Iron Metabolism in Ferroptosis

Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in cell and developmental biology Jg. 8; S. 590226
Hauptverfasser: Chen, Xin, Yu, Chunhua, Kang, Rui, Tang, Daolin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frontiers Media S.A 07.10.2020
Schlagworte:
ISSN:2296-634X, 2296-634X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases.Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases.
AbstractList Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases.Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases.
Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases.
Author Tang, Daolin
Kang, Rui
Chen, Xin
Yu, Chunhua
AuthorAffiliation 2 Department of Surgery, UT Southwestern Medical Center , Dallas, TX , United States
1 Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University , Guangzhou , China
AuthorAffiliation_xml – name: 1 Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University , Guangzhou , China
– name: 2 Department of Surgery, UT Southwestern Medical Center , Dallas, TX , United States
Author_xml – sequence: 1
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
– sequence: 2
  givenname: Chunhua
  surname: Yu
  fullname: Yu, Chunhua
– sequence: 3
  givenname: Rui
  surname: Kang
  fullname: Kang, Rui
– sequence: 4
  givenname: Daolin
  surname: Tang
  fullname: Tang, Daolin
BookMark eNp1kUtLAzEUhYNUbK39AW6kSzdT85g8ZiNIsVqouFFwFzJJpqbMTGoyFfz3znQqWEGyuCH3nu-Gc87BoPa1BeASwRkhIrsptC3LGYYYzmgGMWYnYIRxxhJG0rfBr_sQTGLcQAgRppwKcgaGhCDEBRIjcLUMvp4-2UblvnSxmrp6urAh-G3jo4sX4LRQZbSTQx2D18X9y_wxWT0_LOd3q0SnKW4SxhQtUgOJptSSAmmhuSVMG04VJRqLtFBCQ5xDxg3BRlMMc2QUJjnSrZaMwbLnGq82chtcpcKX9MrJ_YMPa6lC43RpZWag0UzgtN2SZohmKqc5J5gwwQulTMu67VnbXV5Zo23dBFUeQY87tXuXa_8pOe0OagHXB0DwHzsbG1m52Lmtaut3UeKUtjYSLlg7yvtRHXyMwRZSu0Y1zndkV0oEZReW3Iclu7BkH1arRH-UPx_8X_MNV4aYaQ
CitedBy_id crossref_primary_10_1016_j_biopha_2024_117375
crossref_primary_10_2174_0127724328328193241029103831
crossref_primary_10_2478_jtim_2023_0137
crossref_primary_10_1007_s43630_025_00691_1
crossref_primary_10_1142_S0192415X24500770
crossref_primary_10_1016_j_wjam_2024_09_003
crossref_primary_10_3892_ijmm_2023_5256
crossref_primary_10_1016_j_tox_2024_153831
crossref_primary_10_1016_j_phymed_2024_156342
crossref_primary_10_3389_fimmu_2024_1346585
crossref_primary_10_3389_fcell_2024_1372330
crossref_primary_10_3390_ijms25042315
crossref_primary_10_1186_s13045_023_01429_1
crossref_primary_10_1016_j_lfs_2023_122411
crossref_primary_10_1038_s41467_022_34096_w
crossref_primary_10_1186_s13054_023_04759_1
crossref_primary_10_1002_mnfr_202300123
crossref_primary_10_1002_adhm_202203085
crossref_primary_10_1002_iub_2620
crossref_primary_10_1007_s10549_024_07387_7
crossref_primary_10_1021_acs_jmedchem_5c00839
crossref_primary_10_1002_jat_4670
crossref_primary_10_1016_j_tox_2025_154078
crossref_primary_10_1016_j_tranon_2021_101207
crossref_primary_10_1016_j_bbrc_2021_10_054
crossref_primary_10_1038_s41598_024_81315_z
crossref_primary_10_1016_j_arr_2024_102248
crossref_primary_10_3390_ijms23063093
crossref_primary_10_1021_jacs_3c08032
crossref_primary_10_1080_15548627_2020_1847462
crossref_primary_10_1088_2515_7639_ad4d1e
crossref_primary_10_3390_vaccines11020205
crossref_primary_10_3389_fphar_2025_1568246
crossref_primary_10_1007_s10495_025_02161_6
crossref_primary_10_1016_j_jep_2024_119217
crossref_primary_10_3390_cancers15041216
crossref_primary_10_5534_wjmh_230153
crossref_primary_10_1124_pharmrev_124_001245
crossref_primary_10_1186_s40478_025_02069_x
crossref_primary_10_3389_fimmu_2023_1309635
crossref_primary_10_3389_fmolb_2023_1258870
crossref_primary_10_3389_fgene_2021_819632
crossref_primary_10_1016_j_cbi_2025_111536
crossref_primary_10_3389_fonc_2023_1097692
crossref_primary_10_1515_fzm_2024_0018
crossref_primary_10_3390_ph18091382
crossref_primary_10_1007_s11010_025_05340_w
crossref_primary_10_1016_j_ecoenv_2024_116947
crossref_primary_10_2147_JIR_S351799
crossref_primary_10_1016_j_neuint_2025_106038
crossref_primary_10_1016_j_ejmech_2025_118162
crossref_primary_10_1111_cns_14553
crossref_primary_10_4103_1673_5374_358614
crossref_primary_10_1080_15548627_2023_2165323
crossref_primary_10_1159_000545387
crossref_primary_10_3390_ijms241210037
crossref_primary_10_1111_gtc_13053
crossref_primary_10_3389_fonc_2022_1010074
crossref_primary_10_3389_fphar_2024_1503064
crossref_primary_10_1186_s12967_023_04370_6
crossref_primary_10_3389_fcell_2022_932886
crossref_primary_10_3389_fimmu_2024_1450487
crossref_primary_10_1038_s41416_022_01998_x
crossref_primary_10_3389_fimmu_2023_1249379
crossref_primary_10_1016_j_redox_2025_103761
crossref_primary_10_3390_applbiosci4020019
crossref_primary_10_3390_biomedicines11010015
crossref_primary_10_1002_kjm2_70034
crossref_primary_10_1016_j_abb_2023_109717
crossref_primary_10_1186_s12935_021_02027_2
crossref_primary_10_1007_s11064_023_04096_3
crossref_primary_10_1007_s13577_023_00890_x
crossref_primary_10_1186_s12951_024_02911_9
crossref_primary_10_1016_j_ejmech_2022_115015
crossref_primary_10_1002_iub_2897
crossref_primary_10_1038_s41420_025_02328_9
crossref_primary_10_3389_fimmu_2025_1524711
crossref_primary_10_3389_fphar_2021_808480
crossref_primary_10_1016_j_tox_2024_153877
crossref_primary_10_1016_j_brainresbull_2023_110778
crossref_primary_10_1016_j_cytogfr_2025_06_007
crossref_primary_10_1111_febs_16059
crossref_primary_10_3389_fimmu_2025_1604429
crossref_primary_10_1016_j_freeradbiomed_2025_07_045
crossref_primary_10_1186_s12967_022_03566_6
crossref_primary_10_1016_j_abb_2023_109644
crossref_primary_10_1016_j_aquaculture_2024_741424
crossref_primary_10_1038_s41420_025_02633_3
crossref_primary_10_3233_JAD_231062
crossref_primary_10_3390_antiox10111677
crossref_primary_10_1016_j_freeradbiomed_2024_11_023
crossref_primary_10_3390_ijms25116083
crossref_primary_10_1038_s41419_023_06333_7
crossref_primary_10_1038_s41401_025_01560_4
crossref_primary_10_1002_smmd_70005
crossref_primary_10_3390_ijms26083675
crossref_primary_10_1186_s12967_024_05300_w
crossref_primary_10_1186_s13046_024_03169_7
crossref_primary_10_3390_biomedicines12061163
crossref_primary_10_1016_j_intimp_2024_112318
crossref_primary_10_3389_fnagi_2022_830569
crossref_primary_10_1016_j_bbcan_2023_188917
crossref_primary_10_1039_D4SC02002B
crossref_primary_10_1002_anie_202307838
crossref_primary_10_1016_j_isci_2024_109219
crossref_primary_10_1016_j_neulet_2023_137346
crossref_primary_10_1186_s12915_025_02131_z
crossref_primary_10_3390_antiox13111327
crossref_primary_10_1016_j_heliyon_2024_e24786
crossref_primary_10_1155_2022_7177192
crossref_primary_10_3390_antiox13030298
crossref_primary_10_1016_j_ccell_2024_03_011
crossref_primary_10_1111_jcmm_70834
crossref_primary_10_3390_molecules27072129
crossref_primary_10_3389_fchem_2025_1543455
crossref_primary_10_1007_s11427_023_2472_4
crossref_primary_10_3389_fphar_2022_933732
crossref_primary_10_1038_s41598_023_42760_4
crossref_primary_10_3389_fnmol_2024_1427815
crossref_primary_10_1016_j_cbi_2025_111586
crossref_primary_10_3389_fphar_2022_931670
crossref_primary_10_1016_j_ejmech_2023_115438
crossref_primary_10_1016_j_intimp_2023_111377
crossref_primary_10_3389_fphar_2022_1020447
crossref_primary_10_1089_ars_2023_0318
crossref_primary_10_1016_j_phymed_2023_154701
crossref_primary_10_1007_s00204_023_03660_8
crossref_primary_10_3390_ijms241612885
crossref_primary_10_1111_cns_14865
crossref_primary_10_1097_FJC_0000000000001507
crossref_primary_10_1016_j_brainresbull_2024_110948
crossref_primary_10_3390_nano12223995
crossref_primary_10_3389_fcell_2023_1219840
crossref_primary_10_1002_aoc_7456
crossref_primary_10_3892_ijo_2023_5524
crossref_primary_10_3390_toxics12020161
crossref_primary_10_1007_s12274_024_6602_9
crossref_primary_10_1002_jat_4613
crossref_primary_10_1016_j_yexcr_2025_114688
crossref_primary_10_1097_TP_0000000000005405
crossref_primary_10_1016_j_critrevonc_2022_103732
crossref_primary_10_3389_fimmu_2025_1531577
crossref_primary_10_1111_joim_13732
crossref_primary_10_1016_j_jep_2023_117281
crossref_primary_10_2174_0109298673259596231211113211
crossref_primary_10_3390_biom13091371
crossref_primary_10_1016_j_lfs_2021_119958
crossref_primary_10_3389_fphar_2024_1374722
crossref_primary_10_3390_biom13050730
crossref_primary_10_3390_ijms252313042
crossref_primary_10_1016_j_lfs_2024_123076
crossref_primary_10_1016_j_yexcr_2024_114272
crossref_primary_10_3389_fcell_2023_1160381
crossref_primary_10_1111_febs_16382
crossref_primary_10_3389_fcell_2025_1614156
crossref_primary_10_1038_s41467_025_63185_9
crossref_primary_10_3389_fcvm_2025_1545231
crossref_primary_10_2147_IJN_S448715
crossref_primary_10_1002_cbf_3823
crossref_primary_10_3389_fcell_2021_688605
crossref_primary_10_3389_fphar_2022_909821
crossref_primary_10_1016_j_brainres_2024_149045
crossref_primary_10_3390_ijms242417279
crossref_primary_10_1016_j_bmt_2022_12_004
crossref_primary_10_1002_ptr_8149
crossref_primary_10_1038_s12276_023_01078_x
crossref_primary_10_1002_advs_202300325
crossref_primary_10_1016_j_scitotenv_2024_173118
crossref_primary_10_1038_s41420_022_01013_5
crossref_primary_10_1016_j_biopha_2024_116211
crossref_primary_10_3389_fmolb_2023_1223493
crossref_primary_10_3390_ijms252011317
crossref_primary_10_1038_s41598_022_14554_7
crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002
crossref_primary_10_3389_fncel_2022_889765
crossref_primary_10_3390_ijms24119696
crossref_primary_10_1007_s11064_024_04278_7
crossref_primary_10_1186_s12931_025_03285_8
crossref_primary_10_3390_antiox13080911
crossref_primary_10_1016_j_arr_2023_102142
crossref_primary_10_1016_j_lfs_2024_123297
crossref_primary_10_3390_cells12141820
crossref_primary_10_1038_s41419_022_05505_1
crossref_primary_10_1016_j_cell_2024_11_028
crossref_primary_10_1038_s41419_023_05716_0
crossref_primary_10_1186_s40659_021_00361_3
crossref_primary_10_3389_fcell_2024_1423869
crossref_primary_10_3892_ol_2024_14739
crossref_primary_10_3390_microplastics4020033
crossref_primary_10_3390_ijms241612846
crossref_primary_10_1016_j_ecoenv_2024_117622
crossref_primary_10_1038_s41392_023_01720_0
crossref_primary_10_1038_s41418_021_00859_z
crossref_primary_10_1186_s12964_021_00799_8
crossref_primary_10_1016_j_canlet_2023_216147
crossref_primary_10_3390_ijms251910685
crossref_primary_10_1038_s41467_024_46776_w
crossref_primary_10_3389_fcell_2021_728172
crossref_primary_10_1038_s12276_023_01077_y
crossref_primary_10_3389_fphar_2024_1407335
crossref_primary_10_1016_j_envint_2025_109361
crossref_primary_10_1016_j_exer_2024_110021
crossref_primary_10_3389_fceld_2023_1182239
crossref_primary_10_1016_j_bbcan_2024_189124
crossref_primary_10_1016_j_aquaculture_2025_742571
crossref_primary_10_1016_j_ecoenv_2023_115279
crossref_primary_10_3390_cells12071050
crossref_primary_10_3390_nu16213747
crossref_primary_10_1016_j_scitotenv_2024_173575
crossref_primary_10_3390_ijms241713336
crossref_primary_10_1016_j_critrevonc_2023_104249
crossref_primary_10_1016_j_biopha_2024_117407
crossref_primary_10_3390_biology10050399
crossref_primary_10_1016_j_phymed_2023_155288
crossref_primary_10_3390_toxics13080677
crossref_primary_10_1038_s41392_022_01046_3
crossref_primary_10_31083_j_fbl2901045
crossref_primary_10_7554_eLife_87496
crossref_primary_10_3390_biomedicines13020265
crossref_primary_10_1002_ange_202307838
crossref_primary_10_1016_j_cellsig_2024_111256
crossref_primary_10_3389_fcell_2023_1226044
crossref_primary_10_1007_s40618_023_02267_1
crossref_primary_10_1016_j_freeradbiomed_2024_06_006
crossref_primary_10_3389_ftox_2023_1280230
crossref_primary_10_1038_s41419_023_05978_8
crossref_primary_10_1186_s40364_021_00338_0
crossref_primary_10_3390_ani12131604
crossref_primary_10_1016_j_critrevonc_2024_104356
crossref_primary_10_1016_j_msard_2023_104934
crossref_primary_10_3389_fendo_2024_1346842
crossref_primary_10_1021_acsnano_5c09794
crossref_primary_10_1007_s10238_025_01766_0
crossref_primary_10_1080_15548627_2021_1872241
crossref_primary_10_4014_jmb_2307_07002
crossref_primary_10_1051_bioconf_202411101007
crossref_primary_10_1111_imr_13235
crossref_primary_10_1186_s10020_024_00972_y
crossref_primary_10_1016_j_heliyon_2024_e33675
crossref_primary_10_1096_fj_202500415R
crossref_primary_10_1007_s00204_023_03505_4
crossref_primary_10_3389_fchem_2022_996604
crossref_primary_10_3390_ph16121710
crossref_primary_10_3389_fmolb_2022_929832
crossref_primary_10_1016_j_phymed_2025_156433
crossref_primary_10_1016_j_intimp_2025_114870
crossref_primary_10_1186_s13287_022_02986_x
crossref_primary_10_1016_j_ijbiomac_2024_133484
crossref_primary_10_1016_j_critrevonc_2024_104361
crossref_primary_10_1007_s11427_022_2265_6
crossref_primary_10_1007_s13577_025_01293_w
crossref_primary_10_1002_ptr_8216
crossref_primary_10_1016_j_cej_2024_152675
crossref_primary_10_1016_j_archger_2025_105877
crossref_primary_10_3389_fcell_2024_1344060
crossref_primary_10_1016_j_lfs_2024_123011
crossref_primary_10_1007_s12012_024_09836_7
crossref_primary_10_1016_j_isci_2023_108393
crossref_primary_10_1007_s11064_023_03963_3
crossref_primary_10_1038_s41420_025_02532_7
crossref_primary_10_3389_fphar_2023_1168458
crossref_primary_10_3892_mmr_2021_12313
crossref_primary_10_1002_advs_202404467
crossref_primary_10_3390_antiox13020208
crossref_primary_10_1016_j_bbadis_2025_167791
crossref_primary_10_1093_procel_pwae004
crossref_primary_10_3390_antiox12091712
crossref_primary_10_1038_s41420_025_02578_7
crossref_primary_10_1093_procel_pwae003
crossref_primary_10_3390_cancers16091657
crossref_primary_10_3390_ijms241512008
crossref_primary_10_1016_j_bbcan_2024_189200
crossref_primary_10_1016_j_bioorg_2023_106415
crossref_primary_10_1017_S0954422421000226
crossref_primary_10_1016_j_ejmech_2024_116453
crossref_primary_10_1002_biof_2042
crossref_primary_10_1002_cbin_12213
crossref_primary_10_1111_jeu_12923
crossref_primary_10_1016_j_exer_2025_110424
crossref_primary_10_3390_cells11172726
crossref_primary_10_1016_j_bmc_2023_117564
crossref_primary_10_3390_antiox12020349
crossref_primary_10_1016_j_phrs_2025_107902
crossref_primary_10_15252_emmm_202216525
crossref_primary_10_1016_j_mcp_2025_102013
crossref_primary_10_3390_biomedicines9020103
crossref_primary_10_1016_j_ecoenv_2022_114083
crossref_primary_10_1038_s41419_025_07710_0
crossref_primary_10_3389_fmolb_2021_763697
crossref_primary_10_1146_annurev_biodatasci_103123_095644
crossref_primary_10_1158_1541_7786_MCR_24_0433
crossref_primary_10_1186_s12935_021_02366_0
crossref_primary_10_1016_j_cbi_2023_110829
crossref_primary_10_1016_j_ejphar_2024_177234
crossref_primary_10_1016_j_meatsci_2023_109202
crossref_primary_10_2147_COPD_S354896
crossref_primary_10_7554_eLife_87496_4
crossref_primary_10_1016_j_biopha_2024_116235
crossref_primary_10_1016_j_jpha_2024_03_001
crossref_primary_10_1007_s10495_025_02130_z
crossref_primary_10_3389_fcell_2021_637162
crossref_primary_10_3390_metabo11020125
crossref_primary_10_1016_j_lfs_2021_119799
crossref_primary_10_1038_s41467_021_20904_2
crossref_primary_10_1038_s41419_024_06939_5
crossref_primary_10_1007_s00018_022_04239_9
crossref_primary_10_3389_fgene_2021_692426
crossref_primary_10_1002_med_21933
crossref_primary_10_1016_j_cellsig_2024_111215
crossref_primary_10_1007_s10616_025_00795_7
crossref_primary_10_1186_s40164_025_00657_0
crossref_primary_10_1038_s41421_022_00390_6
crossref_primary_10_1016_j_freeradbiomed_2021_09_013
crossref_primary_10_1016_j_jep_2023_116689
crossref_primary_10_1016_j_intimp_2025_114789
crossref_primary_10_1002_adbi_202100396
crossref_primary_10_1016_j_bbrc_2020_12_066
crossref_primary_10_4014_jmb_2501_01029
crossref_primary_10_3389_fphar_2025_1586578
crossref_primary_10_1016_j_lfs_2022_120868
crossref_primary_10_1038_s41418_020_00728_1
crossref_primary_10_3389_fcell_2023_1112751
crossref_primary_10_1007_s00204_024_03792_5
crossref_primary_10_1007_s00253_023_12802_y
crossref_primary_10_1016_j_canlet_2022_216010
crossref_primary_10_3390_nu15245081
crossref_primary_10_1186_s12967_025_06847_y
crossref_primary_10_3390_ijms26178466
crossref_primary_10_1038_s41422_020_00441_1
crossref_primary_10_1186_s12951_022_01663_8
crossref_primary_10_3390_immuno2010014
crossref_primary_10_1111_raq_12719
crossref_primary_10_1002_advs_202403963
crossref_primary_10_1016_j_carbpol_2023_121643
crossref_primary_10_1016_j_ejphar_2024_177058
crossref_primary_10_1038_s41467_023_41462_9
crossref_primary_10_12677_acm_2025_1582282
crossref_primary_10_1016_j_ijbiomac_2024_133323
crossref_primary_10_3390_medicina60050684
crossref_primary_10_1038_s41392_022_01043_6
crossref_primary_10_3389_fmolb_2023_1203269
crossref_primary_10_3390_cancers15184460
crossref_primary_10_1155_2021_1783485
crossref_primary_10_3390_biology14010012
crossref_primary_10_3389_fonc_2022_993316
crossref_primary_10_1038_s41418_025_01456_0
crossref_primary_10_3389_fphar_2023_1243286
crossref_primary_10_3389_fimmu_2022_972753
crossref_primary_10_1016_j_freeradbiomed_2023_06_025
crossref_primary_10_1016_j_phrs_2024_107466
crossref_primary_10_3390_antiox11030501
crossref_primary_10_1002_cai2_7
crossref_primary_10_3390_ijms25073641
crossref_primary_10_1007_s43032_023_01310_z
crossref_primary_10_1016_j_rmed_2022_107035
crossref_primary_10_1097_MD_0000000000029546
crossref_primary_10_3389_fphar_2023_1185071
crossref_primary_10_3389_fonc_2022_947530
crossref_primary_10_1096_fj_202302597R
crossref_primary_10_1016_j_intimp_2024_113394
crossref_primary_10_1016_j_chembiol_2021_01_006
crossref_primary_10_3390_biomedicines9111679
crossref_primary_10_1002_tox_23949
crossref_primary_10_1016_j_biomaterials_2025_123637
crossref_primary_10_1016_j_bmc_2022_117088
crossref_primary_10_32604_biocell_2023_027107
crossref_primary_10_1002_cph4_70042
crossref_primary_10_1155_2023_5157417
crossref_primary_10_3390_ph18030405
crossref_primary_10_1016_j_biopha_2023_115567
crossref_primary_10_3390_inorganics13050167
crossref_primary_10_3389_fcimb_2022_922511
crossref_primary_10_3389_fendo_2024_1421838
crossref_primary_10_3390_nu14142781
crossref_primary_10_3389_fimmu_2025_1563108
crossref_primary_10_2147_IJN_S372947
crossref_primary_10_3390_biom12121825
crossref_primary_10_1016_j_jnha_2024_100212
crossref_primary_10_1016_j_jnutbio_2025_109888
crossref_primary_10_3390_biom12091182
crossref_primary_10_1080_22221751_2024_2382235
crossref_primary_10_1002_adhm_202202562
crossref_primary_10_1002_adtp_202400197
crossref_primary_10_1016_j_phrs_2025_107841
crossref_primary_10_1038_s41392_024_02088_5
crossref_primary_10_1016_j_jes_2024_05_003
crossref_primary_10_1002_jnr_25184
crossref_primary_10_1016_j_heliyon_2023_e23507
crossref_primary_10_3389_fphar_2024_1390798
crossref_primary_10_1038_s41598_025_89903_3
crossref_primary_10_1038_s41419_024_07015_8
crossref_primary_10_1097_CM9_0000000000002327
crossref_primary_10_3390_endocrines4010002
crossref_primary_10_1016_j_biopha_2021_111872
crossref_primary_10_1186_s13062_024_00530_w
crossref_primary_10_1093_molehr_gaab067
crossref_primary_10_3390_biom12111702
crossref_primary_10_1111_aji_13916
crossref_primary_10_1038_s41571_020_00462_0
crossref_primary_10_1038_s41467_025_57521_2
crossref_primary_10_3892_ijo_2024_5714
crossref_primary_10_1097_MD_0000000000031930
crossref_primary_10_3390_cancers17091470
crossref_primary_10_1002_tox_23770
crossref_primary_10_3390_ijms26178304
crossref_primary_10_3390_ijms23137041
crossref_primary_10_1016_j_cbpc_2025_110285
crossref_primary_10_1016_j_lfs_2024_122439
crossref_primary_10_3389_fmed_2022_985141
crossref_primary_10_1016_j_brainres_2024_149197
crossref_primary_10_1016_j_ejmech_2024_117152
crossref_primary_10_1007_s11845_023_03430_6
crossref_primary_10_1016_j_mito_2024_101974
crossref_primary_10_1186_s12943_024_02088_7
crossref_primary_10_1016_j_biocel_2021_106094
crossref_primary_10_1038_s41420_023_01407_z
crossref_primary_10_1002_cbf_3883
crossref_primary_10_1093_mtomcs_mfaf030
crossref_primary_10_1016_j_brainres_2023_148715
crossref_primary_10_1002_advs_202403517
crossref_primary_10_3390_biology13040215
crossref_primary_10_1016_j_ejmech_2022_114861
crossref_primary_10_1016_j_ejpb_2024_114509
crossref_primary_10_1039_D2EN00757F
crossref_primary_10_1038_s41392_024_01769_5
crossref_primary_10_1016_j_biopha_2023_115251
crossref_primary_10_1007_s12013_025_01743_0
crossref_primary_10_1080_09553002_2022_2020358
crossref_primary_10_1016_j_tice_2023_102187
crossref_primary_10_3390_nu14030412
crossref_primary_10_1016_j_ejps_2024_106939
crossref_primary_10_1038_s41419_024_07135_1
crossref_primary_10_3389_fmicb_2024_1441495
crossref_primary_10_3389_fphys_2024_1490725
crossref_primary_10_1016_j_heliyon_2024_e33934
crossref_primary_10_3390_cancers15102694
crossref_primary_10_1038_s41392_023_01336_4
crossref_primary_10_1186_s11658_024_00613_6
crossref_primary_10_3389_fcvm_2024_1436865
crossref_primary_10_1016_j_critrevonc_2025_104907
crossref_primary_10_1016_j_neuro_2022_04_006
crossref_primary_10_1007_s10565_023_09834_5
crossref_primary_10_1021_acs_jafc_5c02034
crossref_primary_10_1016_j_freeradbiomed_2024_08_002
crossref_primary_10_1111_imr_13280
crossref_primary_10_1007_s12035_024_04417_9
crossref_primary_10_3389_fphar_2025_1546041
crossref_primary_10_1016_j_biopha_2024_116753
crossref_primary_10_1038_s41568_022_00459_0
crossref_primary_10_3389_fendo_2024_1492610
crossref_primary_10_1016_j_tips_2023_08_012
crossref_primary_10_1186_s12967_024_05404_3
crossref_primary_10_1016_j_ejmech_2022_114507
crossref_primary_10_1016_j_ejmech_2024_117015
crossref_primary_10_3390_ijms25021123
crossref_primary_10_1016_j_cellsig_2025_111598
crossref_primary_10_3390_nu17071149
crossref_primary_10_1007_s00210_023_02506_5
crossref_primary_10_3390_ijms24129940
crossref_primary_10_1083_jcb_202105043
crossref_primary_10_1016_j_jtauto_2025_100267
crossref_primary_10_1007_s00210_024_03640_4
crossref_primary_10_1002_fsn3_4488
crossref_primary_10_1016_j_tranon_2025_102393
crossref_primary_10_1002_cbin_70026
crossref_primary_10_1016_j_cej_2024_149518
crossref_primary_10_1155_2022_2634431
crossref_primary_10_2174_0929867329666220629154418
crossref_primary_10_3389_fimmu_2025_1558814
crossref_primary_10_1093_rb_rbad004
crossref_primary_10_1002_prm2_12090
crossref_primary_10_1016_j_jsps_2023_02_008
crossref_primary_10_1016_j_jtemb_2025_127611
crossref_primary_10_3390_biology14030253
crossref_primary_10_1007_s10495_025_02129_6
crossref_primary_10_3389_fnmol_2023_1113081
crossref_primary_10_1186_s13287_025_04511_2
crossref_primary_10_1016_j_expneurol_2024_114943
crossref_primary_10_1039_D4QI03268C
crossref_primary_10_1016_j_jep_2023_116267
crossref_primary_10_20900_immunometab20210017
crossref_primary_10_1186_s40164_023_00427_w
crossref_primary_10_2147_JIR_S457092
crossref_primary_10_1002_ctm2_70253
crossref_primary_10_1021_acscentsci_3c00052
crossref_primary_10_1016_j_jhazmat_2023_132584
crossref_primary_10_1111_1756_185X_15147
crossref_primary_10_1038_s41419_025_07882_9
crossref_primary_10_1038_s41374_022_00779_7
crossref_primary_10_1002_2211_5463_13307
crossref_primary_10_1016_j_bbrc_2023_149338
crossref_primary_10_3390_nu14204380
crossref_primary_10_1007_s00109_025_02528_x
crossref_primary_10_1007_s12035_025_04832_6
crossref_primary_10_1016_j_fsi_2025_110356
crossref_primary_10_3389_fphys_2024_1450656
crossref_primary_10_1186_s13046_025_03520_6
crossref_primary_10_1186_s13020_024_01047_0
crossref_primary_10_3389_fphar_2024_1290183
crossref_primary_10_3389_fnut_2022_1003340
crossref_primary_10_1016_j_bioorg_2024_107331
crossref_primary_10_1042_BSR20231992
crossref_primary_10_1016_j_phymed_2024_155981
crossref_primary_10_3389_fphar_2025_1610573
crossref_primary_10_3390_ijms24010449
crossref_primary_10_1016_j_canlet_2025_217697
crossref_primary_10_1084_jem_20210518
crossref_primary_10_1093_lifemeta_loac035
crossref_primary_10_1016_j_cej_2024_156019
crossref_primary_10_1016_j_intimp_2021_107844
crossref_primary_10_1186_s12951_021_01098_7
crossref_primary_10_3389_fendo_2025_1527693
crossref_primary_10_1136_jitc_2023_006890
crossref_primary_10_1016_j_heliyon_2023_e18504
crossref_primary_10_1038_s41420_024_01884_w
crossref_primary_10_1016_j_jinorgbio_2025_113004
crossref_primary_10_1089_ars_2024_0608
crossref_primary_10_1093_jleuko_qiaf039
crossref_primary_10_2147_JIR_S358470
crossref_primary_10_1016_j_ejmech_2023_115933
crossref_primary_10_3389_fphar_2025_1570069
crossref_primary_10_1093_carcin_bgac080
crossref_primary_10_1016_j_phymed_2023_154887
crossref_primary_10_1016_j_bbadis_2022_166566
crossref_primary_10_3389_fonc_2023_1099731
crossref_primary_10_1016_j_biopha_2022_114102
crossref_primary_10_3389_fimmu_2023_1294317
crossref_primary_10_3390_inorganics12010026
crossref_primary_10_1016_j_freeradbiomed_2024_01_021
crossref_primary_10_3390_ijms222212603
crossref_primary_10_3390_molecules30153095
crossref_primary_10_3390_ijms24043634
crossref_primary_10_3390_biomedicines10112770
crossref_primary_10_3390_jcm13020559
crossref_primary_10_3390_cells12172197
crossref_primary_10_1016_j_cellsig_2025_112053
crossref_primary_10_1016_j_freeradbiomed_2022_08_012
crossref_primary_10_3762_bjnano_16_97
crossref_primary_10_3390_metabo13091005
crossref_primary_10_1002_adfm_202405383
crossref_primary_10_1016_j_prp_2025_155949
crossref_primary_10_1016_j_isci_2025_112404
crossref_primary_10_1016_j_brainresbull_2025_111293
crossref_primary_10_1016_j_biopha_2023_115544
crossref_primary_10_1016_j_reprotox_2025_109022
crossref_primary_10_1002_mco2_70024
crossref_primary_10_1002_adfm_202419892
crossref_primary_10_3390_ijms23105709
crossref_primary_10_4103_imna_imna_2_22
crossref_primary_10_3390_cancers16061220
crossref_primary_10_1042_EBC20210017
crossref_primary_10_1007_s10495_025_02127_8
crossref_primary_10_17116_repro20243005135
crossref_primary_10_1016_j_scitotenv_2024_172618
crossref_primary_10_2147_JIR_S389290
crossref_primary_10_3389_fmed_2024_1356225
crossref_primary_10_3389_fmolb_2022_974156
crossref_primary_10_1016_j_canlet_2021_09_033
crossref_primary_10_1016_j_lfs_2024_122949
crossref_primary_10_1007_s12010_024_05161_5
crossref_primary_10_3390_biomedicines9111508
crossref_primary_10_1016_j_biopha_2023_115415
crossref_primary_10_1016_j_biopha_2022_113279
crossref_primary_10_1016_j_prp_2024_155771
crossref_primary_10_1016_j_freeradbiomed_2021_11_003
crossref_primary_10_3389_fnins_2022_904816
crossref_primary_10_1007_s10557_025_07673_6
crossref_primary_10_1016_j_expneurol_2023_114476
crossref_primary_10_1186_s12884_025_07143_9
crossref_primary_10_1186_s40959_024_00242_0
crossref_primary_10_1016_j_ejphar_2022_175133
crossref_primary_10_3389_fcell_2021_646311
crossref_primary_10_1177_02676591241280371
crossref_primary_10_3389_fimmu_2025_1658280
crossref_primary_10_1080_10715762_2024_2423691
crossref_primary_10_1038_s41467_024_53837_7
crossref_primary_10_3389_fcvm_2021_710963
crossref_primary_10_1007_s00204_022_03317_y
crossref_primary_10_1007_s12640_023_00645_4
crossref_primary_10_1111_cpr_13752
crossref_primary_10_1186_s43556_023_00142_2
crossref_primary_10_17816_phbn653994
crossref_primary_10_1038_s41526_023_00339_3
crossref_primary_10_31083_j_jin2201019
crossref_primary_10_1111_jcmm_18240
crossref_primary_10_1111_jcmm_18361
crossref_primary_10_1016_j_biopha_2023_115404
crossref_primary_10_1016_j_ccr_2023_215330
crossref_primary_10_1016_j_biopha_2023_115765
crossref_primary_10_3390_biom15070947
crossref_primary_10_1016_j_canlet_2024_217079
crossref_primary_10_1016_j_tice_2025_102930
crossref_primary_10_1128_jvi_00974_25
crossref_primary_10_2147_JIR_S393646
crossref_primary_10_1016_j_biopha_2025_118391
crossref_primary_10_1111_bph_15517
crossref_primary_10_1002_1873_3468_14289
crossref_primary_10_3390_toxics11040395
crossref_primary_10_1016_j_bbih_2024_100837
crossref_primary_10_1038_s41417_022_00464_3
crossref_primary_10_1089_ars_2024_0807
crossref_primary_10_1212_WNL_0000000000207730
crossref_primary_10_3389_fcell_2025_1522873
Cites_doi 10.1016/j.freeradbiomed.2018.10.426
10.1038/nature24637
10.1073/pnas.1821022116
10.1016/j.cellsig.2020.109633
10.1136/gut.52.8.1215
10.1016/j.bbrc.2019.11.110
10.1016/j.celrep.2020.02.049
10.1002/hep.28574
10.1016/j.molcel.2015.06.011
10.1038/s41417-020-0182-y
10.1128/MCB.00936-15
10.1039/c8bm01525b
10.1016/j.cell.2017.09.021
10.1016/j.chembiol.2008.02.010
10.1038/s41418-019-0393-7
10.1016/j.canlet.2018.06.018
10.1371/journal.pone.0117435
10.3389/fcell.2020.00431
10.1038/s41467-019-09277-9
10.1182/blood.v82.12.3610.bloodjournal82123610
10.1016/j.bbrc.2018.12.039
10.1016/j.bbrc.2018.07.078
10.1038/cdd.2015.158
10.1016/j.cmet.2015.05.002
10.1073/pnas.1511701112
10.1126/sciadv.aaw2238
10.1084/jem.20130315
10.3389/fphar.2019.00638
10.3389/fcell.2020.586578
10.1016/j.biopha.2018.11.030
10.1080/10715762.2020.1780229
10.1074/jbc.RA119.009548
10.1016/j.cmet.2005.01.003
10.3389/fnagi.2016.00308
10.1038/cr.2016.95
10.1038/nchembio.2239
10.1016/j.bbrc.2016.08.124
10.1073/pnas.1603244113
10.1016/j.cmet.2011.08.015
10.1002/hep.28251
10.1016/j.ajhg.2018.01.003
10.1002/hep.31328
10.1080/15548627.2020.1810918
10.1038/s41418-017-0012-4
10.1038/s41586-019-1705-2
10.2174/0929867033457638
10.1073/pnas.95.9.4924
10.1016/j.devcel.2018.07.012
10.1152/ajpendo.00424.2003
10.1016/j.bbrc.2019.01.090
10.1007/s40139-017-0139-5
10.1182/blood.2019002907
10.1016/j.canlet.2017.12.025
10.1038/s41589-020-0472-6
10.1016/j.molcel.2018.10.042
10.1016/j.bbrc.2016.10.068
10.1038/s41467-019-10991-7
10.1016/j.chembiol.2020.02.005
10.1038/s41418-019-0352-3
10.1016/j.phymed.2015.08.002
10.1042/BJ20140225
10.1016/j.redox.2020.101619
10.1371/journal.pgen.1008396
10.1038/90038
10.1016/j.redox.2017.08.015
10.1038/s41586-019-1426-6
10.1053/hupa.2002.30217
10.1152/ajprenal.00044.2017
10.1016/j.bbrc.2016.08.034
10.1182/blood.v96.3.1113
10.1038/nchembio.2238
10.18632/oncotarget.5162
10.18632/oncoscience.160
10.1371/journal.pone.0036055
10.1038/s41422-019-0164-5
10.3892/ijmm.2018.3469
10.1016/j.biocel.2006.02.006
10.1038/mp.2017.171
10.1172/jci.insight.90777
10.1038/s41586-019-1707-0
10.1016/j.semcancer.2019.03.002
10.1016/j.devcel.2019.10.007
10.1080/15548627.2016.1187366
10.1172/jci.insight.132747
10.1016/j.transci.2018.05.028
10.1016/j.celrep.2017.07.055
10.1016/j.bbrc.2016.03.052
10.1016/j.cell.2012.03.042
10.3324/haematol.2009.016824
10.1021/acschembio.7b01082
10.1182/blood-2010-11-319483
10.26355/eurrev_201806_15267
10.1038/onc.2015.32
10.1158/1541-7786.MCR-19-0691
10.1016/j.cub.2018.05.094
10.1038/ng.3465
10.15252/emmm.201505748
10.1016/j.nbd.2016.05.011
10.1038/7727
ContentType Journal Article
Copyright Copyright © 2020 Chen, Yu, Kang and Tang.
Copyright © 2020 Chen, Yu, Kang and Tang. 2020 Chen, Yu, Kang and Tang
Copyright_xml – notice: Copyright © 2020 Chen, Yu, Kang and Tang.
– notice: Copyright © 2020 Chen, Yu, Kang and Tang. 2020 Chen, Yu, Kang and Tang
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fcell.2020.590226
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
ExternalDocumentID oai_doaj_org_article_9d0dc68241c849159ab5b7323687faad
PMC7575751
10_3389_fcell_2020_590226
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c442t-66a5f4d03c55e3f1c8c7e36cd75a53c284fa8c02b067d32dc520b1da23b1c6a53
IEDL.DBID DOA
ISICitedReferencesCount 701
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583346200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-634X
IngestDate Fri Oct 03 12:53:17 EDT 2025
Thu Aug 21 18:32:19 EDT 2025
Thu Sep 04 20:14:59 EDT 2025
Sat Nov 29 02:52:13 EST 2025
Tue Nov 18 20:57:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-66a5f4d03c55e3f1c8c7e36cd75a53c284fa8c02b067d32dc520b1da23b1c6a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Giovanna Valenti, University of Bari Aldo Moro, Italy
This article was submitted to Cell Death and Survival, a section of the journal Frontiers in Cell and Developmental Biology
Reviewed by: Jianbo Sun, Sun Yat-sen University, China; Kuanyu Li, Nanjing University, China
OpenAccessLink https://doaj.org/article/9d0dc68241c849159ab5b7323687faad
PMID 33117818
PQID 2455833786
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9d0dc68241c849159ab5b7323687faad
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7575751
proquest_miscellaneous_2455833786
crossref_citationtrail_10_3389_fcell_2020_590226
crossref_primary_10_3389_fcell_2020_590226
PublicationCentury 2000
PublicationDate 2020-10-07
PublicationDateYYYYMMDD 2020-10-07
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-07
  day: 07
PublicationDecade 2020
PublicationTitle Frontiers in cell and developmental biology
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Adedoyin (B1) 2018; 314
Song (B69) 2016; 480
Jenkitkasemwong (B43) 2015; 22
Gao (B33) 2019; 73
Galvez-Peralta (B29) 2012; 7
Mumbauer (B61) 2019; 15
Chen (B13) 2006; 38
Sun (B72); 64
Brown (B7) 2019; 51
Levy (B51) 1999; 21
Wu (B84) 2019; 572
Chen (B14) 2020; 27
Eling (B25) 2015; 2
Kagan (B44) 2017; 13
Donovan (B23) 2005; 1
Li (B55) 2019; 10
Gao (B32) 2015; 59
Galluzzi (B28) 2018; 25
Xie (B85); 23
Nandal (B62) 2011; 14
Huang (B39) 2019; 7
Kuang (B50) 2020
Shin (B68) 2018; 129
Bersuker (B6) 2019; 575
Dixon (B19) 2012; 149
Li (B56) 2015; 10
Gao (B30) 2018; 503
Wang (B81) 2020; 531
Ooko (B65) 2015; 22
Arden (B3) 2003; 52
Chen (B12) 2020; 27
Nishizawa (B63) 2020; 295
Chang (B9) 2016; 8
Wang (B80) 1993; 82
Bai (B4) 2019; 508
Dai (B18) 2020; 522
Ghanem (B35) 2016; 36
Yang (B93) 2008; 15
Kim (B47) 2018; 432
Shang (B67) 2020; 72
Yu (B95) 2020; 136
Chang (B10) 2018; 416
Geng (B34) 2018; 22
Sun (B73); 63
Yang (B91) 2020; 18
Do Van (B20) 2016; 94
Li (B54) 2017; 2
Wang (B82) 2016; 8
Doll (B21) 2019; 575
Wen (B83) 2019; 510
Li (B52) 2018; 46
Kwon (B49) 2015; 6
Zhou (B99) 2019
Chen (B15) 2020
Song (B70) 2018; 28
Drecourt (B24) 2018; 102
Masaldan (B59) 2018; 14
Zou (B101) 2019; 10
Li (B53) 2018; 41
Colca (B16) 2004; 286
Buss (B8) 2003; 10
Troadec (B78) 2011; 117
Messa (B60) 2010; 95
Jabara (B42) 2016; 48
Tang (B76) 2019; 29
Hanel (B36) 1991; 34
Iwai (B41) 1998; 95
Chen (B11) 2015; 112
Liu (B57) 2020; 27
Kang (B45) 2017; 5
Sun (B74) 2015; 34
Xie (B86) 2020; 8
Zhang (B98) 2020; 36
Yuan (B97); 478
Yanatori (B89) 2014; 462
Cozzi (B17) 2013; 210
Gao (B31) 2016; 26
Tuo (B79) 2017; 22
Fang (B26) 2019; 116
Bernstein (B5) 1987; 110
Feng (B27) 2020; 30
Xie (B88) 2017; 20
Njajou (B64) 2001; 28
Kawashima (B46) 2002; 33
Hou (B38) 2016; 12
Alvarez (B2) 2017; 551
Homma (B37) 2020; 54
Stockwell (B71) 2017; 171
Yang (B90) 2019; 5
Xie (B87); 473
Trenor (B77) 2000; 96
Imoto (B40) 2018; 57
Kong (B48) 2019; 109
Tadokoro (B75) 2020; 5
Doll (B22) 2017; 13
Yang (B92) 2016; 113
Yuan (B96); 478
Yoshida (B94) 2019; 10
Protchenko (B66) 2020
Zou (B100) 2020; 16
Liu (B58) 2020
References_xml – volume: 129
  start-page: 454
  year: 2018
  ident: B68
  article-title: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer.
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.10.426
– volume: 551
  start-page: 639
  year: 2017
  ident: B2
  article-title: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis.
  publication-title: Nature
  doi: 10.1038/nature24637
– volume: 116
  start-page: 2672
  year: 2019
  ident: B26
  article-title: Ferroptosis as a target for protection against cardiomyopathy.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1821022116
– volume: 72
  year: 2020
  ident: B67
  article-title: Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells.
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2020.109633
– volume: 52
  start-page: 1215
  year: 2003
  ident: B3
  article-title: A novel mutation in ferroportin1 is associated with haemochromatosis in a Solomon Islands patient.
  publication-title: Gut
  doi: 10.1136/gut.52.8.1215
– volume: 522
  start-page: 415
  year: 2020
  ident: B18
  article-title: ESCRT-III-dependent membrane repair blocks ferroptosis.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.11.110
– volume: 30
  year: 2020
  ident: B27
  article-title: Transferrin receptor is a specific ferroptosis marker.
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2020.02.049
– volume: 64
  start-page: 488
  ident: B72
  article-title: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis.
  publication-title: Hepatology
  doi: 10.1002/hep.28574
– volume: 59
  start-page: 298
  year: 2015
  ident: B32
  article-title: Glutaminolysis and transferrin regulate ferroptosis.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.06.011
– year: 2020
  ident: B58
  article-title: Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death.
  publication-title: Cancer Gene. Ther.
  doi: 10.1038/s41417-020-0182-y
– volume: 36
  start-page: 304
  year: 2016
  ident: B35
  article-title: The poly(C) binding protein pcbp2 and its retrotransposed derivative pcbp1 are independently essential to mouse development.
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00936-15
– volume: 7
  start-page: 1311
  year: 2019
  ident: B39
  article-title: Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells.
  publication-title: Biomater. Sci.
  doi: 10.1039/c8bm01525b
– volume: 171
  start-page: 273
  year: 2017
  ident: B71
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism.
  publication-title: Red. Biol. Dis. Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 15
  start-page: 234
  year: 2008
  ident: B93
  article-title: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2008.02.010
– volume: 27
  start-page: 1008
  year: 2020
  ident: B14
  article-title: Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism.
  publication-title: Cell Death Diff
  doi: 10.1038/s41418-019-0393-7
– volume: 432
  start-page: 180
  year: 2018
  ident: B47
  article-title: CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer.
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2018.06.018
– volume: 10
  year: 2015
  ident: B56
  article-title: Systemic and cerebral iron homeostasis in ferritin knock-out mice.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0117435
– volume: 8
  year: 2020
  ident: B86
  article-title: Interplay between lipid metabolism and autophagy.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00431
– volume: 10
  year: 2019
  ident: B101
  article-title: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09277-9
– volume: 82
  start-page: 3610
  year: 1993
  ident: B80
  article-title: Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction.
  publication-title: Blood
  doi: 10.1182/blood.v82.12.3610.bloodjournal82123610
– volume: 508
  start-page: 997
  year: 2019
  ident: B4
  article-title: Lipid storage and lipophagy regulates ferroptosis.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.12.039
– volume: 503
  start-page: 1550
  year: 2018
  ident: B30
  article-title: Ferroptosis is a lysosomal cell death process.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.07.078
– volume: 23
  start-page: 369
  ident: B85
  article-title: Ferroptosis: process and function.
  publication-title: Cell Death Diff.
  doi: 10.1038/cdd.2015.158
– volume: 22
  start-page: 138
  year: 2015
  ident: B43
  article-title: SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.05.002
– volume: 112
  start-page: 11714
  year: 2015
  ident: B11
  article-title: Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis.
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1511701112
– volume: 5
  year: 2019
  ident: B90
  article-title: Clockophagy is a novel selective autophagy process favoring ferroptosis.
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2238
– volume: 210
  start-page: 1779
  year: 2013
  ident: B17
  article-title: Human L-ferritin deficiency is characterized by idiopathic generalized seizures and atypical restless leg syndrome.
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20130315
– volume: 10
  year: 2019
  ident: B55
  article-title: Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis.
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00638
– volume: 110
  start-page: 690
  year: 1987
  ident: B5
  article-title: Hereditary hypotransferrinemia with hemosiderosis, a murine disorder resembling human atransferrinemia.
  publication-title: J. Lab. Clin. Med.
– year: 2020
  ident: B50
  article-title: Oxidative damage and antioxidant defense in ferroptosis.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.586578
– volume: 109
  start-page: 2043
  year: 2019
  ident: B48
  article-title: Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway.
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.11.030
– volume: 54
  start-page: 397
  year: 2020
  ident: B37
  article-title: Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs).
  publication-title: Free Radic. Res.
  doi: 10.1080/10715762.2020.1780229
– volume: 295
  start-page: 69
  year: 2020
  ident: B63
  article-title: Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.009548
– volume: 1
  start-page: 191
  year: 2005
  ident: B23
  article-title: The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.01.003
– volume: 8
  year: 2016
  ident: B82
  article-title: The Protective Role of Mitochondrial Ferritin on Erastin-Induced Ferroptosis.
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2016.00308
– volume: 26
  start-page: 1021
  year: 2016
  ident: B31
  article-title: Ferroptosis is an autophagic cell death process.
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.95
– volume: 13
  start-page: 91
  year: 2017
  ident: B22
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2239
– volume: 478
  start-page: 1338
  ident: B97
  article-title: Identification of ACSL4 as a biomarker and contributor of ferroptosis.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.08.124
– volume: 113
  start-page: E4966
  year: 2016
  ident: B92
  article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1603244113
– volume: 14
  start-page: 647
  year: 2011
  ident: B62
  article-title: Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.08.015
– volume: 63
  start-page: 173
  ident: B73
  article-title: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells.
  publication-title: Hepatology
  doi: 10.1002/hep.28251
– volume: 102
  start-page: 266
  year: 2018
  ident: B24
  article-title: Impaired transferrin receptor palmitoylation and recycling in neurodegeneration with brain iron accumulation.
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.01.003
– year: 2020
  ident: B66
  article-title: Iron chaperone PCBP1 protects murine liver from lipid peroxidation and steatosis.
  publication-title: Hepatology
  doi: 10.1002/hep.31328
– start-page: 1
  year: 2020
  ident: B15
  article-title: Ferroptosis: machinery and regulation.
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1810918
– volume: 25
  start-page: 486
  year: 2018
  ident: B28
  article-title: Molecular mechanisms of cell death: recommendations of the nomenclature committee on Cell Death 2018.
  publication-title: Cell Death Diff.
  doi: 10.1038/s41418-017-0012-4
– volume: 575
  start-page: 688
  year: 2019
  ident: B6
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.
  publication-title: Nature
  doi: 10.1038/s41586-019-1705-2
– volume: 10
  start-page: 1021
  year: 2003
  ident: B8
  article-title: The role of iron chelation in cancer therapy.
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867033457638
– volume: 95
  start-page: 4924
  year: 1998
  ident: B41
  article-title: Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.9.4924
– volume: 46
  year: 2018
  ident: B52
  article-title: PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.07.012
– volume: 286
  start-page: E252
  year: 2004
  ident: B16
  article-title: Identification of a novel mitochondrial protein (”mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe.
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00424.2003
– volume: 510
  start-page: 278
  year: 2019
  ident: B83
  article-title: The release and activity of HMGB1 in ferroptosis.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.01.090
– volume: 5
  start-page: 153
  year: 2017
  ident: B45
  article-title: Autophagy and Ferroptosis - What’s the Connection?
  publication-title: Curr. Pathobiol. Rep.
  doi: 10.1007/s40139-017-0139-5
– volume: 136
  start-page: 726
  year: 2020
  ident: B95
  article-title: Hepatic Transferrin Plays a Role in Systemic Iron Homeostasis and Liver Ferroptosis.
  publication-title: Blood
  doi: 10.1182/blood.2019002907
– volume: 416
  start-page: 124
  year: 2018
  ident: B10
  article-title: Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis.
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.12.025
– volume: 16
  start-page: 302
  year: 2020
  ident: B100
  article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0472-6
– volume: 73
  year: 2019
  ident: B33
  article-title: Role of Mitochondria in Ferroptosis.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.042
– volume: 480
  start-page: 443
  year: 2016
  ident: B69
  article-title: FANCD2 protects against bone marrow injury from ferroptosis.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.10.068
– volume: 10
  year: 2019
  ident: B94
  article-title: Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10991-7
– volume: 27
  start-page: 420
  year: 2020
  ident: B57
  article-title: Autophagy-dependent ferroptosis: machinery and regulation.
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2020.02.005
– volume: 27
  start-page: 242
  year: 2020
  ident: B12
  article-title: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis.
  publication-title: Cell Death Diff.
  doi: 10.1038/s41418-019-0352-3
– volume: 22
  start-page: 1045
  year: 2015
  ident: B65
  article-title: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells.
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2015.08.002
– volume: 462
  start-page: 25
  year: 2014
  ident: B89
  article-title: Chaperone protein involved in transmembrane transport of iron.
  publication-title: Biochem. J.
  doi: 10.1042/BJ20140225
– volume: 36
  year: 2020
  ident: B98
  article-title: The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells.
  publication-title: Red. Biol.
  doi: 10.1016/j.redox.2020.101619
– volume: 15
  year: 2019
  ident: B61
  article-title: Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008396
– volume: 28
  start-page: 213
  year: 2001
  ident: B64
  article-title: A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis.
  publication-title: Nat. Genet.
  doi: 10.1038/90038
– volume: 14
  start-page: 100
  year: 2018
  ident: B59
  article-title: Iron accumulation in senescent cells is coupled with impaired ferritinophagy, and inhibition of ferroptosis.
  publication-title: Red. Biol.
  doi: 10.1016/j.redox.2017.08.015
– volume: 572
  start-page: 402
  year: 2019
  ident: B84
  article-title: Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling.
  publication-title: Nature
  doi: 10.1038/s41586-019-1426-6
– volume: 33
  start-page: 125
  year: 2002
  ident: B46
  article-title: Heme oxygenase-1 deficiency: the first autopsy case.
  publication-title: Hum. Pathol.
  doi: 10.1053/hupa.2002.30217
– volume: 314
  start-page: F702
  year: 2018
  ident: B1
  article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells.
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00044.2017
– volume: 478
  start-page: 838
  ident: B96
  article-title: CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.08.034
– volume: 34
  start-page: 91
  year: 1991
  ident: B36
  article-title: Therapy of seborrheic eczema with an antifungal agent with an antiphlogistic effect.
  publication-title: Mycoses
– volume: 96
  start-page: 1113
  year: 2000
  ident: B77
  article-title: The molecular defect in hypotransferrinemic mice.
  publication-title: Blood
  doi: 10.1182/blood.v96.3.1113
– volume: 13
  start-page: 81
  year: 2017
  ident: B44
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2238
– volume: 6
  start-page: 24393
  year: 2015
  ident: B49
  article-title: Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death.
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5162
– volume: 2
  start-page: 517
  year: 2015
  ident: B25
  article-title: Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells.
  publication-title: Oncoscience
  doi: 10.18632/oncoscience.160
– volume: 7
  year: 2012
  ident: B29
  article-title: ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036055
– volume: 29
  start-page: 347
  year: 2019
  ident: B76
  article-title: The molecular machinery of regulated cell death.
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0164-5
– volume: 41
  start-page: 3051
  year: 2018
  ident: B53
  article-title: Ferroptosis is associated with oxygen-glucose deprivation/reoxygenation-induced Sertoli cell death.
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2018.3469
– volume: 38
  start-page: 1402
  year: 2006
  ident: B13
  article-title: Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake.
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2006.02.006
– volume: 22
  start-page: 1520
  year: 2017
  ident: B79
  article-title: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.171
– volume: 2
  year: 2017
  ident: B54
  article-title: Inhibition of neuronal ferroptosis protects hemorrhagic brain.
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.90777
– volume: 575
  start-page: 693
  year: 2019
  ident: B21
  article-title: FSP1 is a glutathione-independent ferroptosis suppressor.
  publication-title: Nature
  doi: 10.1038/s41586-019-1707-0
– year: 2019
  ident: B99
  article-title: Ferr∗optosis is a type of autophagy-dependent cell death.
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2019.03.002
– volume: 51
  year: 2019
  ident: B7
  article-title: Prominin2 drives ferroptosis resistance by stimulating iron export.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.10.007
– volume: 12
  start-page: 1425
  year: 2016
  ident: B38
  article-title: Autophagy promotes ferroptosis by degradation of ferritin.
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1187366
– volume: 5
  year: 2020
  ident: B75
  article-title: Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity.
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.132747
– volume: 57
  start-page: 524
  year: 2018
  ident: B40
  article-title: Haemin-induced cell death in human monocytic cells is consistent with ferroptosis.
  publication-title: Transfus Apher. Sci.
  doi: 10.1016/j.transci.2018.05.028
– volume: 20
  start-page: 1692
  year: 2017
  ident: B88
  article-title: The tumor suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.07.055
– volume: 473
  start-page: 775
  ident: B87
  article-title: Identification of baicalein as a ferroptosis inhibitor by natural product library screening.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.03.052
– volume: 149
  start-page: 1060
  year: 2012
  ident: B19
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death.
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 95
  start-page: 1308
  year: 2010
  ident: B60
  article-title: Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging.
  publication-title: Haematologica
  doi: 10.3324/haematol.2009.016824
– volume: 531
  start-page: 581
  year: 2020
  ident: B81
  article-title: NEDD4L-mediated LTF Protein degradation limits ferroptosis.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1021/acschembio.7b01082
– volume: 117
  start-page: 5494
  year: 2011
  ident: B78
  article-title: Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria.
  publication-title: Blood
  doi: 10.1182/blood-2010-11-319483
– volume: 22
  start-page: 3826
  year: 2018
  ident: B34
  article-title: Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells.
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
  doi: 10.26355/eurrev_201806_15267
– volume: 34
  start-page: 5617
  year: 2015
  ident: B74
  article-title: HSPB1 as a novel regulator of ferroptotic cancer cell death.
  publication-title: Oncogene
  doi: 10.1038/onc.2015.32
– volume: 18
  start-page: 79
  year: 2020
  ident: B91
  article-title: A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer.
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-19-0691
– volume: 28
  year: 2018
  ident: B70
  article-title: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) Activity.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.05.094
– volume: 48
  start-page: 74
  year: 2016
  ident: B42
  article-title: A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3465
– volume: 8
  start-page: 247
  year: 2016
  ident: B9
  article-title: Reduction in mitochondrial iron alleviates cardiac damage during injury.
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201505748
– volume: 94
  start-page: 169
  year: 2016
  ident: B20
  article-title: Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC.
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2016.05.011
– volume: 21
  start-page: 396
  year: 1999
  ident: B51
  article-title: Transferrin receptor is necessary for development of erythrocytes and the nervous system.
  publication-title: Nat. Genet.
  doi: 10.1038/7727
SSID ssj0001257583
Score 2.6405776
SecondaryResourceType review_article
Snippet Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 590226
SubjectTerms Cell and Developmental Biology
cell death
disease
ferroptosis
iron
lipid perioxidation
Title Iron Metabolism in Ferroptosis
URI https://www.proquest.com/docview/2455833786
https://pubmed.ncbi.nlm.nih.gov/PMC7575751
https://doaj.org/article/9d0dc68241c849159ab5b7323687faad
Volume 8
WOSCitedRecordID wos000583346200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-634X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257583
  issn: 2296-634X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-634X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257583
  issn: 2296-634X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4qCl7EJ66PpYInodrm0TRHlV30oHhQ2FtoJykW1nZpu4IXf7uTdpXtRS9SKKWdkMxM6DeTpt8Qcq4ktVSmyleI7z7n3OAVcyUBQwCjmI0A2mIT8vExnkzU01KpL7cnrKMH7gx3pUxgIIoRaCDmCsE3SUUqGWVRLLMkMe7tG0i1lEx1qysYhsSs-4yJWZi6ytxCOOaDNLh0jCWOTGEJiFq-_l6Q2d8iuYQ5422ytQgWvetukDtkxRa7ZKMrH_mxR4b3VVl4D7ZBR07z-s3LC29sq6qcNWWd1_vkZTx6vr3zF_UOfOCcNn4UJSLjJmAghGUZKgzSsgiMFIlggECSJTEENEWEMYwaEDRIQ5NQloaAbdkBWSvKwh4SLzRhYDgKOfoXGVkVItCjhAVMYBCyByT4Vl7Dggzc1aSYakwKnL10ay_t7KU7ew3IxU-TWceE8ZvwjbPoj6AjsW5voGv1wrX6L9cOyNm3PzROetdHUthyXmvKhftbTMbYkew5qtdj_0mRv7b02VK4Izz6jyEek02ndbu7T56Qtaaa21OyDu9NXldDsion8bCdmXh--Bx9AXQK5tA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron+Metabolism+in+Ferroptosis&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Chen%2C+Xin&rft.au=Yu%2C+Chunhua&rft.au=Kang%2C+Rui&rft.au=Tang%2C+Daolin&rft.date=2020-10-07&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=8&rft_id=info:doi/10.3389%2Ffcell.2020.590226&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcell_2020_590226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon