Iron Metabolism in Ferroptosis
Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity i...
Gespeichert in:
| Veröffentlicht in: | Frontiers in cell and developmental biology Jg. 8; S. 590226 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frontiers Media S.A
07.10.2020
|
| Schlagworte: | |
| ISSN: | 2296-634X, 2296-634X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases.Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases. |
|---|---|
| AbstractList | Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases.Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases. Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases. |
| Author | Tang, Daolin Kang, Rui Chen, Xin Yu, Chunhua |
| AuthorAffiliation | 2 Department of Surgery, UT Southwestern Medical Center , Dallas, TX , United States 1 Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University , Guangzhou , China |
| AuthorAffiliation_xml | – name: 1 Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University , Guangzhou , China – name: 2 Department of Surgery, UT Southwestern Medical Center , Dallas, TX , United States |
| Author_xml | – sequence: 1 givenname: Xin surname: Chen fullname: Chen, Xin – sequence: 2 givenname: Chunhua surname: Yu fullname: Yu, Chunhua – sequence: 3 givenname: Rui surname: Kang fullname: Kang, Rui – sequence: 4 givenname: Daolin surname: Tang fullname: Tang, Daolin |
| BookMark | eNp1kUtLAzEUhYNUbK39AW6kSzdT85g8ZiNIsVqouFFwFzJJpqbMTGoyFfz3znQqWEGyuCH3nu-Gc87BoPa1BeASwRkhIrsptC3LGYYYzmgGMWYnYIRxxhJG0rfBr_sQTGLcQAgRppwKcgaGhCDEBRIjcLUMvp4-2UblvnSxmrp6urAh-G3jo4sX4LRQZbSTQx2D18X9y_wxWT0_LOd3q0SnKW4SxhQtUgOJptSSAmmhuSVMG04VJRqLtFBCQ5xDxg3BRlMMc2QUJjnSrZaMwbLnGq82chtcpcKX9MrJ_YMPa6lC43RpZWag0UzgtN2SZohmKqc5J5gwwQulTMu67VnbXV5Zo23dBFUeQY87tXuXa_8pOe0OagHXB0DwHzsbG1m52Lmtaut3UeKUtjYSLlg7yvtRHXyMwRZSu0Y1zndkV0oEZReW3Iclu7BkH1arRH-UPx_8X_MNV4aYaQ |
| CitedBy_id | crossref_primary_10_1016_j_biopha_2024_117375 crossref_primary_10_2174_0127724328328193241029103831 crossref_primary_10_2478_jtim_2023_0137 crossref_primary_10_1007_s43630_025_00691_1 crossref_primary_10_1142_S0192415X24500770 crossref_primary_10_1016_j_wjam_2024_09_003 crossref_primary_10_3892_ijmm_2023_5256 crossref_primary_10_1016_j_tox_2024_153831 crossref_primary_10_1016_j_phymed_2024_156342 crossref_primary_10_3389_fimmu_2024_1346585 crossref_primary_10_3389_fcell_2024_1372330 crossref_primary_10_3390_ijms25042315 crossref_primary_10_1186_s13045_023_01429_1 crossref_primary_10_1016_j_lfs_2023_122411 crossref_primary_10_1038_s41467_022_34096_w crossref_primary_10_1186_s13054_023_04759_1 crossref_primary_10_1002_mnfr_202300123 crossref_primary_10_1002_adhm_202203085 crossref_primary_10_1002_iub_2620 crossref_primary_10_1007_s10549_024_07387_7 crossref_primary_10_1021_acs_jmedchem_5c00839 crossref_primary_10_1002_jat_4670 crossref_primary_10_1016_j_tox_2025_154078 crossref_primary_10_1016_j_tranon_2021_101207 crossref_primary_10_1016_j_bbrc_2021_10_054 crossref_primary_10_1038_s41598_024_81315_z crossref_primary_10_1016_j_arr_2024_102248 crossref_primary_10_3390_ijms23063093 crossref_primary_10_1021_jacs_3c08032 crossref_primary_10_1080_15548627_2020_1847462 crossref_primary_10_1088_2515_7639_ad4d1e crossref_primary_10_3390_vaccines11020205 crossref_primary_10_3389_fphar_2025_1568246 crossref_primary_10_1007_s10495_025_02161_6 crossref_primary_10_1016_j_jep_2024_119217 crossref_primary_10_3390_cancers15041216 crossref_primary_10_5534_wjmh_230153 crossref_primary_10_1124_pharmrev_124_001245 crossref_primary_10_1186_s40478_025_02069_x crossref_primary_10_3389_fimmu_2023_1309635 crossref_primary_10_3389_fmolb_2023_1258870 crossref_primary_10_3389_fgene_2021_819632 crossref_primary_10_1016_j_cbi_2025_111536 crossref_primary_10_3389_fonc_2023_1097692 crossref_primary_10_1515_fzm_2024_0018 crossref_primary_10_3390_ph18091382 crossref_primary_10_1007_s11010_025_05340_w crossref_primary_10_1016_j_ecoenv_2024_116947 crossref_primary_10_2147_JIR_S351799 crossref_primary_10_1016_j_neuint_2025_106038 crossref_primary_10_1016_j_ejmech_2025_118162 crossref_primary_10_1111_cns_14553 crossref_primary_10_4103_1673_5374_358614 crossref_primary_10_1080_15548627_2023_2165323 crossref_primary_10_1159_000545387 crossref_primary_10_3390_ijms241210037 crossref_primary_10_1111_gtc_13053 crossref_primary_10_3389_fonc_2022_1010074 crossref_primary_10_3389_fphar_2024_1503064 crossref_primary_10_1186_s12967_023_04370_6 crossref_primary_10_3389_fcell_2022_932886 crossref_primary_10_3389_fimmu_2024_1450487 crossref_primary_10_1038_s41416_022_01998_x crossref_primary_10_3389_fimmu_2023_1249379 crossref_primary_10_1016_j_redox_2025_103761 crossref_primary_10_3390_applbiosci4020019 crossref_primary_10_3390_biomedicines11010015 crossref_primary_10_1002_kjm2_70034 crossref_primary_10_1016_j_abb_2023_109717 crossref_primary_10_1186_s12935_021_02027_2 crossref_primary_10_1007_s11064_023_04096_3 crossref_primary_10_1007_s13577_023_00890_x crossref_primary_10_1186_s12951_024_02911_9 crossref_primary_10_1016_j_ejmech_2022_115015 crossref_primary_10_1002_iub_2897 crossref_primary_10_1038_s41420_025_02328_9 crossref_primary_10_3389_fimmu_2025_1524711 crossref_primary_10_3389_fphar_2021_808480 crossref_primary_10_1016_j_tox_2024_153877 crossref_primary_10_1016_j_brainresbull_2023_110778 crossref_primary_10_1016_j_cytogfr_2025_06_007 crossref_primary_10_1111_febs_16059 crossref_primary_10_3389_fimmu_2025_1604429 crossref_primary_10_1016_j_freeradbiomed_2025_07_045 crossref_primary_10_1186_s12967_022_03566_6 crossref_primary_10_1016_j_abb_2023_109644 crossref_primary_10_1016_j_aquaculture_2024_741424 crossref_primary_10_1038_s41420_025_02633_3 crossref_primary_10_3233_JAD_231062 crossref_primary_10_3390_antiox10111677 crossref_primary_10_1016_j_freeradbiomed_2024_11_023 crossref_primary_10_3390_ijms25116083 crossref_primary_10_1038_s41419_023_06333_7 crossref_primary_10_1038_s41401_025_01560_4 crossref_primary_10_1002_smmd_70005 crossref_primary_10_3390_ijms26083675 crossref_primary_10_1186_s12967_024_05300_w crossref_primary_10_1186_s13046_024_03169_7 crossref_primary_10_3390_biomedicines12061163 crossref_primary_10_1016_j_intimp_2024_112318 crossref_primary_10_3389_fnagi_2022_830569 crossref_primary_10_1016_j_bbcan_2023_188917 crossref_primary_10_1039_D4SC02002B crossref_primary_10_1002_anie_202307838 crossref_primary_10_1016_j_isci_2024_109219 crossref_primary_10_1016_j_neulet_2023_137346 crossref_primary_10_1186_s12915_025_02131_z crossref_primary_10_3390_antiox13111327 crossref_primary_10_1016_j_heliyon_2024_e24786 crossref_primary_10_1155_2022_7177192 crossref_primary_10_3390_antiox13030298 crossref_primary_10_1016_j_ccell_2024_03_011 crossref_primary_10_1111_jcmm_70834 crossref_primary_10_3390_molecules27072129 crossref_primary_10_3389_fchem_2025_1543455 crossref_primary_10_1007_s11427_023_2472_4 crossref_primary_10_3389_fphar_2022_933732 crossref_primary_10_1038_s41598_023_42760_4 crossref_primary_10_3389_fnmol_2024_1427815 crossref_primary_10_1016_j_cbi_2025_111586 crossref_primary_10_3389_fphar_2022_931670 crossref_primary_10_1016_j_ejmech_2023_115438 crossref_primary_10_1016_j_intimp_2023_111377 crossref_primary_10_3389_fphar_2022_1020447 crossref_primary_10_1089_ars_2023_0318 crossref_primary_10_1016_j_phymed_2023_154701 crossref_primary_10_1007_s00204_023_03660_8 crossref_primary_10_3390_ijms241612885 crossref_primary_10_1111_cns_14865 crossref_primary_10_1097_FJC_0000000000001507 crossref_primary_10_1016_j_brainresbull_2024_110948 crossref_primary_10_3390_nano12223995 crossref_primary_10_3389_fcell_2023_1219840 crossref_primary_10_1002_aoc_7456 crossref_primary_10_3892_ijo_2023_5524 crossref_primary_10_3390_toxics12020161 crossref_primary_10_1007_s12274_024_6602_9 crossref_primary_10_1002_jat_4613 crossref_primary_10_1016_j_yexcr_2025_114688 crossref_primary_10_1097_TP_0000000000005405 crossref_primary_10_1016_j_critrevonc_2022_103732 crossref_primary_10_3389_fimmu_2025_1531577 crossref_primary_10_1111_joim_13732 crossref_primary_10_1016_j_jep_2023_117281 crossref_primary_10_2174_0109298673259596231211113211 crossref_primary_10_3390_biom13091371 crossref_primary_10_1016_j_lfs_2021_119958 crossref_primary_10_3389_fphar_2024_1374722 crossref_primary_10_3390_biom13050730 crossref_primary_10_3390_ijms252313042 crossref_primary_10_1016_j_lfs_2024_123076 crossref_primary_10_1016_j_yexcr_2024_114272 crossref_primary_10_3389_fcell_2023_1160381 crossref_primary_10_1111_febs_16382 crossref_primary_10_3389_fcell_2025_1614156 crossref_primary_10_1038_s41467_025_63185_9 crossref_primary_10_3389_fcvm_2025_1545231 crossref_primary_10_2147_IJN_S448715 crossref_primary_10_1002_cbf_3823 crossref_primary_10_3389_fcell_2021_688605 crossref_primary_10_3389_fphar_2022_909821 crossref_primary_10_1016_j_brainres_2024_149045 crossref_primary_10_3390_ijms242417279 crossref_primary_10_1016_j_bmt_2022_12_004 crossref_primary_10_1002_ptr_8149 crossref_primary_10_1038_s12276_023_01078_x crossref_primary_10_1002_advs_202300325 crossref_primary_10_1016_j_scitotenv_2024_173118 crossref_primary_10_1038_s41420_022_01013_5 crossref_primary_10_1016_j_biopha_2024_116211 crossref_primary_10_3389_fmolb_2023_1223493 crossref_primary_10_3390_ijms252011317 crossref_primary_10_1038_s41598_022_14554_7 crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002 crossref_primary_10_3389_fncel_2022_889765 crossref_primary_10_3390_ijms24119696 crossref_primary_10_1007_s11064_024_04278_7 crossref_primary_10_1186_s12931_025_03285_8 crossref_primary_10_3390_antiox13080911 crossref_primary_10_1016_j_arr_2023_102142 crossref_primary_10_1016_j_lfs_2024_123297 crossref_primary_10_3390_cells12141820 crossref_primary_10_1038_s41419_022_05505_1 crossref_primary_10_1016_j_cell_2024_11_028 crossref_primary_10_1038_s41419_023_05716_0 crossref_primary_10_1186_s40659_021_00361_3 crossref_primary_10_3389_fcell_2024_1423869 crossref_primary_10_3892_ol_2024_14739 crossref_primary_10_3390_microplastics4020033 crossref_primary_10_3390_ijms241612846 crossref_primary_10_1016_j_ecoenv_2024_117622 crossref_primary_10_1038_s41392_023_01720_0 crossref_primary_10_1038_s41418_021_00859_z crossref_primary_10_1186_s12964_021_00799_8 crossref_primary_10_1016_j_canlet_2023_216147 crossref_primary_10_3390_ijms251910685 crossref_primary_10_1038_s41467_024_46776_w crossref_primary_10_3389_fcell_2021_728172 crossref_primary_10_1038_s12276_023_01077_y crossref_primary_10_3389_fphar_2024_1407335 crossref_primary_10_1016_j_envint_2025_109361 crossref_primary_10_1016_j_exer_2024_110021 crossref_primary_10_3389_fceld_2023_1182239 crossref_primary_10_1016_j_bbcan_2024_189124 crossref_primary_10_1016_j_aquaculture_2025_742571 crossref_primary_10_1016_j_ecoenv_2023_115279 crossref_primary_10_3390_cells12071050 crossref_primary_10_3390_nu16213747 crossref_primary_10_1016_j_scitotenv_2024_173575 crossref_primary_10_3390_ijms241713336 crossref_primary_10_1016_j_critrevonc_2023_104249 crossref_primary_10_1016_j_biopha_2024_117407 crossref_primary_10_3390_biology10050399 crossref_primary_10_1016_j_phymed_2023_155288 crossref_primary_10_3390_toxics13080677 crossref_primary_10_1038_s41392_022_01046_3 crossref_primary_10_31083_j_fbl2901045 crossref_primary_10_7554_eLife_87496 crossref_primary_10_3390_biomedicines13020265 crossref_primary_10_1002_ange_202307838 crossref_primary_10_1016_j_cellsig_2024_111256 crossref_primary_10_3389_fcell_2023_1226044 crossref_primary_10_1007_s40618_023_02267_1 crossref_primary_10_1016_j_freeradbiomed_2024_06_006 crossref_primary_10_3389_ftox_2023_1280230 crossref_primary_10_1038_s41419_023_05978_8 crossref_primary_10_1186_s40364_021_00338_0 crossref_primary_10_3390_ani12131604 crossref_primary_10_1016_j_critrevonc_2024_104356 crossref_primary_10_1016_j_msard_2023_104934 crossref_primary_10_3389_fendo_2024_1346842 crossref_primary_10_1021_acsnano_5c09794 crossref_primary_10_1007_s10238_025_01766_0 crossref_primary_10_1080_15548627_2021_1872241 crossref_primary_10_4014_jmb_2307_07002 crossref_primary_10_1051_bioconf_202411101007 crossref_primary_10_1111_imr_13235 crossref_primary_10_1186_s10020_024_00972_y crossref_primary_10_1016_j_heliyon_2024_e33675 crossref_primary_10_1096_fj_202500415R crossref_primary_10_1007_s00204_023_03505_4 crossref_primary_10_3389_fchem_2022_996604 crossref_primary_10_3390_ph16121710 crossref_primary_10_3389_fmolb_2022_929832 crossref_primary_10_1016_j_phymed_2025_156433 crossref_primary_10_1016_j_intimp_2025_114870 crossref_primary_10_1186_s13287_022_02986_x crossref_primary_10_1016_j_ijbiomac_2024_133484 crossref_primary_10_1016_j_critrevonc_2024_104361 crossref_primary_10_1007_s11427_022_2265_6 crossref_primary_10_1007_s13577_025_01293_w crossref_primary_10_1002_ptr_8216 crossref_primary_10_1016_j_cej_2024_152675 crossref_primary_10_1016_j_archger_2025_105877 crossref_primary_10_3389_fcell_2024_1344060 crossref_primary_10_1016_j_lfs_2024_123011 crossref_primary_10_1007_s12012_024_09836_7 crossref_primary_10_1016_j_isci_2023_108393 crossref_primary_10_1007_s11064_023_03963_3 crossref_primary_10_1038_s41420_025_02532_7 crossref_primary_10_3389_fphar_2023_1168458 crossref_primary_10_3892_mmr_2021_12313 crossref_primary_10_1002_advs_202404467 crossref_primary_10_3390_antiox13020208 crossref_primary_10_1016_j_bbadis_2025_167791 crossref_primary_10_1093_procel_pwae004 crossref_primary_10_3390_antiox12091712 crossref_primary_10_1038_s41420_025_02578_7 crossref_primary_10_1093_procel_pwae003 crossref_primary_10_3390_cancers16091657 crossref_primary_10_3390_ijms241512008 crossref_primary_10_1016_j_bbcan_2024_189200 crossref_primary_10_1016_j_bioorg_2023_106415 crossref_primary_10_1017_S0954422421000226 crossref_primary_10_1016_j_ejmech_2024_116453 crossref_primary_10_1002_biof_2042 crossref_primary_10_1002_cbin_12213 crossref_primary_10_1111_jeu_12923 crossref_primary_10_1016_j_exer_2025_110424 crossref_primary_10_3390_cells11172726 crossref_primary_10_1016_j_bmc_2023_117564 crossref_primary_10_3390_antiox12020349 crossref_primary_10_1016_j_phrs_2025_107902 crossref_primary_10_15252_emmm_202216525 crossref_primary_10_1016_j_mcp_2025_102013 crossref_primary_10_3390_biomedicines9020103 crossref_primary_10_1016_j_ecoenv_2022_114083 crossref_primary_10_1038_s41419_025_07710_0 crossref_primary_10_3389_fmolb_2021_763697 crossref_primary_10_1146_annurev_biodatasci_103123_095644 crossref_primary_10_1158_1541_7786_MCR_24_0433 crossref_primary_10_1186_s12935_021_02366_0 crossref_primary_10_1016_j_cbi_2023_110829 crossref_primary_10_1016_j_ejphar_2024_177234 crossref_primary_10_1016_j_meatsci_2023_109202 crossref_primary_10_2147_COPD_S354896 crossref_primary_10_7554_eLife_87496_4 crossref_primary_10_1016_j_biopha_2024_116235 crossref_primary_10_1016_j_jpha_2024_03_001 crossref_primary_10_1007_s10495_025_02130_z crossref_primary_10_3389_fcell_2021_637162 crossref_primary_10_3390_metabo11020125 crossref_primary_10_1016_j_lfs_2021_119799 crossref_primary_10_1038_s41467_021_20904_2 crossref_primary_10_1038_s41419_024_06939_5 crossref_primary_10_1007_s00018_022_04239_9 crossref_primary_10_3389_fgene_2021_692426 crossref_primary_10_1002_med_21933 crossref_primary_10_1016_j_cellsig_2024_111215 crossref_primary_10_1007_s10616_025_00795_7 crossref_primary_10_1186_s40164_025_00657_0 crossref_primary_10_1038_s41421_022_00390_6 crossref_primary_10_1016_j_freeradbiomed_2021_09_013 crossref_primary_10_1016_j_jep_2023_116689 crossref_primary_10_1016_j_intimp_2025_114789 crossref_primary_10_1002_adbi_202100396 crossref_primary_10_1016_j_bbrc_2020_12_066 crossref_primary_10_4014_jmb_2501_01029 crossref_primary_10_3389_fphar_2025_1586578 crossref_primary_10_1016_j_lfs_2022_120868 crossref_primary_10_1038_s41418_020_00728_1 crossref_primary_10_3389_fcell_2023_1112751 crossref_primary_10_1007_s00204_024_03792_5 crossref_primary_10_1007_s00253_023_12802_y crossref_primary_10_1016_j_canlet_2022_216010 crossref_primary_10_3390_nu15245081 crossref_primary_10_1186_s12967_025_06847_y crossref_primary_10_3390_ijms26178466 crossref_primary_10_1038_s41422_020_00441_1 crossref_primary_10_1186_s12951_022_01663_8 crossref_primary_10_3390_immuno2010014 crossref_primary_10_1111_raq_12719 crossref_primary_10_1002_advs_202403963 crossref_primary_10_1016_j_carbpol_2023_121643 crossref_primary_10_1016_j_ejphar_2024_177058 crossref_primary_10_1038_s41467_023_41462_9 crossref_primary_10_12677_acm_2025_1582282 crossref_primary_10_1016_j_ijbiomac_2024_133323 crossref_primary_10_3390_medicina60050684 crossref_primary_10_1038_s41392_022_01043_6 crossref_primary_10_3389_fmolb_2023_1203269 crossref_primary_10_3390_cancers15184460 crossref_primary_10_1155_2021_1783485 crossref_primary_10_3390_biology14010012 crossref_primary_10_3389_fonc_2022_993316 crossref_primary_10_1038_s41418_025_01456_0 crossref_primary_10_3389_fphar_2023_1243286 crossref_primary_10_3389_fimmu_2022_972753 crossref_primary_10_1016_j_freeradbiomed_2023_06_025 crossref_primary_10_1016_j_phrs_2024_107466 crossref_primary_10_3390_antiox11030501 crossref_primary_10_1002_cai2_7 crossref_primary_10_3390_ijms25073641 crossref_primary_10_1007_s43032_023_01310_z crossref_primary_10_1016_j_rmed_2022_107035 crossref_primary_10_1097_MD_0000000000029546 crossref_primary_10_3389_fphar_2023_1185071 crossref_primary_10_3389_fonc_2022_947530 crossref_primary_10_1096_fj_202302597R crossref_primary_10_1016_j_intimp_2024_113394 crossref_primary_10_1016_j_chembiol_2021_01_006 crossref_primary_10_3390_biomedicines9111679 crossref_primary_10_1002_tox_23949 crossref_primary_10_1016_j_biomaterials_2025_123637 crossref_primary_10_1016_j_bmc_2022_117088 crossref_primary_10_32604_biocell_2023_027107 crossref_primary_10_1002_cph4_70042 crossref_primary_10_1155_2023_5157417 crossref_primary_10_3390_ph18030405 crossref_primary_10_1016_j_biopha_2023_115567 crossref_primary_10_3390_inorganics13050167 crossref_primary_10_3389_fcimb_2022_922511 crossref_primary_10_3389_fendo_2024_1421838 crossref_primary_10_3390_nu14142781 crossref_primary_10_3389_fimmu_2025_1563108 crossref_primary_10_2147_IJN_S372947 crossref_primary_10_3390_biom12121825 crossref_primary_10_1016_j_jnha_2024_100212 crossref_primary_10_1016_j_jnutbio_2025_109888 crossref_primary_10_3390_biom12091182 crossref_primary_10_1080_22221751_2024_2382235 crossref_primary_10_1002_adhm_202202562 crossref_primary_10_1002_adtp_202400197 crossref_primary_10_1016_j_phrs_2025_107841 crossref_primary_10_1038_s41392_024_02088_5 crossref_primary_10_1016_j_jes_2024_05_003 crossref_primary_10_1002_jnr_25184 crossref_primary_10_1016_j_heliyon_2023_e23507 crossref_primary_10_3389_fphar_2024_1390798 crossref_primary_10_1038_s41598_025_89903_3 crossref_primary_10_1038_s41419_024_07015_8 crossref_primary_10_1097_CM9_0000000000002327 crossref_primary_10_3390_endocrines4010002 crossref_primary_10_1016_j_biopha_2021_111872 crossref_primary_10_1186_s13062_024_00530_w crossref_primary_10_1093_molehr_gaab067 crossref_primary_10_3390_biom12111702 crossref_primary_10_1111_aji_13916 crossref_primary_10_1038_s41571_020_00462_0 crossref_primary_10_1038_s41467_025_57521_2 crossref_primary_10_3892_ijo_2024_5714 crossref_primary_10_1097_MD_0000000000031930 crossref_primary_10_3390_cancers17091470 crossref_primary_10_1002_tox_23770 crossref_primary_10_3390_ijms26178304 crossref_primary_10_3390_ijms23137041 crossref_primary_10_1016_j_cbpc_2025_110285 crossref_primary_10_1016_j_lfs_2024_122439 crossref_primary_10_3389_fmed_2022_985141 crossref_primary_10_1016_j_brainres_2024_149197 crossref_primary_10_1016_j_ejmech_2024_117152 crossref_primary_10_1007_s11845_023_03430_6 crossref_primary_10_1016_j_mito_2024_101974 crossref_primary_10_1186_s12943_024_02088_7 crossref_primary_10_1016_j_biocel_2021_106094 crossref_primary_10_1038_s41420_023_01407_z crossref_primary_10_1002_cbf_3883 crossref_primary_10_1093_mtomcs_mfaf030 crossref_primary_10_1016_j_brainres_2023_148715 crossref_primary_10_1002_advs_202403517 crossref_primary_10_3390_biology13040215 crossref_primary_10_1016_j_ejmech_2022_114861 crossref_primary_10_1016_j_ejpb_2024_114509 crossref_primary_10_1039_D2EN00757F crossref_primary_10_1038_s41392_024_01769_5 crossref_primary_10_1016_j_biopha_2023_115251 crossref_primary_10_1007_s12013_025_01743_0 crossref_primary_10_1080_09553002_2022_2020358 crossref_primary_10_1016_j_tice_2023_102187 crossref_primary_10_3390_nu14030412 crossref_primary_10_1016_j_ejps_2024_106939 crossref_primary_10_1038_s41419_024_07135_1 crossref_primary_10_3389_fmicb_2024_1441495 crossref_primary_10_3389_fphys_2024_1490725 crossref_primary_10_1016_j_heliyon_2024_e33934 crossref_primary_10_3390_cancers15102694 crossref_primary_10_1038_s41392_023_01336_4 crossref_primary_10_1186_s11658_024_00613_6 crossref_primary_10_3389_fcvm_2024_1436865 crossref_primary_10_1016_j_critrevonc_2025_104907 crossref_primary_10_1016_j_neuro_2022_04_006 crossref_primary_10_1007_s10565_023_09834_5 crossref_primary_10_1021_acs_jafc_5c02034 crossref_primary_10_1016_j_freeradbiomed_2024_08_002 crossref_primary_10_1111_imr_13280 crossref_primary_10_1007_s12035_024_04417_9 crossref_primary_10_3389_fphar_2025_1546041 crossref_primary_10_1016_j_biopha_2024_116753 crossref_primary_10_1038_s41568_022_00459_0 crossref_primary_10_3389_fendo_2024_1492610 crossref_primary_10_1016_j_tips_2023_08_012 crossref_primary_10_1186_s12967_024_05404_3 crossref_primary_10_1016_j_ejmech_2022_114507 crossref_primary_10_1016_j_ejmech_2024_117015 crossref_primary_10_3390_ijms25021123 crossref_primary_10_1016_j_cellsig_2025_111598 crossref_primary_10_3390_nu17071149 crossref_primary_10_1007_s00210_023_02506_5 crossref_primary_10_3390_ijms24129940 crossref_primary_10_1083_jcb_202105043 crossref_primary_10_1016_j_jtauto_2025_100267 crossref_primary_10_1007_s00210_024_03640_4 crossref_primary_10_1002_fsn3_4488 crossref_primary_10_1016_j_tranon_2025_102393 crossref_primary_10_1002_cbin_70026 crossref_primary_10_1016_j_cej_2024_149518 crossref_primary_10_1155_2022_2634431 crossref_primary_10_2174_0929867329666220629154418 crossref_primary_10_3389_fimmu_2025_1558814 crossref_primary_10_1093_rb_rbad004 crossref_primary_10_1002_prm2_12090 crossref_primary_10_1016_j_jsps_2023_02_008 crossref_primary_10_1016_j_jtemb_2025_127611 crossref_primary_10_3390_biology14030253 crossref_primary_10_1007_s10495_025_02129_6 crossref_primary_10_3389_fnmol_2023_1113081 crossref_primary_10_1186_s13287_025_04511_2 crossref_primary_10_1016_j_expneurol_2024_114943 crossref_primary_10_1039_D4QI03268C crossref_primary_10_1016_j_jep_2023_116267 crossref_primary_10_20900_immunometab20210017 crossref_primary_10_1186_s40164_023_00427_w crossref_primary_10_2147_JIR_S457092 crossref_primary_10_1002_ctm2_70253 crossref_primary_10_1021_acscentsci_3c00052 crossref_primary_10_1016_j_jhazmat_2023_132584 crossref_primary_10_1111_1756_185X_15147 crossref_primary_10_1038_s41419_025_07882_9 crossref_primary_10_1038_s41374_022_00779_7 crossref_primary_10_1002_2211_5463_13307 crossref_primary_10_1016_j_bbrc_2023_149338 crossref_primary_10_3390_nu14204380 crossref_primary_10_1007_s00109_025_02528_x crossref_primary_10_1007_s12035_025_04832_6 crossref_primary_10_1016_j_fsi_2025_110356 crossref_primary_10_3389_fphys_2024_1450656 crossref_primary_10_1186_s13046_025_03520_6 crossref_primary_10_1186_s13020_024_01047_0 crossref_primary_10_3389_fphar_2024_1290183 crossref_primary_10_3389_fnut_2022_1003340 crossref_primary_10_1016_j_bioorg_2024_107331 crossref_primary_10_1042_BSR20231992 crossref_primary_10_1016_j_phymed_2024_155981 crossref_primary_10_3389_fphar_2025_1610573 crossref_primary_10_3390_ijms24010449 crossref_primary_10_1016_j_canlet_2025_217697 crossref_primary_10_1084_jem_20210518 crossref_primary_10_1093_lifemeta_loac035 crossref_primary_10_1016_j_cej_2024_156019 crossref_primary_10_1016_j_intimp_2021_107844 crossref_primary_10_1186_s12951_021_01098_7 crossref_primary_10_3389_fendo_2025_1527693 crossref_primary_10_1136_jitc_2023_006890 crossref_primary_10_1016_j_heliyon_2023_e18504 crossref_primary_10_1038_s41420_024_01884_w crossref_primary_10_1016_j_jinorgbio_2025_113004 crossref_primary_10_1089_ars_2024_0608 crossref_primary_10_1093_jleuko_qiaf039 crossref_primary_10_2147_JIR_S358470 crossref_primary_10_1016_j_ejmech_2023_115933 crossref_primary_10_3389_fphar_2025_1570069 crossref_primary_10_1093_carcin_bgac080 crossref_primary_10_1016_j_phymed_2023_154887 crossref_primary_10_1016_j_bbadis_2022_166566 crossref_primary_10_3389_fonc_2023_1099731 crossref_primary_10_1016_j_biopha_2022_114102 crossref_primary_10_3389_fimmu_2023_1294317 crossref_primary_10_3390_inorganics12010026 crossref_primary_10_1016_j_freeradbiomed_2024_01_021 crossref_primary_10_3390_ijms222212603 crossref_primary_10_3390_molecules30153095 crossref_primary_10_3390_ijms24043634 crossref_primary_10_3390_biomedicines10112770 crossref_primary_10_3390_jcm13020559 crossref_primary_10_3390_cells12172197 crossref_primary_10_1016_j_cellsig_2025_112053 crossref_primary_10_1016_j_freeradbiomed_2022_08_012 crossref_primary_10_3762_bjnano_16_97 crossref_primary_10_3390_metabo13091005 crossref_primary_10_1002_adfm_202405383 crossref_primary_10_1016_j_prp_2025_155949 crossref_primary_10_1016_j_isci_2025_112404 crossref_primary_10_1016_j_brainresbull_2025_111293 crossref_primary_10_1016_j_biopha_2023_115544 crossref_primary_10_1016_j_reprotox_2025_109022 crossref_primary_10_1002_mco2_70024 crossref_primary_10_1002_adfm_202419892 crossref_primary_10_3390_ijms23105709 crossref_primary_10_4103_imna_imna_2_22 crossref_primary_10_3390_cancers16061220 crossref_primary_10_1042_EBC20210017 crossref_primary_10_1007_s10495_025_02127_8 crossref_primary_10_17116_repro20243005135 crossref_primary_10_1016_j_scitotenv_2024_172618 crossref_primary_10_2147_JIR_S389290 crossref_primary_10_3389_fmed_2024_1356225 crossref_primary_10_3389_fmolb_2022_974156 crossref_primary_10_1016_j_canlet_2021_09_033 crossref_primary_10_1016_j_lfs_2024_122949 crossref_primary_10_1007_s12010_024_05161_5 crossref_primary_10_3390_biomedicines9111508 crossref_primary_10_1016_j_biopha_2023_115415 crossref_primary_10_1016_j_biopha_2022_113279 crossref_primary_10_1016_j_prp_2024_155771 crossref_primary_10_1016_j_freeradbiomed_2021_11_003 crossref_primary_10_3389_fnins_2022_904816 crossref_primary_10_1007_s10557_025_07673_6 crossref_primary_10_1016_j_expneurol_2023_114476 crossref_primary_10_1186_s12884_025_07143_9 crossref_primary_10_1186_s40959_024_00242_0 crossref_primary_10_1016_j_ejphar_2022_175133 crossref_primary_10_3389_fcell_2021_646311 crossref_primary_10_1177_02676591241280371 crossref_primary_10_3389_fimmu_2025_1658280 crossref_primary_10_1080_10715762_2024_2423691 crossref_primary_10_1038_s41467_024_53837_7 crossref_primary_10_3389_fcvm_2021_710963 crossref_primary_10_1007_s00204_022_03317_y crossref_primary_10_1007_s12640_023_00645_4 crossref_primary_10_1111_cpr_13752 crossref_primary_10_1186_s43556_023_00142_2 crossref_primary_10_17816_phbn653994 crossref_primary_10_1038_s41526_023_00339_3 crossref_primary_10_31083_j_jin2201019 crossref_primary_10_1111_jcmm_18240 crossref_primary_10_1111_jcmm_18361 crossref_primary_10_1016_j_biopha_2023_115404 crossref_primary_10_1016_j_ccr_2023_215330 crossref_primary_10_1016_j_biopha_2023_115765 crossref_primary_10_3390_biom15070947 crossref_primary_10_1016_j_canlet_2024_217079 crossref_primary_10_1016_j_tice_2025_102930 crossref_primary_10_1128_jvi_00974_25 crossref_primary_10_2147_JIR_S393646 crossref_primary_10_1016_j_biopha_2025_118391 crossref_primary_10_1111_bph_15517 crossref_primary_10_1002_1873_3468_14289 crossref_primary_10_3390_toxics11040395 crossref_primary_10_1016_j_bbih_2024_100837 crossref_primary_10_1038_s41417_022_00464_3 crossref_primary_10_1089_ars_2024_0807 crossref_primary_10_1212_WNL_0000000000207730 crossref_primary_10_3389_fcell_2025_1522873 |
| Cites_doi | 10.1016/j.freeradbiomed.2018.10.426 10.1038/nature24637 10.1073/pnas.1821022116 10.1016/j.cellsig.2020.109633 10.1136/gut.52.8.1215 10.1016/j.bbrc.2019.11.110 10.1016/j.celrep.2020.02.049 10.1002/hep.28574 10.1016/j.molcel.2015.06.011 10.1038/s41417-020-0182-y 10.1128/MCB.00936-15 10.1039/c8bm01525b 10.1016/j.cell.2017.09.021 10.1016/j.chembiol.2008.02.010 10.1038/s41418-019-0393-7 10.1016/j.canlet.2018.06.018 10.1371/journal.pone.0117435 10.3389/fcell.2020.00431 10.1038/s41467-019-09277-9 10.1182/blood.v82.12.3610.bloodjournal82123610 10.1016/j.bbrc.2018.12.039 10.1016/j.bbrc.2018.07.078 10.1038/cdd.2015.158 10.1016/j.cmet.2015.05.002 10.1073/pnas.1511701112 10.1126/sciadv.aaw2238 10.1084/jem.20130315 10.3389/fphar.2019.00638 10.3389/fcell.2020.586578 10.1016/j.biopha.2018.11.030 10.1080/10715762.2020.1780229 10.1074/jbc.RA119.009548 10.1016/j.cmet.2005.01.003 10.3389/fnagi.2016.00308 10.1038/cr.2016.95 10.1038/nchembio.2239 10.1016/j.bbrc.2016.08.124 10.1073/pnas.1603244113 10.1016/j.cmet.2011.08.015 10.1002/hep.28251 10.1016/j.ajhg.2018.01.003 10.1002/hep.31328 10.1080/15548627.2020.1810918 10.1038/s41418-017-0012-4 10.1038/s41586-019-1705-2 10.2174/0929867033457638 10.1073/pnas.95.9.4924 10.1016/j.devcel.2018.07.012 10.1152/ajpendo.00424.2003 10.1016/j.bbrc.2019.01.090 10.1007/s40139-017-0139-5 10.1182/blood.2019002907 10.1016/j.canlet.2017.12.025 10.1038/s41589-020-0472-6 10.1016/j.molcel.2018.10.042 10.1016/j.bbrc.2016.10.068 10.1038/s41467-019-10991-7 10.1016/j.chembiol.2020.02.005 10.1038/s41418-019-0352-3 10.1016/j.phymed.2015.08.002 10.1042/BJ20140225 10.1016/j.redox.2020.101619 10.1371/journal.pgen.1008396 10.1038/90038 10.1016/j.redox.2017.08.015 10.1038/s41586-019-1426-6 10.1053/hupa.2002.30217 10.1152/ajprenal.00044.2017 10.1016/j.bbrc.2016.08.034 10.1182/blood.v96.3.1113 10.1038/nchembio.2238 10.18632/oncotarget.5162 10.18632/oncoscience.160 10.1371/journal.pone.0036055 10.1038/s41422-019-0164-5 10.3892/ijmm.2018.3469 10.1016/j.biocel.2006.02.006 10.1038/mp.2017.171 10.1172/jci.insight.90777 10.1038/s41586-019-1707-0 10.1016/j.semcancer.2019.03.002 10.1016/j.devcel.2019.10.007 10.1080/15548627.2016.1187366 10.1172/jci.insight.132747 10.1016/j.transci.2018.05.028 10.1016/j.celrep.2017.07.055 10.1016/j.bbrc.2016.03.052 10.1016/j.cell.2012.03.042 10.3324/haematol.2009.016824 10.1021/acschembio.7b01082 10.1182/blood-2010-11-319483 10.26355/eurrev_201806_15267 10.1038/onc.2015.32 10.1158/1541-7786.MCR-19-0691 10.1016/j.cub.2018.05.094 10.1038/ng.3465 10.15252/emmm.201505748 10.1016/j.nbd.2016.05.011 10.1038/7727 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Chen, Yu, Kang and Tang. Copyright © 2020 Chen, Yu, Kang and Tang. 2020 Chen, Yu, Kang and Tang |
| Copyright_xml | – notice: Copyright © 2020 Chen, Yu, Kang and Tang. – notice: Copyright © 2020 Chen, Yu, Kang and Tang. 2020 Chen, Yu, Kang and Tang |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fcell.2020.590226 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2296-634X |
| ExternalDocumentID | oai_doaj_org_article_9d0dc68241c849159ab5b7323687faad PMC7575751 10_3389_fcell_2020_590226 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c442t-66a5f4d03c55e3f1c8c7e36cd75a53c284fa8c02b067d32dc520b1da23b1c6a53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 701 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583346200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-634X |
| IngestDate | Fri Oct 03 12:53:17 EDT 2025 Thu Aug 21 18:32:19 EDT 2025 Thu Sep 04 20:14:59 EDT 2025 Sat Nov 29 02:52:13 EST 2025 Tue Nov 18 20:57:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-66a5f4d03c55e3f1c8c7e36cd75a53c284fa8c02b067d32dc520b1da23b1c6a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Giovanna Valenti, University of Bari Aldo Moro, Italy This article was submitted to Cell Death and Survival, a section of the journal Frontiers in Cell and Developmental Biology Reviewed by: Jianbo Sun, Sun Yat-sen University, China; Kuanyu Li, Nanjing University, China |
| OpenAccessLink | https://doaj.org/article/9d0dc68241c849159ab5b7323687faad |
| PMID | 33117818 |
| PQID | 2455833786 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9d0dc68241c849159ab5b7323687faad pubmedcentral_primary_oai_pubmedcentral_nih_gov_7575751 proquest_miscellaneous_2455833786 crossref_citationtrail_10_3389_fcell_2020_590226 crossref_primary_10_3389_fcell_2020_590226 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-07 |
| PublicationDateYYYYMMDD | 2020-10-07 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in cell and developmental biology |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Adedoyin (B1) 2018; 314 Song (B69) 2016; 480 Jenkitkasemwong (B43) 2015; 22 Gao (B33) 2019; 73 Galvez-Peralta (B29) 2012; 7 Mumbauer (B61) 2019; 15 Chen (B13) 2006; 38 Sun (B72); 64 Brown (B7) 2019; 51 Levy (B51) 1999; 21 Wu (B84) 2019; 572 Chen (B14) 2020; 27 Eling (B25) 2015; 2 Kagan (B44) 2017; 13 Donovan (B23) 2005; 1 Li (B55) 2019; 10 Gao (B32) 2015; 59 Galluzzi (B28) 2018; 25 Xie (B85); 23 Nandal (B62) 2011; 14 Huang (B39) 2019; 7 Kuang (B50) 2020 Shin (B68) 2018; 129 Bersuker (B6) 2019; 575 Dixon (B19) 2012; 149 Li (B56) 2015; 10 Gao (B30) 2018; 503 Wang (B81) 2020; 531 Ooko (B65) 2015; 22 Arden (B3) 2003; 52 Chen (B12) 2020; 27 Nishizawa (B63) 2020; 295 Chang (B9) 2016; 8 Wang (B80) 1993; 82 Bai (B4) 2019; 508 Dai (B18) 2020; 522 Ghanem (B35) 2016; 36 Yang (B93) 2008; 15 Kim (B47) 2018; 432 Shang (B67) 2020; 72 Yu (B95) 2020; 136 Chang (B10) 2018; 416 Geng (B34) 2018; 22 Sun (B73); 63 Yang (B91) 2020; 18 Do Van (B20) 2016; 94 Li (B54) 2017; 2 Wang (B82) 2016; 8 Doll (B21) 2019; 575 Wen (B83) 2019; 510 Li (B52) 2018; 46 Kwon (B49) 2015; 6 Zhou (B99) 2019 Chen (B15) 2020 Song (B70) 2018; 28 Drecourt (B24) 2018; 102 Masaldan (B59) 2018; 14 Zou (B101) 2019; 10 Li (B53) 2018; 41 Colca (B16) 2004; 286 Buss (B8) 2003; 10 Troadec (B78) 2011; 117 Messa (B60) 2010; 95 Jabara (B42) 2016; 48 Tang (B76) 2019; 29 Hanel (B36) 1991; 34 Iwai (B41) 1998; 95 Chen (B11) 2015; 112 Liu (B57) 2020; 27 Kang (B45) 2017; 5 Sun (B74) 2015; 34 Xie (B86) 2020; 8 Zhang (B98) 2020; 36 Yuan (B97); 478 Yanatori (B89) 2014; 462 Cozzi (B17) 2013; 210 Gao (B31) 2016; 26 Tuo (B79) 2017; 22 Fang (B26) 2019; 116 Bernstein (B5) 1987; 110 Feng (B27) 2020; 30 Xie (B88) 2017; 20 Njajou (B64) 2001; 28 Kawashima (B46) 2002; 33 Hou (B38) 2016; 12 Alvarez (B2) 2017; 551 Homma (B37) 2020; 54 Stockwell (B71) 2017; 171 Yang (B90) 2019; 5 Xie (B87); 473 Trenor (B77) 2000; 96 Imoto (B40) 2018; 57 Kong (B48) 2019; 109 Tadokoro (B75) 2020; 5 Doll (B22) 2017; 13 Yang (B92) 2016; 113 Yuan (B96); 478 Yoshida (B94) 2019; 10 Protchenko (B66) 2020 Zou (B100) 2020; 16 Liu (B58) 2020 |
| References_xml | – volume: 129 start-page: 454 year: 2018 ident: B68 article-title: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.10.426 – volume: 551 start-page: 639 year: 2017 ident: B2 article-title: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. publication-title: Nature doi: 10.1038/nature24637 – volume: 116 start-page: 2672 year: 2019 ident: B26 article-title: Ferroptosis as a target for protection against cardiomyopathy. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1821022116 – volume: 72 year: 2020 ident: B67 article-title: Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. publication-title: Cell Signal. doi: 10.1016/j.cellsig.2020.109633 – volume: 52 start-page: 1215 year: 2003 ident: B3 article-title: A novel mutation in ferroportin1 is associated with haemochromatosis in a Solomon Islands patient. publication-title: Gut doi: 10.1136/gut.52.8.1215 – volume: 522 start-page: 415 year: 2020 ident: B18 article-title: ESCRT-III-dependent membrane repair blocks ferroptosis. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.11.110 – volume: 30 year: 2020 ident: B27 article-title: Transferrin receptor is a specific ferroptosis marker. publication-title: Cell Rep doi: 10.1016/j.celrep.2020.02.049 – volume: 64 start-page: 488 ident: B72 article-title: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. publication-title: Hepatology doi: 10.1002/hep.28574 – volume: 59 start-page: 298 year: 2015 ident: B32 article-title: Glutaminolysis and transferrin regulate ferroptosis. publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.06.011 – year: 2020 ident: B58 article-title: Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. publication-title: Cancer Gene. Ther. doi: 10.1038/s41417-020-0182-y – volume: 36 start-page: 304 year: 2016 ident: B35 article-title: The poly(C) binding protein pcbp2 and its retrotransposed derivative pcbp1 are independently essential to mouse development. publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00936-15 – volume: 7 start-page: 1311 year: 2019 ident: B39 article-title: Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. publication-title: Biomater. Sci. doi: 10.1039/c8bm01525b – volume: 171 start-page: 273 year: 2017 ident: B71 article-title: Ferroptosis: a regulated cell death nexus linking metabolism. publication-title: Red. Biol. Dis. Cell doi: 10.1016/j.cell.2017.09.021 – volume: 15 start-page: 234 year: 2008 ident: B93 article-title: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2008.02.010 – volume: 27 start-page: 1008 year: 2020 ident: B14 article-title: Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. publication-title: Cell Death Diff doi: 10.1038/s41418-019-0393-7 – volume: 432 start-page: 180 year: 2018 ident: B47 article-title: CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. publication-title: Cancer Lett. doi: 10.1016/j.canlet.2018.06.018 – volume: 10 year: 2015 ident: B56 article-title: Systemic and cerebral iron homeostasis in ferritin knock-out mice. publication-title: PLoS One doi: 10.1371/journal.pone.0117435 – volume: 8 year: 2020 ident: B86 article-title: Interplay between lipid metabolism and autophagy. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00431 – volume: 10 year: 2019 ident: B101 article-title: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. publication-title: Nat. Commun. doi: 10.1038/s41467-019-09277-9 – volume: 82 start-page: 3610 year: 1993 ident: B80 article-title: Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. publication-title: Blood doi: 10.1182/blood.v82.12.3610.bloodjournal82123610 – volume: 508 start-page: 997 year: 2019 ident: B4 article-title: Lipid storage and lipophagy regulates ferroptosis. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.12.039 – volume: 503 start-page: 1550 year: 2018 ident: B30 article-title: Ferroptosis is a lysosomal cell death process. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.07.078 – volume: 23 start-page: 369 ident: B85 article-title: Ferroptosis: process and function. publication-title: Cell Death Diff. doi: 10.1038/cdd.2015.158 – volume: 22 start-page: 138 year: 2015 ident: B43 article-title: SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.05.002 – volume: 112 start-page: 11714 year: 2015 ident: B11 article-title: Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis. publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1511701112 – volume: 5 year: 2019 ident: B90 article-title: Clockophagy is a novel selective autophagy process favoring ferroptosis. publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2238 – volume: 210 start-page: 1779 year: 2013 ident: B17 article-title: Human L-ferritin deficiency is characterized by idiopathic generalized seizures and atypical restless leg syndrome. publication-title: J. Exp. Med. doi: 10.1084/jem.20130315 – volume: 10 year: 2019 ident: B55 article-title: Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis. publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00638 – volume: 110 start-page: 690 year: 1987 ident: B5 article-title: Hereditary hypotransferrinemia with hemosiderosis, a murine disorder resembling human atransferrinemia. publication-title: J. Lab. Clin. Med. – year: 2020 ident: B50 article-title: Oxidative damage and antioxidant defense in ferroptosis. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.586578 – volume: 109 start-page: 2043 year: 2019 ident: B48 article-title: Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.11.030 – volume: 54 start-page: 397 year: 2020 ident: B37 article-title: Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs). publication-title: Free Radic. Res. doi: 10.1080/10715762.2020.1780229 – volume: 295 start-page: 69 year: 2020 ident: B63 article-title: Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.009548 – volume: 1 start-page: 191 year: 2005 ident: B23 article-title: The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.01.003 – volume: 8 year: 2016 ident: B82 article-title: The Protective Role of Mitochondrial Ferritin on Erastin-Induced Ferroptosis. publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2016.00308 – volume: 26 start-page: 1021 year: 2016 ident: B31 article-title: Ferroptosis is an autophagic cell death process. publication-title: Cell Res. doi: 10.1038/cr.2016.95 – volume: 13 start-page: 91 year: 2017 ident: B22 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 478 start-page: 1338 ident: B97 article-title: Identification of ACSL4 as a biomarker and contributor of ferroptosis. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.08.124 – volume: 113 start-page: E4966 year: 2016 ident: B92 article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1603244113 – volume: 14 start-page: 647 year: 2011 ident: B62 article-title: Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.08.015 – volume: 63 start-page: 173 ident: B73 article-title: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. publication-title: Hepatology doi: 10.1002/hep.28251 – volume: 102 start-page: 266 year: 2018 ident: B24 article-title: Impaired transferrin receptor palmitoylation and recycling in neurodegeneration with brain iron accumulation. publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.01.003 – year: 2020 ident: B66 article-title: Iron chaperone PCBP1 protects murine liver from lipid peroxidation and steatosis. publication-title: Hepatology doi: 10.1002/hep.31328 – start-page: 1 year: 2020 ident: B15 article-title: Ferroptosis: machinery and regulation. publication-title: Autophagy doi: 10.1080/15548627.2020.1810918 – volume: 25 start-page: 486 year: 2018 ident: B28 article-title: Molecular mechanisms of cell death: recommendations of the nomenclature committee on Cell Death 2018. publication-title: Cell Death Diff. doi: 10.1038/s41418-017-0012-4 – volume: 575 start-page: 688 year: 2019 ident: B6 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 10 start-page: 1021 year: 2003 ident: B8 article-title: The role of iron chelation in cancer therapy. publication-title: Curr. Med. Chem. doi: 10.2174/0929867033457638 – volume: 95 start-page: 4924 year: 1998 ident: B41 article-title: Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.9.4924 – volume: 46 year: 2018 ident: B52 article-title: PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.07.012 – volume: 286 start-page: E252 year: 2004 ident: B16 article-title: Identification of a novel mitochondrial protein (”mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00424.2003 – volume: 510 start-page: 278 year: 2019 ident: B83 article-title: The release and activity of HMGB1 in ferroptosis. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.01.090 – volume: 5 start-page: 153 year: 2017 ident: B45 article-title: Autophagy and Ferroptosis - What’s the Connection? publication-title: Curr. Pathobiol. Rep. doi: 10.1007/s40139-017-0139-5 – volume: 136 start-page: 726 year: 2020 ident: B95 article-title: Hepatic Transferrin Plays a Role in Systemic Iron Homeostasis and Liver Ferroptosis. publication-title: Blood doi: 10.1182/blood.2019002907 – volume: 416 start-page: 124 year: 2018 ident: B10 article-title: Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.12.025 – volume: 16 start-page: 302 year: 2020 ident: B100 article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0472-6 – volume: 73 year: 2019 ident: B33 article-title: Role of Mitochondria in Ferroptosis. publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.042 – volume: 480 start-page: 443 year: 2016 ident: B69 article-title: FANCD2 protects against bone marrow injury from ferroptosis. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.10.068 – volume: 10 year: 2019 ident: B94 article-title: Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. publication-title: Nat. Commun. doi: 10.1038/s41467-019-10991-7 – volume: 27 start-page: 420 year: 2020 ident: B57 article-title: Autophagy-dependent ferroptosis: machinery and regulation. publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2020.02.005 – volume: 27 start-page: 242 year: 2020 ident: B12 article-title: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. publication-title: Cell Death Diff. doi: 10.1038/s41418-019-0352-3 – volume: 22 start-page: 1045 year: 2015 ident: B65 article-title: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. publication-title: Phytomedicine doi: 10.1016/j.phymed.2015.08.002 – volume: 462 start-page: 25 year: 2014 ident: B89 article-title: Chaperone protein involved in transmembrane transport of iron. publication-title: Biochem. J. doi: 10.1042/BJ20140225 – volume: 36 year: 2020 ident: B98 article-title: The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. publication-title: Red. Biol. doi: 10.1016/j.redox.2020.101619 – volume: 15 year: 2019 ident: B61 article-title: Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008396 – volume: 28 start-page: 213 year: 2001 ident: B64 article-title: A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. publication-title: Nat. Genet. doi: 10.1038/90038 – volume: 14 start-page: 100 year: 2018 ident: B59 article-title: Iron accumulation in senescent cells is coupled with impaired ferritinophagy, and inhibition of ferroptosis. publication-title: Red. Biol. doi: 10.1016/j.redox.2017.08.015 – volume: 572 start-page: 402 year: 2019 ident: B84 article-title: Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. publication-title: Nature doi: 10.1038/s41586-019-1426-6 – volume: 33 start-page: 125 year: 2002 ident: B46 article-title: Heme oxygenase-1 deficiency: the first autopsy case. publication-title: Hum. Pathol. doi: 10.1053/hupa.2002.30217 – volume: 314 start-page: F702 year: 2018 ident: B1 article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00044.2017 – volume: 478 start-page: 838 ident: B96 article-title: CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.08.034 – volume: 34 start-page: 91 year: 1991 ident: B36 article-title: Therapy of seborrheic eczema with an antifungal agent with an antiphlogistic effect. publication-title: Mycoses – volume: 96 start-page: 1113 year: 2000 ident: B77 article-title: The molecular defect in hypotransferrinemic mice. publication-title: Blood doi: 10.1182/blood.v96.3.1113 – volume: 13 start-page: 81 year: 2017 ident: B44 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2238 – volume: 6 start-page: 24393 year: 2015 ident: B49 article-title: Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. publication-title: Oncotarget doi: 10.18632/oncotarget.5162 – volume: 2 start-page: 517 year: 2015 ident: B25 article-title: Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. publication-title: Oncoscience doi: 10.18632/oncoscience.160 – volume: 7 year: 2012 ident: B29 article-title: ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. publication-title: PLoS One doi: 10.1371/journal.pone.0036055 – volume: 29 start-page: 347 year: 2019 ident: B76 article-title: The molecular machinery of regulated cell death. publication-title: Cell Res. doi: 10.1038/s41422-019-0164-5 – volume: 41 start-page: 3051 year: 2018 ident: B53 article-title: Ferroptosis is associated with oxygen-glucose deprivation/reoxygenation-induced Sertoli cell death. publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2018.3469 – volume: 38 start-page: 1402 year: 2006 ident: B13 article-title: Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2006.02.006 – volume: 22 start-page: 1520 year: 2017 ident: B79 article-title: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. publication-title: Mol. Psychiatry doi: 10.1038/mp.2017.171 – volume: 2 year: 2017 ident: B54 article-title: Inhibition of neuronal ferroptosis protects hemorrhagic brain. publication-title: JCI Insight doi: 10.1172/jci.insight.90777 – volume: 575 start-page: 693 year: 2019 ident: B21 article-title: FSP1 is a glutathione-independent ferroptosis suppressor. publication-title: Nature doi: 10.1038/s41586-019-1707-0 – year: 2019 ident: B99 article-title: Ferr∗optosis is a type of autophagy-dependent cell death. publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.03.002 – volume: 51 year: 2019 ident: B7 article-title: Prominin2 drives ferroptosis resistance by stimulating iron export. publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.10.007 – volume: 12 start-page: 1425 year: 2016 ident: B38 article-title: Autophagy promotes ferroptosis by degradation of ferritin. publication-title: Autophagy doi: 10.1080/15548627.2016.1187366 – volume: 5 year: 2020 ident: B75 article-title: Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. publication-title: JCI Insight doi: 10.1172/jci.insight.132747 – volume: 57 start-page: 524 year: 2018 ident: B40 article-title: Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. publication-title: Transfus Apher. Sci. doi: 10.1016/j.transci.2018.05.028 – volume: 20 start-page: 1692 year: 2017 ident: B88 article-title: The tumor suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.07.055 – volume: 473 start-page: 775 ident: B87 article-title: Identification of baicalein as a ferroptosis inhibitor by natural product library screening. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.03.052 – volume: 149 start-page: 1060 year: 2012 ident: B19 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death. publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 95 start-page: 1308 year: 2010 ident: B60 article-title: Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. publication-title: Haematologica doi: 10.3324/haematol.2009.016824 – volume: 531 start-page: 581 year: 2020 ident: B81 article-title: NEDD4L-mediated LTF Protein degradation limits ferroptosis. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1021/acschembio.7b01082 – volume: 117 start-page: 5494 year: 2011 ident: B78 article-title: Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria. publication-title: Blood doi: 10.1182/blood-2010-11-319483 – volume: 22 start-page: 3826 year: 2018 ident: B34 article-title: Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. publication-title: Eur. Rev. Med. Pharmacol. Sci. doi: 10.26355/eurrev_201806_15267 – volume: 34 start-page: 5617 year: 2015 ident: B74 article-title: HSPB1 as a novel regulator of ferroptotic cancer cell death. publication-title: Oncogene doi: 10.1038/onc.2015.32 – volume: 18 start-page: 79 year: 2020 ident: B91 article-title: A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-19-0691 – volume: 28 year: 2018 ident: B70 article-title: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) Activity. publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.05.094 – volume: 48 start-page: 74 year: 2016 ident: B42 article-title: A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. publication-title: Nat. Genet. doi: 10.1038/ng.3465 – volume: 8 start-page: 247 year: 2016 ident: B9 article-title: Reduction in mitochondrial iron alleviates cardiac damage during injury. publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201505748 – volume: 94 start-page: 169 year: 2016 ident: B20 article-title: Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2016.05.011 – volume: 21 start-page: 396 year: 1999 ident: B51 article-title: Transferrin receptor is necessary for development of erythrocytes and the nervous system. publication-title: Nat. Genet. doi: 10.1038/7727 |
| SSID | ssj0001257583 |
| Score | 2.6405776 |
| SecondaryResourceType | review_article |
| Snippet | Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 590226 |
| SubjectTerms | Cell and Developmental Biology cell death disease ferroptosis iron lipid perioxidation |
| Title | Iron Metabolism in Ferroptosis |
| URI | https://www.proquest.com/docview/2455833786 https://pubmed.ncbi.nlm.nih.gov/PMC7575751 https://doaj.org/article/9d0dc68241c849159ab5b7323687faad |
| Volume | 8 |
| WOSCitedRecordID | wos000583346200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4qCl7EJ66PpYInodrm0TRHlV30oHhQ2FtoJykW1nZpu4IXf7uTdpXtRS9SKKWdkMxM6DeTpt8Qcq4ktVSmyleI7z7n3OAVcyUBQwCjmI0A2mIT8vExnkzU01KpL7cnrKMH7gx3pUxgIIoRaCDmCsE3SUUqGWVRLLMkMe7tG0i1lEx1qysYhsSs-4yJWZi6ytxCOOaDNLh0jCWOTGEJiFq-_l6Q2d8iuYQ5422ytQgWvetukDtkxRa7ZKMrH_mxR4b3VVl4D7ZBR07z-s3LC29sq6qcNWWd1_vkZTx6vr3zF_UOfOCcNn4UJSLjJmAghGUZKgzSsgiMFIlggECSJTEENEWEMYwaEDRIQ5NQloaAbdkBWSvKwh4SLzRhYDgKOfoXGVkVItCjhAVMYBCyByT4Vl7Dggzc1aSYakwKnL10ay_t7KU7ew3IxU-TWceE8ZvwjbPoj6AjsW5voGv1wrX6L9cOyNm3PzROetdHUthyXmvKhftbTMbYkew5qtdj_0mRv7b02VK4Izz6jyEek02ndbu7T56Qtaaa21OyDu9NXldDsion8bCdmXh--Bx9AXQK5tA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron+Metabolism+in+Ferroptosis&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Chen%2C+Xin&rft.au=Yu%2C+Chunhua&rft.au=Kang%2C+Rui&rft.au=Tang%2C+Daolin&rft.date=2020-10-07&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=8&rft_id=info:doi/10.3389%2Ffcell.2020.590226&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcell_2020_590226 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |