Reliability and Reproducibility of Hadamard Encoded Pseudo-Continuous Arterial Spin Labeling in Healthy Elderly
The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegen...
Uložené v:
| Vydané v: | Frontiers in neuroscience Ročník 15; s. 711898 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Frontiers Media S.A
19.08.2021
|
| Predmet: | |
| ISSN: | 1662-453X, 1662-4548, 1662-453X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain. |
|---|---|
| AbstractList | The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain. The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain. |
| Author | Stöcker, Tony Neumann, Katja Günther, Matthias Schidlowski, Martin Düzel, Emrah |
| AuthorAffiliation | 3 Department of Epileptology, University of Bonn Medical Center , Bonn , Germany 4 Fraunhofer Institute for Digital Medicine MEVIS , Bremen , Germany 7 Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg , Magdeburg , Germany 2 German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany 9 Center for Behavioral Brain Science , Magdeburg , Germany 8 Institute of Cognitive Neuroscience, University College London , London , United Kingdom 1 German Center for Neurodegenerative Diseases (DZNE) , Magdeburg , Germany 6 Department for Physics and Astronomy, University of Bonn , Bonn , Germany 5 MR-Imaging and Spectroscopy, University of Bremen , Bremen , Germany |
| AuthorAffiliation_xml | – name: 6 Department for Physics and Astronomy, University of Bonn , Bonn , Germany – name: 2 German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany – name: 7 Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg , Magdeburg , Germany – name: 9 Center for Behavioral Brain Science , Magdeburg , Germany – name: 1 German Center for Neurodegenerative Diseases (DZNE) , Magdeburg , Germany – name: 8 Institute of Cognitive Neuroscience, University College London , London , United Kingdom – name: 4 Fraunhofer Institute for Digital Medicine MEVIS , Bremen , Germany – name: 5 MR-Imaging and Spectroscopy, University of Bremen , Bremen , Germany – name: 3 Department of Epileptology, University of Bonn Medical Center , Bonn , Germany |
| Author_xml | – sequence: 1 givenname: Katja surname: Neumann fullname: Neumann, Katja – sequence: 2 givenname: Martin surname: Schidlowski fullname: Schidlowski, Martin – sequence: 3 givenname: Matthias surname: Günther fullname: Günther, Matthias – sequence: 4 givenname: Tony surname: Stöcker fullname: Stöcker, Tony – sequence: 5 givenname: Emrah surname: Düzel fullname: Düzel, Emrah |
| BookMark | eNp9kU2P0zAQhi20iP2AH8AtRy4pduIkzgVpVRW6UiXQAhI3a2KPu165drEdpP573G2FWA6cPJqPZ97xe00ufPBIyFtGF20rxvfGW58WDW3YYmBMjOIFuWJ939S8a39c_BVfkuuUHintG8GbV-Sy5VyMfcuuSLhHZ2GyzuZDBV5X97iPQc_KnnPBVGvQsIOoq5VXQaOuviScdaiXwWfr5zCn6jZmjBZc9XVvfbWBqVD9tirxGsHlh0O1chqjO7wmLw24hG_O7w35_nH1bbmuN58_3S1vN7XivMl1j6CggYa3bGiN5kYBHVRrFFfcGK6mrut5KQk1qoai6o0WVCtDEUbDO93ekLsTVwd4lPtoywEHGcDKp0SIWwkxW-VQqlFMQvCJisIUPYoRyzLejaCQFTWF9eHE2s_TDrVCnyO4Z9DnFW8f5Db8kqJI5LwvgHdnQAw_Z0xZ7mxS6Bx4LL8nm26gjHHaDaWVnVpVDClFNH_WMCqPpssn0-XRdHkyvcwM_8womyHbcFRj3X8mfwO507bc |
| CitedBy_id | crossref_primary_10_1016_j_diii_2024_01_006 crossref_primary_10_1002_ana_27061 crossref_primary_10_1002_jmri_28634 crossref_primary_10_1002_mrm_30091 crossref_primary_10_1016_j_neuroimage_2025_121426 crossref_primary_10_1111_sjos_12740 |
| Cites_doi | 10.1016/j.neuroimage.2008.12.027 10.3389/fnins.2021.627627 10.1152/physrev.1959.39.2.183 10.1038/jcbfm.2013.161 10.1007/s10334-014-0480-1 10.1002/jmri.22345 10.1177/0271678x17713434 10.1002/mrm.20023 10.1002/jmri.25367 10.1002/mrm.1910400303 10.1002/jmri.25834 10.1016/j.jcm.2016.02.012 10.1002/mrm.1910150117 10.1038/jcbfm.2014.81 10.1002/mrm.20580 10.1002/mrm.21790 10.1016/j.neuroimage.2021.117807 10.1109/tsp.2008.2005752 10.1016/j.neuroimage.2011.09.015 10.2307/2529310 10.1371/journal.pone.0164112 10.1016/j.neuroimage.2011.02.046 10.1002/hbm.24451 10.1073/pnas.89.1.212 10.1002/mrm.1910400308 10.1002/mrm.22320 10.1002/mrm.23286 10.1002/mrm.21420 10.1109/42.906424 10.1016/j.neuroimage.2004.07.051 10.1002/mrm.22641 10.1002/hbm.23732 10.1002/mrm.27226 10.1093/cercor/bhq224 10.1002/mrm.22256 10.1002/mrm.28839 10.1002/mrm.25197 10.1006/nimg.2002.1132 10.1097/01.rli.0000084890.57197.54 10.1002/jmri.27007 10.1177/0271678x16683690 10.1152/jappl.1954.6.12.731 10.1371/journal.pone.0183762 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel. Copyright © 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel. 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel |
| Copyright_xml | – notice: Copyright © 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel. – notice: Copyright © 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel. 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fnins.2021.711898 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-453X |
| ExternalDocumentID | oai_doaj_org_article_c98b884b0856486e89ea07459ace1442 PMC8417446 10_3389_fnins_2021_711898 |
| GrantInformation_xml | – fundername: Deutsches Zentrum für Neurodegenerative Erkrankungen |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM W2D 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c442t-6eaca2a243173fd4fca07c3fc4c4ff4cb55641738c9c20ec6fd80dcf0ea9f45d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693064900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Fri Oct 03 12:51:50 EDT 2025 Tue Nov 04 01:54:37 EST 2025 Wed Oct 01 14:25:54 EDT 2025 Sat Nov 29 02:55:06 EST 2025 Tue Nov 18 20:51:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-6eaca2a243173fd4fca07c3fc4c4ff4cb55641738c9c20ec6fd80dcf0ea9f45d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Xingfeng Shao, University of Southern California, United States; Youngkyoo Jung, University of California, Davis, United States Edited by: Bradley J. MacIntosh, Sunnybrook Research Institute (SRI), Canada This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience |
| OpenAccessLink | https://doaj.org/article/c98b884b0856486e89ea07459ace1442 |
| PMID | 34489631 |
| PQID | 2570114057 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c98b884b0856486e89ea07459ace1442 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8417446 proquest_miscellaneous_2570114057 crossref_primary_10_3389_fnins_2021_711898 crossref_citationtrail_10_3389_fnins_2021_711898 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-19 |
| PublicationDateYYYYMMDD | 2021-08-19 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in neuroscience |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Alsop (B1) 2015; 73 Chappell (B5) 2009; 57 Vidorreta (B39) 2017; 12 Zhang (B45) 2001; 20 Chen (B7) 2011; 33 Juttukonda (B20) 2021; 230 Cohen (B8) 2020; 51 Zhang (B44) 2021; 86 Buxton (B3) 1998; 40 Wenn (B41) 1990; 13 Lu (B25) 2011; 21 Lassen (B23) 1959; 39 Weber (B40) 2003; 38 Groves (B13) 2009; 45 Jenkinson (B19) 2012; 62 Meier (B27) 1954; 6 Dolui (B11) 2017; 38 Guo (B16) 2018; 47 Shin (B34) 2007; 58 Williams (B42) 1992; 89 Chappell (B6) 2010; 63 Liu (B24) 2012; 68 Paling (B31) 2014; 34 Boland (B2) 2018; 80 Mutsaerts (B30) 2015; 28 Chappell (B4) 2011; 65 Mutsaerts (B29) 2017; 37 Parkes (B32) 2004; 51 Donahue (B12) 2014; 34 van Osch (B38) 2018; 38 Patenaude (B33) 2011; 56 Suo (B37) 2019; 40 Landis (B22) 1977; 33 Jann (B17) 2021; 15 Dai (B9) 2017; 45 Koo (B21) 2016; 15 Jenkinson (B18) 2002; 17 Ssali (B36) 2016; 11 Guenther (B14) 2007 Dai (B10) 2008; 60 Mugler (B28) 1990; 15 MacIntosh (B26) 2010; 63 Günther (B15) 2005; 54 Smith (B35) 2004; 23 Wong (B43) 1998; 40 |
| References_xml | – volume: 45 start-page: 795 year: 2009 ident: B13 article-title: Combined spatial and non-spatial prior for inference on MRI time-series. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.027 – volume: 15 year: 2021 ident: B17 article-title: Evaluation of cerebral blood flow measured by 3D PCASL as biomarker of vascular cognitive impairment and dementia (VCID) in a cohort of elderly latinx subjects at risk of small vessel disease. publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.627627 – volume: 39 start-page: 183 year: 1959 ident: B23 article-title: Cerebral blood flow and oxygen consumption in man. publication-title: Physiol. Rev. doi: 10.1152/physrev.1959.39.2.183 – volume: 34 start-page: 34 year: 2014 ident: B31 article-title: Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2013.161 – volume: 28 start-page: 427 year: 2015 ident: B30 article-title: Reproducibility of pharmacological ASL using sequences from different vendors: implications for multicenter drug studies. publication-title: Magma doi: 10.1007/s10334-014-0480-1 – volume: 33 start-page: 940 year: 2011 ident: B7 article-title: Test-retest reliability of arterial spin labeling with common labeling strategies. publication-title: J. Magn. Reson. Imaging. doi: 10.1002/jmri.22345 – volume: 38 start-page: 1461 year: 2018 ident: B38 article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678x17713434 – volume: 51 start-page: 736 year: 2004 ident: B32 article-title: Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20023 – volume: 45 start-page: 472 year: 2017 ident: B9 article-title: Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort. publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25367 – volume: 13 start-page: 67 year: 1990 ident: B41 article-title: Arterial tortuosity. publication-title: Australas Phys. Eng. Sci. Med. – volume: 40 start-page: 348 year: 1998 ident: B43 article-title: A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910400303 – volume: 47 start-page: 1119 year: 2018 ident: B16 article-title: Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: a simulation and in vivo study. publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25834 – volume: 15 start-page: 155 year: 2016 ident: B21 article-title: Guideline of selecting and reporting intraclass correlation coefficients for reliability research. publication-title: J. Chiropr. Med. doi: 10.1016/j.jcm.2016.02.012 – volume: 15 start-page: 152 year: 1990 ident: B28 article-title: Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910150117 – volume: 34 start-page: 1243 year: 2014 ident: B12 article-title: Bolus arrival time and cerebral blood flow responses to hypercarbia. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.81 – volume: 54 start-page: 491 year: 2005 ident: B15 article-title: Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20580 – volume: 60 start-page: 1488 year: 2008 ident: B10 article-title: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21790 – volume: 230 year: 2021 ident: B20 article-title: Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the human connectome project-aging. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.117807 – volume: 57 start-page: 223 year: 2009 ident: B5 article-title: Variational bayesian inference for a nonlinear forward model. publication-title: IEEE Trans. Signal Process. doi: 10.1109/tsp.2008.2005752 – volume: 62 start-page: 782 year: 2012 ident: B19 article-title: FSL. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 33 start-page: 159 year: 1977 ident: B22 article-title: The measurement of observer agreement for categorical data. publication-title: Biometrics doi: 10.2307/2529310 – volume: 11 year: 2016 ident: B36 article-title: Mapping long-term functional changes in cerebral blood flow by arterial spin labeling. publication-title: PLoS One doi: 10.1371/journal.pone.0164112 – volume: 56 start-page: 907 year: 2011 ident: B33 article-title: Bayesian model of shape and appearance for subcortical brain segmentation. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.046 – volume: 40 start-page: 1317 year: 2019 ident: B37 article-title: Multidelay multiparametric arterial spin labeling perfusion MRI and mild cognitive impairment in early stage Parkinson’s disease. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24451 – volume: 89 start-page: 212 year: 1992 ident: B42 article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.89.1.212 – volume: 40 start-page: 383 year: 1998 ident: B3 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910400308 – volume: 63 start-page: 1357 year: 2010 ident: B6 article-title: Separation of macrovascular signal in multi-inversion time arterial spin labelling MRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22320 – volume: 68 start-page: 912 year: 2012 ident: B24 article-title: Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23286 – volume: 58 start-page: 1232 year: 2007 ident: B34 article-title: Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21420 – volume: 20 start-page: 45 year: 2001 ident: B45 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 23 start-page: S208 year: 2004 ident: B35 article-title: Advances in functional and structural MR image analysis and implementation as FSL. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – year: 2007 ident: B14 article-title: Highly efficient accelerated acquisition of perfusion inflow series by cycled arterial spin labeling publication-title: Proceedings of the 15th Annual Meeting of ISMRM – volume: 65 start-page: 1173 year: 2011 ident: B4 article-title: Partial volume correction of multiple inversion time arterial spin labeling MRI data. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22641 – volume: 38 start-page: 5260 year: 2017 ident: B11 article-title: Comparison of PASL, PCASL, and background-suppressed 3D PCASL in mild cognitive impairment. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23732 – volume: 80 start-page: 2475 year: 2018 ident: B2 article-title: Accelerated 3D-GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27226 – volume: 21 start-page: 1426 year: 2011 ident: B25 article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq224 – volume: 63 start-page: 641 year: 2010 ident: B26 article-title: Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22256 – volume: 86 start-page: 2208 year: 2021 ident: B44 article-title: Examination of optimized protocols for pCASL: sensitivity to macrovascular contamination, flow dispersion, and prolonged arterial transit time. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28839 – volume: 73 start-page: 102 year: 2015 ident: B1 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25197 – volume: 17 start-page: 825 year: 2002 ident: B18 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images. publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 38 start-page: 712 year: 2003 ident: B40 article-title: Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. publication-title: Invest. Radiol. doi: 10.1097/01.rli.0000084890.57197.54 – volume: 51 start-page: 1846 year: 2020 ident: B8 article-title: Longitudinal reproducibility of MR perfusion using 3D pseudocontinuous arterial spin labeling with hadamard-encoded multiple postlabeling delays. publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27007 – volume: 37 start-page: 3184 year: 2017 ident: B29 article-title: The spatial coefficient of variation in arterial spin labeling cerebral blood flow images. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678x16683690 – volume: 6 start-page: 731 year: 1954 ident: B27 article-title: On the theory of the indicator-dilution method for measurement of blood flow and volume. publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1954.6.12.731 – volume: 12 year: 2017 ident: B39 article-title: Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout. publication-title: PLoS One doi: 10.1371/journal.pone.0183762 |
| SSID | ssj0062842 |
| Score | 2.3368096 |
| Snippet | The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI)... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 711898 |
| SubjectTerms | arterial spin labeling cerebral blood flow Neuroscience pCASL perfusion reliability reproducibility |
| Title | Reliability and Reproducibility of Hadamard Encoded Pseudo-Continuous Arterial Spin Labeling in Healthy Elderly |
| URI | https://www.proquest.com/docview/2570114057 https://pubmed.ncbi.nlm.nih.gov/PMC8417446 https://doaj.org/article/c98b884b0856486e89ea07459ace1442 |
| Volume | 15 |
| WOSCitedRecordID | wos000693064900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M7P dateStart: 20071015 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: PIMPY dateStart: 20071015 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M2P dateStart: 20071015 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7apIdeStu0dPtYVCg9FNzYXq0tHZOyoYVkMX3A9mT0pIZEDtndwv77zkjeEF_aSy_CWDK2Z8Yz31jSNwDvdO49l0ZmGBx5hvFWZ9prlwltvBbcqdJEdv3zerkUq5Vs7pT6ojVhiR44Ce7YSKGF4BqhQcVF5YR0CsPeXCrjMBmI3hdRzz6ZSj64QqdbpjlMTMHksQ9dIG7usvhYI6KWYhSFIln_CGGO10feCThnj-HRgBTZSXrCJ3DPhadwdBIwS77asfcsrt2MP8WPoKeVxYlxe8dUsAxxdaRy7YZzvWfoY9QV2gNbBNrHblmzdlvbZ8RP1YVtv13TvaJBsm_XXWDnSsfN6gyP026lHVtQUe_L3TP4cbb4_ulzNpRSyAzKaJNV6F9VqUqCCzNvuTcoRDPzhhuOyjJ6jtLFLmGkKXNnKm9Fbo3PnZKez-3sORyEPrgXwAqPCAhRlLQIDSz2m0L52s1cIdy8snoC-V60rRl4xqncxWWL-QZpo43aaEkbbdLGBD7cXnKdSDb-NviU9HU7kPix4wm0mnawmvZfVjOBt3ttt_g90SSJCg4l3VJVP8wREcZOoB6ZweiO457Q_YrM3AJliPn1y__xiK_gIb01_b8u5Gs42Nxs3Rt4YH5vuvXNFO7XKzGFw9PFsvk6jcaP7UXZUFtje9h8uWh-_gEsDg_k |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+and+Reproducibility+of+Hadamard+Encoded+Pseudo-Continuous+Arterial+Spin+Labeling+in+Healthy+Elderly&rft.jtitle=Frontiers+in+neuroscience&rft.au=Neumann%2C+Katja&rft.au=Schidlowski%2C+Martin&rft.au=G%C3%BCnther%2C+Matthias&rft.au=St%C3%B6cker%2C+Tony&rft.date=2021-08-19&rft.issn=1662-4548&rft.volume=15&rft.spage=711898&rft_id=info:doi/10.3389%2Ffnins.2021.711898&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |