Allowing for informative missingness in aggregate data meta-analysis with continuous or binary outcomes: Extensions to metamiss

Missing outcome data can invalidate the results of randomized trials and their meta-analysis. However, addressing missing data is often a challenging issue because it requires untestable assumptions. The impact of missing outcome data on the meta-analysis summary effect can be explored by assuming a...

Full description

Saved in:
Bibliographic Details
Published in:The Stata journal Vol. 18; no. 3; p. 716
Main Authors: Chaimani, Anna, Mavridis, Dimitris, Higgins, Julian P T, Salanti, Georgia, White, Ian R
Format: Journal Article
Language:English
Published: United States 01.09.2018
Subjects:
ISSN:1536-867X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Missing outcome data can invalidate the results of randomized trials and their meta-analysis. However, addressing missing data is often a challenging issue because it requires untestable assumptions. The impact of missing outcome data on the meta-analysis summary effect can be explored by assuming a relationship between the outcome in the observed and the missing participants via an informative missingness parameter. The informative missingness parameters cannot be estimated from the observed data, but they can be specified, with associated uncertainty, using evidence external to the meta-analysis, such as expert opinion. The use of informative missingness parameters in pairwise meta-analysis of aggregate data with binary outcomes has been previously implemented in Stata by the metamiss command. In this article, we present the new command metamiss2, which is an extension of metamiss for binary or continuous data in pairwise or network meta-analysis. The command can be used to explore the robustness of results to different assumptions about the missing data via sensitivity analysis.
AbstractList Missing outcome data can invalidate the results of randomized trials and their meta-analysis. However, addressing missing data is often a challenging issue because it requires untestable assumptions. The impact of missing outcome data on the meta-analysis summary effect can be explored by assuming a relationship between the outcome in the observed and the missing participants via an informative missingness parameter. The informative missingness parameters cannot be estimated from the observed data, but they can be specified, with associated uncertainty, using evidence external to the meta-analysis, such as expert opinion. The use of informative missingness parameters in pairwise meta-analysis of aggregate data with binary outcomes has been previously implemented in Stata by the metamiss command. In this article, we present the new command metamiss2, which is an extension of metamiss for binary or continuous data in pairwise or network meta-analysis. The command can be used to explore the robustness of results to different assumptions about the missing data via sensitivity analysis.
Missing outcome data can invalidate the results of randomized trials and their meta-analysis. However, addressing missing data is often a challenging issue because it requires untestable assumptions. The impact of missing outcome data on the meta-analysis summary effect can be explored by assuming a relationship between the outcome in the observed and the missing participants via an informative missingness parameter. The informative missingness parameters cannot be estimated from the observed data, but they can be specified, with associated uncertainty, using evidence external to the meta-analysis, such as expert opinion. The use of informative missingness parameters in pairwise meta-analysis of aggregate data with binary outcomes has been previously implemented in Stata by the metamiss command. In this article, we present the new command metamiss2, which is an extension of metamiss for binary or continuous data in pairwise or network meta-analysis. The command can be used to explore the robustness of results to different assumptions about the missing data via sensitivity analysis.Missing outcome data can invalidate the results of randomized trials and their meta-analysis. However, addressing missing data is often a challenging issue because it requires untestable assumptions. The impact of missing outcome data on the meta-analysis summary effect can be explored by assuming a relationship between the outcome in the observed and the missing participants via an informative missingness parameter. The informative missingness parameters cannot be estimated from the observed data, but they can be specified, with associated uncertainty, using evidence external to the meta-analysis, such as expert opinion. The use of informative missingness parameters in pairwise meta-analysis of aggregate data with binary outcomes has been previously implemented in Stata by the metamiss command. In this article, we present the new command metamiss2, which is an extension of metamiss for binary or continuous data in pairwise or network meta-analysis. The command can be used to explore the robustness of results to different assumptions about the missing data via sensitivity analysis.
Author Higgins, Julian P T
Salanti, Georgia
Mavridis, Dimitris
White, Ian R
Chaimani, Anna
Author_xml – sequence: 1
  givenname: Anna
  surname: Chaimani
  fullname: Chaimani, Anna
  organization: Paris Descartes University; inserm, UMR1153 Epidemiology and Statistics, Sorbonne Paris Cité Research Center (cress), methods Team; Cochrane France, Paris, France
– sequence: 2
  givenname: Dimitris
  surname: Mavridis
  fullname: Mavridis, Dimitris
  organization: Department of Primary Education, School of Education, University of Ioannina Ioannina, Greece
– sequence: 3
  givenname: Julian P T
  surname: Higgins
  fullname: Higgins, Julian P T
  organization: Population Health Sciences, Bristol Medical School, University of Bristol Bristol, uk
– sequence: 4
  givenname: Georgia
  surname: Salanti
  fullname: Salanti, Georgia
  organization: Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
– sequence: 5
  givenname: Ian R
  surname: White
  fullname: White, Ian R
  organization: mrc Biostatistics Unit Cambridge, uk and mrc Clinical Trials Unit at ucl London, uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30595674$$D View this record in MEDLINE/PubMed
BookMark eNo1UMtOwzAQ9KGIPuAHOCAfuQS8jhM33KqqPKRKXEDiFjnOphgldokdSk_8Oi4UaTUjjXZndndKRtZZJOQC2DWAlDeQpfk8l68wZ7FYCmxEJgcxOahjMvX-nTEhgfNTMk5ZVmS5FBPyvWhbtzN2QxvXU2MjdiqYT6Sd8T7qFr2POlWbTY8bFZDWKijaYVCJsqrde-PpzoQ3qp0Nxg5u8DRaVcaqfk_dELTr0N_S1VdA642zngb3O39IOCMnjWo9nh95Rl7uVs_Lh2T9dP-4XKwTLQQPSZ5FrmRTc9aAZqou6rTORdHorJBzLhupWSoYcNGIosCq0gwqrqSqADMAxmfk6s9327uPAX0oY7rGtlUW48YlhxwKLniEGbk8tg5Vh3W57U0XTyn_n8Z_AN8Kcfs
CitedBy_id crossref_primary_10_1016_j_jbi_2023_104306
crossref_primary_10_1016_j_schres_2020_12_023
crossref_primary_10_1136_bmjopen_2020_044302
crossref_primary_10_1002_jrsm_1349
crossref_primary_10_1007_s00590_020_02752_w
crossref_primary_10_1097_MD9_0000000000000362
crossref_primary_10_1016_j_bja_2024_08_008
crossref_primary_10_1002_sim_8009
crossref_primary_10_1111_obr_13318
crossref_primary_10_1016_j_knee_2021_10_005
crossref_primary_10_1136_bmj_m2898
crossref_primary_10_1186_s13643_024_02537_w
crossref_primary_10_1016_j_jaci_2022_09_020
crossref_primary_10_1016_j_ajodo_2021_06_009
crossref_primary_10_2106_JBJS_OA_20_00115
crossref_primary_10_1007_s00068_021_01746_5
crossref_primary_10_1007_s00540_023_03183_7
crossref_primary_10_1136_bmjopen_2024_088959
crossref_primary_10_1186_s12874_020_01205_6
crossref_primary_10_1177_1536867X241297909
crossref_primary_10_1016_j_ajodo_2021_06_001
ContentType Journal Article
DBID NPM
7X8
DOI 10.1177/1536867X1801800310
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 30595674
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_12023/21
GroupedDBID -~X
0R~
123
51Z
54M
AAGLT
AAPII
AAQXI
AARIX
AATAA
ABCCA
ABDBF
ABEHJ
ABIDT
ABPNF
ABRHV
ABTDE
ABUJY
ACCVC
ACDXX
ACHQT
ACJER
ACOXC
ACROE
ACSIQ
ACUHS
ACUIR
ADEBD
ADRRZ
AEEHM
AENEX
AESZF
AEWDL
AEWHI
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AHDMH
AJGYC
AJUZI
AJVBE
ALFTD
ALMA_UNASSIGNED_HOLDINGS
AMNSR
ANDLU
ARTOV
BPACV
DV7
EAP
EBS
EJD
ESX
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
IAO
J8X
JAG
NPM
OJV
OK1
SAFTQ
SAUOL
SCNPE
SFC
SJN
YHZ
ZPPRI
7X8
AJHME
ID FETCH-LOGICAL-c442t-65c44b7fd20f1c0ad9d3d649fc597827f7c0340124f499ebbc01b2a7ab1e51102
IEDL.DBID 7X8
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445991000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-867X
IngestDate Sat Sep 27 22:38:08 EDT 2025
Mon Jul 21 05:35:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords meta-analysis
mixed treatment comparison
st0540
metamiss2
sensitivity analysis
informative missingness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-65c44b7fd20f1c0ad9d3d649fc597827f7c0340124f499ebbc01b2a7ab1e51102
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/1536867X1801800310
PMID 30595674
PQID 2161924219
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2161924219
pubmed_primary_30595674
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Stata journal
PublicationTitleAlternate Stata J
PublicationYear 2018
SSID ssj0047122
Score 2.318807
Snippet Missing outcome data can invalidate the results of randomized trials and their meta-analysis. However, addressing missing data is often a challenging issue...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 716
Title Allowing for informative missingness in aggregate data meta-analysis with continuous or binary outcomes: Extensions to metamiss
URI https://www.ncbi.nlm.nih.gov/pubmed/30595674
https://www.proquest.com/docview/2161924219
Volume 18
WOSCitedRecordID wos000445991000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMpSBR3mVl4zEGpE4aeywoAq1YmnVAaRskeMHQipJoSmw8de5c9IyISGxJJIjJxf7fP7u4TtCrrQf2iAH6ZfAYy8KTeBJw7BkWCxiq7mWUrhiE3w8FmmaTBqD27wJq1zKRCeodanQRn7NAqcrwAK7nb16WDUKvatNCY110goByiBX83TlRQC567wIsKhjT8Q8XR6awePm0IZNgcAMVpgf83eI6baa4c5_idwl2w3IpP2aK_bImik6ZGu0ytA675A2osw6SfM--epPp-UHbGIUICxtcqmiHKTABWhMQHkI7VQ-gXqOhjeKkaX0xVTSk01aE4omXYqh78_FolzMKbwqd6d9abmogH4zv6GDTxcxD6xOq9L1xy8ckMfh4OHu3msqM3gqiljlxT2459xq5ttA-VInOtRxlFgF-olg3HLlh6C5sciCRmXyXPlBziSXeWAA4fnskGwUZWGOCVU6sQBRfaFsFOleLpQCLYcp3yY6MDbsksvlUGdAEbozZGHgL7Kfwe6So3q-slmdoiMDKQaKH49O_tD7lLQBBYk6cOyMtCyse3NONtU7TMPbhWMpuI4no2-3xNlD
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allowing+for+informative+missingness+in+aggregate+data+meta-analysis+with+continuous+or+binary+outcomes%3A+Extensions+to+metamiss&rft.jtitle=The+Stata+journal&rft.au=Chaimani%2C+Anna&rft.au=Mavridis%2C+Dimitris&rft.au=Higgins%2C+Julian+P+T&rft.au=Salanti%2C+Georgia&rft.date=2018-09-01&rft.issn=1536-867X&rft.volume=18&rft.issue=3&rft.spage=716&rft_id=info:doi/10.1177%2F1536867X1801800310&rft_id=info%3Apmid%2F30595674&rft_id=info%3Apmid%2F30595674&rft.externalDocID=30595674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-867X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-867X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-867X&client=summon