Inf Sci – volume: 21 start-page: 559 year: 2009 end-page: 571 ident: bib3 article-title: Miniature heat-pipe thermal performance prediction tool-software development publication-title: Appl Therm Eng – volume: 5 start-page: 119 year: 2014 end-page: 125 ident: bib26 article-title: Mathematical modeling and parameter optimization of pulsating heat pipes publication-title: J Comput Sci – volume: 2 start-page: 71 year: 2014 end-page: 94 ident: bib38 article-title: Advanced optimal tolerance design of machine elements using teaching-learning-based optimization algorithm publication-title: Prod Manuf Res – volume: 276 start-page: 204 year: 2014 end-page: 218 ident: bib42 article-title: Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling case publication-title: Inf Sci – volume: 1 start-page: 93 year: 2011 end-page: 97 ident: bib22 article-title: Heat pipe performance optimization: a Taguchi approach publication-title: Int J Res Mech Eng Tech – volume: 29 start-page: 3340 year: 2009 end-page: 3345 ident: bib12 article-title: Optimization of heat pipe with axial “Ω” shaped micro grooves based on a niched Pareto genetic algorithm (NPGA) publication-title: Appl Therm Eng – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib34 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comp Aided Des – volume: 54 start-page: 645 year: 2011 end-page: 648 ident: bib18 article-title: Minimization of entropy generation in flat heat pipe publication-title: Int J Heat Mass Trans – volume: 229 start-page: 159 year: 2013 end-page: 169 ident: bib41 article-title: Comments on ‘A note on teaching-learning-based optimization algorithm publication-title: Inf Sci – volume: 51 start-page: 2109 year: 2010 end-page: 2116 ident: bib14 article-title: Experimental investigation of thermal performance and optimization of heat sink U-shape heat pipes publication-title: Energy Convers Manag – volume: 52 start-page: 40 year: 2012 end-page: 49 ident: bib23 article-title: Modeling of heat and mass transfer in the liquid film of rotating heat pipes publication-title: Int J Therm Sci – volume: 54 start-page: 4596 year: 2011 end-page: 4610 ident: bib19 article-title: Analysis and optimization of latent thermal energy storage system with embedded heat pipes publication-title: Int J Heat Mass Trans – year: 2006 ident: bib8 article-title: Mathematical modelling, numerical simulation and statistical optimization of heat pipe design – volume: 55 start-page: 2126 year: 2012 end-page: 2131 ident: bib25 article-title: Entransy dissipation analysis and optimization of separated heat pipe system publication-title: Sci China – volume: 30 start-page: 77 year: 2010 end-page: 84 ident: bib17 article-title: A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics publication-title: Appl Therm Energy – volume: 21 start-page: 1964 year: 2007 end-page: 1972 ident: bib11 article-title: Multidimensional visualization and clustering for multiobjective optimization of artificial satellite heat pipe design publication-title: J Mech Sci Tech – volume: 46 start-page: 2051 year: 2003 end-page: 2063 ident: bib4 article-title: Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure publication-title: Int J Heat Mass Trans – year: 2003 ident: bib6 article-title: Heat transfer optimization of grooved heat pipe – volume: 44 start-page: 1447 year: 2011 end-page: 1462 ident: bib33 article-title: Teaching-learning-based optimization algorithm for unconstrained and constrained real parameter optimization problems publication-title: Eng Optim – volume: 31 start-page: 3410 year: 2011 end-page: 3419 ident: bib21 article-title: Performance characteristics of cylindrical heat pipes with multiple heat sources publication-title: Appl Therm Eng – volume: 183 start-page: 1 year: 2011 end-page: 15 ident: bib35 article-title: Teaching-learning-based optimization: a novel optimization method for continuous non-linear large scale problems publication-title: Inf Sci – volume: 48 start-page: 157 year: 2014 end-page: 162 ident: bib32 article-title: Integrated development and modeling of heat pipe solar collectors publication-title: Energy Procedia – volume: 2 start-page: 61 year: 2011 end-page: 66 ident: bib30 article-title: Multi-objective optimization of axial “Ω” shaped micro grooves heat pipe using grenade explosion method (GEM) publication-title: Int J Adv Therm Sci Eng – volume: 53 start-page: 2143 year: 2010 end-page: 2148 ident: bib13 article-title: Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches publication-title: Int J Heat Mass Trans – volume: 3 start-page: 535 year: 2012 end-page: 560 ident: bib37 article-title: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems publication-title: Int J Ind Eng Comput – volume: 21 start-page: 1964 year: 2007 ident: 10.1016/j.energy.2014.12.008_bib11 article-title: Multidimensional visualization and clustering for multiobjective optimization of artificial satellite heat pipe design publication-title: J Mech Sci Tech doi: 10.1007/BF03177454 – volume: 34 start-page: 142 year: 2006 ident: 10.1016/j.energy.2014.12.008_bib9 article-title: Design and performance optimization of miniature heat pipes in LTCC publication-title: J Phys – volume: 31 start-page: 3410 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib21 article-title: Performance characteristics of cylindrical heat pipes with multiple heat sources publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.06.026 – volume: 64 start-page: 35 year: 2012 ident: 10.1016/j.energy.2014.12.008_bib24 article-title: Condenser design optimization and operation characteristics of a novel miniature loop heat pipe publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2012.06.004 – volume: 32 start-page: 10 year: 2014 ident: 10.1016/j.energy.2014.12.008_bib44 article-title: Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow- A comparative study publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2014.01.016 – volume: 46 start-page: 2051 year: 2003 ident: 10.1016/j.energy.2014.12.008_bib4 article-title: Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure publication-title: Int J Heat Mass Trans doi: 10.1016/S0017-9310(02)00504-5 – year: 2003 ident: 10.1016/j.energy.2014.12.008_bib6 – volume: 30 start-page: 1312 year: 2010 ident: 10.1016/j.energy.2014.12.008_bib16 article-title: Experimental optimization of capillary structured for loop heat pipes and heat switches publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2010.02.010 – volume: 2 start-page: 71 issue: 1 year: 2014 ident: 10.1016/j.energy.2014.12.008_bib38 article-title: Advanced optimal tolerance design of machine elements using teaching-learning-based optimization algorithm publication-title: Prod Manuf Res – volume: 30 start-page: 77 year: 2010 ident: 10.1016/j.energy.2014.12.008_bib17 article-title: A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics publication-title: Appl Therm Energy doi: 10.1016/j.applthermaleng.2009.07.011 – year: 2012 ident: 10.1016/j.energy.2014.12.008_bib39 – volume: 26 start-page: 679 issue: 5 year: 1999 ident: 10.1016/j.energy.2014.12.008_bib2 article-title: Experimental performance of a heat pipe publication-title: Int Commun Heat Mass Trans doi: 10.1016/S0735-1933(99)00054-8 – volume: 43 start-page: 303 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib34 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comp Aided Des doi: 10.1016/j.cad.2010.12.015 – volume: 3 start-page: 535 issue: 4 year: 2012 ident: 10.1016/j.energy.2014.12.008_bib37 article-title: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems publication-title: Int J Ind Eng Comput – start-page: 185 year: 2003 ident: 10.1016/j.energy.2014.12.008_bib5 article-title: Analyzing and modelling on optimized L-ratio of evaporator section to condenser section for micro heat pipe heat sinks – volume: 1 start-page: 93 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib22 article-title: Heat pipe performance optimization: a Taguchi approach publication-title: Int J Res Mech Eng Tech – year: 2006 ident: 10.1016/j.energy.2014.12.008_bib8 – volume: 2 start-page: 564 issue: 4 year: 2010 ident: 10.1016/j.energy.2014.12.008_bib15 article-title: Thermal analysis of heat pipe using Taguchi method publication-title: Int J Eng Sci Tech – volume: 276 start-page: 204 year: 2014 ident: 10.1016/j.energy.2014.12.008_bib42 article-title: Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling case publication-title: Inf Sci doi: 10.1016/j.ins.2014.02.056 – volume: 4 start-page: 29 issue: 1 year: 2013 ident: 10.1016/j.energy.2014.12.008_bib36 article-title: Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 27 start-page: 2524 year: 2007 ident: 10.1016/j.energy.2014.12.008_bib27 article-title: Fatigue data acquisition, evaluation and optimization of district heating pipes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.02.001 – volume: 29 start-page: 3340 year: 2009 ident: 10.1016/j.energy.2014.12.008_bib12 article-title: Optimization of heat pipe with axial “Ω” shaped micro grooves based on a niched Pareto genetic algorithm (NPGA) publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2009.05.008 – volume: 53 start-page: 2143 year: 2010 ident: 10.1016/j.energy.2014.12.008_bib13 article-title: Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2009.12.032 – volume: 54 start-page: 4596 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib19 article-title: Analysis and optimization of latent thermal energy storage system with embedded heat pipes publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2011.06.018 – volume: 65 start-page: 394 year: 2014 ident: 10.1016/j.energy.2014.12.008_bib31 article-title: Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.01.030 – volume: 48 start-page: 157 year: 2014 ident: 10.1016/j.energy.2014.12.008_bib32 article-title: Integrated development and modeling of heat pipe solar collectors publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.02.020 – volume: 2 start-page: 61 issue: 2 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib30 article-title: Multi-objective optimization of axial “Ω” shaped micro grooves heat pipe using grenade explosion method (GEM) publication-title: Int J Adv Therm Sci Eng – volume: 229 start-page: 159 year: 2013 ident: 10.1016/j.energy.2014.12.008_bib41 article-title: Comments on ‘A note on teaching-learning-based optimization algorithm publication-title: Inf Sci doi: 10.1016/j.ins.2012.11.009 – volume: 72 start-page: 288 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib28 article-title: A general analytical model for the design of conventional heat pipes publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2013.12.068 – volume: 21 start-page: 559 year: 2009 ident: 10.1016/j.energy.2014.12.008_bib3 article-title: Miniature heat-pipe thermal performance prediction tool-software development publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(00)00066-1 – volume: 16 start-page: 28 year: 2014 ident: 10.1016/j.energy.2014.12.008_bib43 article-title: Modified teaching-learning-based optimization algorithm for global numerical optimization- A comparative study publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.12.005 – volume: 44 start-page: 1447 issue: 12 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib33 article-title: Teaching-learning-based optimization algorithm for unconstrained and constrained real parameter optimization problems publication-title: Eng Optim doi: 10.1080/0305215X.2011.652103 – volume: 32 start-page: 239 year: 2010 ident: 10.1016/j.energy.2014.12.008_bib20 article-title: Multi-objective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2010.07.002 – volume: 51 start-page: 2109 year: 2010 ident: 10.1016/j.energy.2014.12.008_bib14 article-title: Experimental investigation of thermal performance and optimization of heat sink U-shape heat pipes publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.03.003 – volume: 28 start-page: 911 year: 2004 ident: 10.1016/j.energy.2014.12.008_bib7 article-title: Generalized extremal optimization: an application in heat pipe design publication-title: Appl Math Model doi: 10.1016/j.apm.2004.04.004 – volume: 183 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib35 article-title: Teaching-learning-based optimization: a novel optimization method for continuous non-linear large scale problems publication-title: Inf Sci doi: 10.1016/j.ins.2011.08.006 – ident: 10.1016/j.energy.2014.12.008_bib1 doi: 10.1109/IECEC.1989.74435 – volume: 49 start-page: 4584 issue: 23–24 year: 2006 ident: 10.1016/j.energy.2014.12.008_bib10 article-title: Comprehensive optimization of a heat pipe radiator assembly filled with ammonia or acetone publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2006.02.059 – volume: 54 start-page: 645 year: 2011 ident: 10.1016/j.energy.2014.12.008_bib18 article-title: Minimization of entropy generation in flat heat pipe publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2010.09.006 – volume: 55 start-page: 2126 issue: 8 year: 2012 ident: 10.1016/j.energy.2014.12.008_bib25 article-title: Entransy dissipation analysis and optimization of separated heat pipe system publication-title: Sci China doi: 10.1007/s11431-012-4885-7 – volume: 5 start-page: 119 year: 2014 ident: 10.1016/j.energy.2014.12.008_bib26 article-title: Mathematical modeling and parameter optimization of pulsating heat pipes publication-title: J Comput Sci – year: 2014 ident: 10.1016/j.energy.2014.12.008_bib40 article-title: A comparative study of a teaching–learning-based optimization algorithm on multiobjective unconstrained and constrained functions publication-title: J King Saudi Univ Comput Inf Sci – volume: 52 start-page: 40 year: 2012 ident: 10.1016/j.energy.2014.12.008_bib23 article-title: Modeling of heat and mass transfer in the liquid film of rotating heat pipes publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2011.09.017 – volume: 54 start-page: 1344 issue: 6–7 year: 2014 ident: 10.1016/j.energy.2014.12.008_bib29 article-title: U and L-shaped heat pipes heat sinks for cooling electronic components employed a least square smoothing method publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2014.02.034 |
| SSID | ssj0005899 |
| Score | 2.397559 |
| Snippet | Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 535 |
| SubjectTerms | Algorithms Conductors Derivatives Design optimization Genetic algorithms Heat pipe Heat pipes Heat transfer Micro-grooves Multi-objective optimization Optimization system optimization Teaching–learning-based optimization algorithm |
| Title | Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2014.12.008 https://www.proquest.com/docview/1685797001 https://www.proquest.com/docview/2116896532 |
| Volume | 80 |
| WOSCitedRecordID | wos000349723500049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELegQ4IvCAYT4yUjIQSqjPL04-NAnXiUFk0dqsQHy3Gc0WlLSx-ofz4-22kYU7XxgS9RFTlu4vvlfLn73R1CLyOqi0IYSnjFS5KVNCUFMwWxnyJFzqkohcvw_tZngwEfj8XX0KVv4doJsLrm67WY_VdR23NW2JA6-w_i3kxqT9jfVuj2aMVuj9cS_NAqgXMIvThuRsMBAJ3bnU1mprty3oFR_90QrMtlYFOS0D7ihMC-VnanMEvI0QTPgTo7mc4nyx_nF1z5PnEQKpauPUl-41Y4Us4He9SSaL8ERu_n4JgNroY4b9jJVZtiFVkpZhfUp2_EFPRf7muPhK0096UdL2lp7zA4fWvcXQK_LnM-2Yi3u1ITiR8M5eFxvy9HvfHo1ewngX5hEFcPzVNuop2E5YJ30M7Bx974U0vv4a536OaWm7RJx-27_MfbzJK_NmhndYzuobvhcwEfeDHfRzdMvYtuN9nki12012szFe3AoKoXD9D3gAPscYCnFbY4wIADDDjADgcYcIBfb0EB_hMFb_AGAw_R8WFv9P4DCZ00iLaPviRMZfYF5BBzp2WhWATM0qJSRlUsTbRV8ppqa9kyU-a6KFUaZYoJFdOirKxRbNI91KmntXmEMPi9WBzrRENluoQKHVGTFarMlKgYj_dR2iyk1KHMPHQ7OZMNn_BU-uWXsPwyTqRd_n1ENlfNfJmVK8azRkYymIreBJQWY1dc-aIRqbSaFMJjqjbT1ULGlOdMAA9j-5gktqMEzdPk8TXmeYLutK_RU9RZzlfmGbqlfy0ni_nzgNjfumKghQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+the+heat+pipe+using+TLBO+%28teaching-learning-based+optimization%29+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Rao%2C+R+V&rft.au=More%2C+K+C&rft.date=2015-02-01&rft.issn=0360-5442&rft.volume=80&rft.spage=535&rft.epage=544&rft_id=info:doi/10.1016%2Fj.energy.2014.12.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |