Characterization of the equivalence of robustification and regularization in linear and matrix regression
•We characterize the connection between robust optimization and regularization.•We extend the characterization to new settings such as matrix completion.•Robust optimization and regularization are not always equivalent. The notion of developing statistical methods in machine learning which are robus...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 270; H. 3; S. 931 - 942 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.11.2018
|
| Schlagworte: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •We characterize the connection between robust optimization and regularization.•We extend the characterization to new settings such as matrix completion.•Robust optimization and regularization are not always equivalent.
The notion of developing statistical methods in machine learning which are robust to adversarial perturbations in the underlying data has been the subject of increasing interest in recent years. A common feature of this work is that the adversarial robustification often corresponds exactly to regularization methods which appear as a loss function plus a penalty. In this paper we deepen and extend the understanding of the connection between robustification and regularization (as achieved by penalization) in regression problems. Specifically,(a)In the context of linear regression, we characterize precisely under which conditions on the model of uncertainty used and on the loss function penalties robustification and regularization are equivalent.(b)We extend the characterization of robustification and regularization to matrix regression problems (matrix completion and Principal Component Analysis). |
|---|---|
| AbstractList | •We characterize the connection between robust optimization and regularization.•We extend the characterization to new settings such as matrix completion.•Robust optimization and regularization are not always equivalent.
The notion of developing statistical methods in machine learning which are robust to adversarial perturbations in the underlying data has been the subject of increasing interest in recent years. A common feature of this work is that the adversarial robustification often corresponds exactly to regularization methods which appear as a loss function plus a penalty. In this paper we deepen and extend the understanding of the connection between robustification and regularization (as achieved by penalization) in regression problems. Specifically,(a)In the context of linear regression, we characterize precisely under which conditions on the model of uncertainty used and on the loss function penalties robustification and regularization are equivalent.(b)We extend the characterization of robustification and regularization to matrix regression problems (matrix completion and Principal Component Analysis). |
| Author | Copenhaver, Martin S. Bertsimas, Dimitris |
| Author_xml | – sequence: 1 givenname: Dimitris orcidid: 0000-0002-1985-1003 surname: Bertsimas fullname: Bertsimas, Dimitris email: dbertsim@mit.edu organization: Sloan School of Management and Operations Research Center, MIT, United States – sequence: 2 givenname: Martin S. orcidid: 0000-0002-9988-260X surname: Copenhaver fullname: Copenhaver, Martin S. email: mcopen@mit.edu organization: Operations Research Center, MIT, United States |
| BookMark | eNp9kE1PwzAMhiM0JMbgD3DqH2hx0o-0Ehc08SVN4gLnKE1c5qprIckm4NfTbogDh50s2e9j2c85m_VDj4xdcUg48OK6TbAdXCKAywTSBHJ-wua8lCIuygJmbA6plLEQXJ6xc-9bAOA5z-eMlmvttAno6FsHGvpoaKKwxgg_trTTHfYGp5Yb6q0P1JA5pHRvI4dv207_gdRHHfWo3X640cHR55Rx6P04v2Cnje48Xv7WBXu9v3tZPsar54en5e0qNlkmQpxZUVVNLcvc5mUpdCUtb7AoubQ6zesUrGnQphpNXWPdAFSZ0AUKDgJEOmYWrDzsNW7w3mGjDIX9hcFp6hQHNSlTrZqUqUmZglSNykZU_EPfHW20-zoO3RwgHJ_aETrlDU3aLDk0QdmBjuE_QKyLTQ |
| CitedBy_id | crossref_primary_10_1007_s10107_019_01419_7 crossref_primary_10_1016_j_ejor_2025_02_005 crossref_primary_10_1287_ijoo_2020_0038 crossref_primary_10_1007_s11590_021_01770_9 crossref_primary_10_1109_TSG_2022_3211546 crossref_primary_10_1007_s10994_021_06123_2 crossref_primary_10_1016_j_orl_2020_02_008 crossref_primary_10_1007_s11071_022_08178_9 crossref_primary_10_1016_j_ifacol_2025_07_191 crossref_primary_10_1016_j_sigpro_2021_108439 crossref_primary_10_1016_j_arcontrol_2021_09_005 crossref_primary_10_1002_for_2857 crossref_primary_10_1016_j_cej_2021_133032 crossref_primary_10_1111_stan_12253 crossref_primary_10_1007_s11831_022_09733_8 crossref_primary_10_1016_j_aca_2020_08_054 crossref_primary_10_1109_LCSYS_2020_3043591 crossref_primary_10_1109_TEMPR_2025_3530266 crossref_primary_10_1109_TPWRS_2024_3442954 crossref_primary_10_1007_s10994_020_05868_6 crossref_primary_10_1287_mnsc_2023_04164 crossref_primary_10_1007_s12532_018_0153_6 crossref_primary_10_1007_s10107_022_01796_6 crossref_primary_10_1287_opre_2022_2383 crossref_primary_10_1007_s00362_020_01214_z crossref_primary_10_1287_ijoc_2022_0022 crossref_primary_10_1016_j_ejor_2023_11_036 crossref_primary_10_1111_poms_13239 crossref_primary_10_1214_20_STS701REJ crossref_primary_10_1007_s10994_024_06577_0 crossref_primary_10_1016_j_ejor_2021_05_049 crossref_primary_10_2139_ssrn_3182422 crossref_primary_10_1007_s10994_021_06085_5 crossref_primary_10_1007_s13042_019_01044_y crossref_primary_10_1214_20_STS809 crossref_primary_10_2139_ssrn_3623006 crossref_primary_10_1017_jpr_2019_49 crossref_primary_10_1007_s43069_022_00151_x crossref_primary_10_1016_j_jco_2025_101979 crossref_primary_10_1109_MCS_2023_3291638 crossref_primary_10_1287_ijoc_2022_1211 crossref_primary_10_1016_j_orl_2021_01_002 crossref_primary_10_1016_j_ejor_2020_08_045 crossref_primary_10_1016_j_ifacol_2021_08_357 crossref_primary_10_1080_02664763_2020_1765323 crossref_primary_10_1287_msom_2020_0893 crossref_primary_10_1007_s10994_021_06036_0 crossref_primary_10_1016_j_asoc_2021_107385 crossref_primary_10_1287_ijoo_2018_0001 crossref_primary_10_1287_opre_2020_2041 crossref_primary_10_1287_opre_2019_1969 |
| Cites_doi | 10.1137/080734510 10.1198/004017004000000563 10.1111/j.1467-9868.2010.00764.x 10.1145/1970392.1970395 10.1137/070697835 10.1145/2184319.2184343 10.1007/s10260-006-0034-4 10.1016/j.jco.2009.01.002 10.1198/016214506000000096 10.1111/j.1467-9868.2005.00503.x 10.1214/aos/1176342503 10.1080/01621459.1984.10477105 10.1214/13-AOS1191 10.1016/j.sigpro.2007.04.004 10.1111/j.2517-6161.1996.tb02080.x 10.1137/0717073 10.1016/j.jmva.2004.08.002 10.1137/S0895479896298130 10.1007/BF02288367 10.1016/j.jspi.2003.12.020 10.1214/088342307000000087 10.1080/01621459.1974.10482962 10.1137/08073682X 10.1287/opre.2015.1374 10.1109/TIT.2010.2048503 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2017.03.051 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 942 |
| ExternalDocumentID | 10_1016_j_ejor_2017_03_051 S0377221717302734 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c442t-4d299fb785d5882a97d1fe6817da35b30dcfed3aecbbebf00942a6e2102023da3 |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438660400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sat Nov 29 05:34:30 EST 2025 Tue Nov 18 22:11:22 EST 2025 Fri Feb 23 02:27:40 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Statistical regression Penalty methods Robust optimization Adversarial learning Convex programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c442t-4d299fb785d5882a97d1fe6817da35b30dcfed3aecbbebf00942a6e2102023da3 |
| ORCID | 0000-0002-1985-1003 0000-0002-9988-260X |
| OpenAccessLink | https://hdl.handle.net/1721.1/135747 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ejor_2017_03_051 crossref_primary_10_1016_j_ejor_2017_03_051 elsevier_sciencedirect_doi_10_1016_j_ejor_2017_03_051 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Candès, Recht (bib0010) 2012; 55 Golub, Van Loan (bib0019) 1980; 17 Shaham, U., Yamada, Y., & Negahban, S. (2015). Understanding adversarial training: Increasing local stability of neural nets through robust optimization. arXiv preprint arXiv Eckart, Young (bib0015) 1936; 1 Fan, Fan, Barut (bib0016) 2014; 42 Hastie, Tibshirani, Friedman (bib0023) 2009 Lewis (bib0031) 2002 Mosci, Rosasco, Santoro, Verri, Villa (bib0036) 2010 Morgenthaler (bib0035) 2007; 15 Caramanis, Mannor, Xu (bib0011) 2011 Boyd, Vandenberghe (bib0007) 2004 Huber (bib0026) 1973; 1 Lewis, Pang (bib0032) 2009; 48 Xu, Caramanis, Mannor (bib0045) 2010; 56 Ghaoui, Lebret (bib0018) 1997; 18 Markovsky, Huffel (bib0034) 2007; 87 Salibian-Barrera, Aelst, Willems (bib0040) 2005; 101 Fazel (bib0017) 2002 Kukush, Markovsky, Huffel (bib0030) 2005; 133 Rousseeuw, Leroy (bib0039) 1987 Carroll, Ruppert, Stefanski, Crainiceanu (bib0012) 2006 Croux, Ruiz-Gazen (bib0013) 2005; 95 Bertsimas, D., Gupta, V., & Kallus, N. (2017). Data-driven robust optimization. Mathematical Programming. Hill (bib0024) 1977 Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014b). Explaining and harnessing adversarial examples. arXiv preprint arXiv Bertsimas, Brown, Caramanis (bib0004) 2011; 53 Ben-Tal, Ghaoui, Nemirovski (bib0002) 2009 Bradic, Fan, Wang (bib0008) 2011; 73 De Mol, De Vito, Rosasco (bib0014) 2009; 25 Rousseeuw (bib0038) 1984; 79 Hubert, Rousseeuw, Aelst (bib0028) 2008; 23 Zou, Hastie (bib0046) 2005; 67 Mallows (bib0033) 1975 . Horn, Johnson (bib0025) 2013 Recht, Fazel, Parrilo (bib0037) 2010; 52 Candès, Li, Ma, Wright (bib0009) 2011; 58 Hampel (bib0022) 1974; 69 Ben-Tal, Hazan, Koren, Mannor (bib0003) 2015; 63 Hubert, Rousseeuw, den Branden (bib0029) 2005; 47 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (bib0020) 2014 Tulabandhula, T., & Rudin, C. (2014). Robust optimization using machine learning for uncertainty sets. arXiv preprint arXiv Bauschke, Combettes (bib0001) 2011 SIGKDD, Netflix (bib0042) 2007 Bousquet, Boucheron, Lugosi (bib0006) 2004 Tibshirani (bib0043) 1996; 58 Huber, Ronchetti (bib0027) 2009 Hill (10.1016/j.ejor.2017.03.051_bib0024) 1977 Candès (10.1016/j.ejor.2017.03.051_bib0009) 2011; 58 Recht (10.1016/j.ejor.2017.03.051_bib0037) 2010; 52 De Mol (10.1016/j.ejor.2017.03.051_bib0014) 2009; 25 Kukush (10.1016/j.ejor.2017.03.051_bib0030) 2005; 133 Markovsky (10.1016/j.ejor.2017.03.051_bib0034) 2007; 87 Boyd (10.1016/j.ejor.2017.03.051_bib0007) 2004 Fazel (10.1016/j.ejor.2017.03.051_bib0017) 2002 Bauschke (10.1016/j.ejor.2017.03.051_bib0001) 2011 SIGKDD (10.1016/j.ejor.2017.03.051_bib0042) 2007 10.1016/j.ejor.2017.03.051_bib0044 10.1016/j.ejor.2017.03.051_bib0021 10.1016/j.ejor.2017.03.051_bib0005 Mosci (10.1016/j.ejor.2017.03.051_bib0036) 2010 Goodfellow (10.1016/j.ejor.2017.03.051_bib0020) 2014 Carroll (10.1016/j.ejor.2017.03.051_bib0012) 2006 Morgenthaler (10.1016/j.ejor.2017.03.051_bib0035) 2007; 15 Caramanis (10.1016/j.ejor.2017.03.051_bib0011) 2011 Mallows (10.1016/j.ejor.2017.03.051_bib0033) 1975 Rousseeuw (10.1016/j.ejor.2017.03.051_bib0038) 1984; 79 Candès (10.1016/j.ejor.2017.03.051_bib0010) 2012; 55 Zou (10.1016/j.ejor.2017.03.051_bib0046) 2005; 67 Horn (10.1016/j.ejor.2017.03.051_bib0025) 2013 Ghaoui (10.1016/j.ejor.2017.03.051_bib0018) 1997; 18 Hastie (10.1016/j.ejor.2017.03.051_bib0023) 2009 Huber (10.1016/j.ejor.2017.03.051_bib0027) 2009 Lewis (10.1016/j.ejor.2017.03.051_bib0032) 2009; 48 10.1016/j.ejor.2017.03.051_bib0041 Bradic (10.1016/j.ejor.2017.03.051_bib0008) 2011; 73 Eckart (10.1016/j.ejor.2017.03.051_sbref0014) 1936; 1 Hubert (10.1016/j.ejor.2017.03.051_bib0029) 2005; 47 Salibian-Barrera (10.1016/j.ejor.2017.03.051_bib0040) 2005; 101 Fan (10.1016/j.ejor.2017.03.051_bib0016) 2014; 42 Ben-Tal (10.1016/j.ejor.2017.03.051_bib0002) 2009 Hampel (10.1016/j.ejor.2017.03.051_bib0022) 1974; 69 Ben-Tal (10.1016/j.ejor.2017.03.051_bib0003) 2015; 63 Croux (10.1016/j.ejor.2017.03.051_bib0013) 2005; 95 Rousseeuw (10.1016/j.ejor.2017.03.051_bib0039) 1987 Bousquet (10.1016/j.ejor.2017.03.051_bib0006) 2004 Golub (10.1016/j.ejor.2017.03.051_bib0019) 1980; 17 Huber (10.1016/j.ejor.2017.03.051_bib0026) 1973; 1 Hubert (10.1016/j.ejor.2017.03.051_bib0028) 2008; 23 Lewis (10.1016/j.ejor.2017.03.051_bib0031) 2002 Bertsimas (10.1016/j.ejor.2017.03.051_bib0004) 2011; 53 Tibshirani (10.1016/j.ejor.2017.03.051_bib0043) 1996; 58 Xu (10.1016/j.ejor.2017.03.051_bib0045) 2010; 56 |
| References_xml | – volume: 25 start-page: 201 year: 2009 end-page: 230 ident: bib0014 article-title: Elastic-net regularization in learning theory publication-title: Journal of Complexity – reference: Bertsimas, D., Gupta, V., & Kallus, N. (2017). Data-driven robust optimization. Mathematical Programming. – year: 2006 ident: bib0012 article-title: Measurement error in nonlinear models: A modern perspective – year: 2009 ident: bib0023 article-title: The elements of statistical learning: Data mining, inference, and prediction – volume: 95 start-page: 206 year: 2005 end-page: 226 ident: bib0013 article-title: High breakdown estimators for principal components: The projection-pursuit approach revisited publication-title: Journal of Multivariate Analysis – year: 1987 ident: bib0039 article-title: Robust regression and outlier detection – year: 2004 ident: bib0006 article-title: Advanced lectures on machine learning – year: 2011 ident: bib0011 article-title: Optimization for machine learning – volume: 47 start-page: 64 year: 2005 end-page: 79 ident: bib0029 article-title: ROBPCA: A new approach to robust principal components analysis publication-title: Technometrics – volume: 73 start-page: 325 year: 2011 end-page: 349 ident: bib0008 article-title: Penalized composite quasi-likelihood for ultrahigh dimensional variable selection publication-title: Journal of the Royal Statistical Society, Series B – year: 2002 ident: bib0017 publication-title: Matrix rank minimization with applications – reference: Shaham, U., Yamada, Y., & Negahban, S. (2015). Understanding adversarial training: Increasing local stability of neural nets through robust optimization. arXiv preprint arXiv: – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0046 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B – volume: 17 start-page: 883 year: 1980 end-page: 893 ident: bib0019 article-title: An analysis of the total least squares problem publication-title: SIAM Journal of Numerical Analysis – volume: 133 start-page: 315 year: 2005 end-page: 358 ident: bib0030 article-title: Consistency of the structured total least squares estimator in a multivariate errors-in-variables model publication-title: Journal of Statistical Planning and Inference – volume: 48 start-page: 3080 year: 2009 end-page: 3104 ident: bib0032 article-title: Lipschitz behavior of the robust regularization publication-title: SIAM Journal on Control and Optimization – volume: 63 start-page: 628 year: 2015 end-page: 638 ident: bib0003 article-title: Oracle-based robust optimization via online learning publication-title: Operations Research – volume: 23 start-page: 92 year: 2008 end-page: 119 ident: bib0028 article-title: High-breakdown robust multivariate methods publication-title: Statistical Science – volume: 1 year: 1936 ident: bib0015 article-title: The approximation of one matrix by another of lower rank publication-title: Psychometrika – volume: 58 start-page: 11:1 year: 2011 end-page: 37 ident: bib0009 article-title: Robust Principal Component Analysis? publication-title: Journal of the ACM – year: 2011 ident: bib0001 article-title: Convex analysis and monotone operator theory in Hilbert spaces – volume: 42 start-page: 324 year: 2014 end-page: 351 ident: bib0016 article-title: Adaptive robust variable selection publication-title: The Annals of Statistics – volume: 53 start-page: 464 year: 2011 end-page: 501 ident: bib0004 article-title: Theory and applications of robust optimization publication-title: SIAM Review – reference: Tulabandhula, T., & Rudin, C. (2014). Robust optimization using machine learning for uncertainty sets. arXiv preprint arXiv: – volume: 1 start-page: 799 year: 1973 end-page: 821 ident: bib0026 article-title: Robust regression: Asymptotics, conjectures and Monte Carlo publication-title: The Annals of Statistics – volume: 101 start-page: 1198 year: 2005 end-page: 1211 ident: bib0040 article-title: PCA based on multivariate MM-estimators with fast and robust bootstrap publication-title: Journal of the American Statistical Association – start-page: 418 year: 2010 end-page: 433 ident: bib0036 article-title: Solving structured sparsity regularization with proximal methods publication-title: Proceedings of the Joint european conference on machine learning and knowledge discovery in databases – volume: 56 start-page: 3561 year: 2010 end-page: 3574 ident: bib0045 article-title: Robust regression and Lasso publication-title: IEEE Transactions in Information Theory – volume: 87 start-page: 2283 year: 2007 end-page: 2302 ident: bib0034 article-title: Overview of total least-squares methods publication-title: Signal Processing – volume: 15 start-page: 271 year: 2007 end-page: 293 ident: bib0035 article-title: A survey of robust statistics publication-title: Statistical Methods and Applications – year: 2007 ident: bib0042 article-title: Soft modelling by latent variables: The nonlinear iterative partial least squares (NIPALS) approach publication-title: Proceedings of the KDD Cup and Workshop – reference: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014b). Explaining and harnessing adversarial examples. arXiv preprint arXiv: – reference: . – year: 2004 ident: bib0007 article-title: Convex optimization – volume: 69 start-page: 383 year: 1974 end-page: 393 ident: bib0022 article-title: The influence curve and its role in robust estimation publication-title: Journal of the American Statistical Association – volume: 52 start-page: 471 year: 2010 end-page: 501 ident: bib0037 article-title: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization publication-title: SIAM Review – volume: 79 start-page: 871 year: 1984 end-page: 880 ident: bib0038 article-title: Least median of squares regression publication-title: Journal of the American Statistical Association – volume: 55 start-page: 111 year: 2012 end-page: 119 ident: bib0010 article-title: Exact matrix completion via convex optimization publication-title: Communications of the ACM – year: 1977 ident: bib0024 publication-title: Robust regression when there are outlires in the carriers – start-page: 2672 year: 2014 end-page: 2680 ident: bib0020 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems 27 – year: 2013 ident: bib0025 article-title: Matrix analysis – year: 2009 ident: bib0002 article-title: Robust optimization – year: 1975 ident: bib0033 article-title: On some topics in robustness publication-title: Technical Report – volume: 18 start-page: 1035 year: 1997 end-page: 1064 ident: bib0018 article-title: Robust solutions to least-squares problems with uncertain data publication-title: SIAM Journal of Matrix Analysis and Applications – year: 2009 ident: bib0027 article-title: Robust statistics – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0043 article-title: Regression shrinkage and selection via the Lasso publication-title: Journal of the Royal Statistical Society, Series B – year: 2002 ident: bib0031 article-title: Robust regularization publication-title: Technical Report – volume: 53 start-page: 464 issue: 3 year: 2011 ident: 10.1016/j.ejor.2017.03.051_bib0004 article-title: Theory and applications of robust optimization publication-title: SIAM Review doi: 10.1137/080734510 – start-page: 2672 year: 2014 ident: 10.1016/j.ejor.2017.03.051_bib0020 article-title: Generative adversarial nets – volume: 47 start-page: 64 year: 2005 ident: 10.1016/j.ejor.2017.03.051_bib0029 article-title: ROBPCA: A new approach to robust principal components analysis publication-title: Technometrics doi: 10.1198/004017004000000563 – year: 2009 ident: 10.1016/j.ejor.2017.03.051_bib0023 – year: 2011 ident: 10.1016/j.ejor.2017.03.051_bib0011 – year: 2013 ident: 10.1016/j.ejor.2017.03.051_bib0025 – year: 1987 ident: 10.1016/j.ejor.2017.03.051_bib0039 – volume: 73 start-page: 325 year: 2011 ident: 10.1016/j.ejor.2017.03.051_bib0008 article-title: Penalized composite quasi-likelihood for ultrahigh dimensional variable selection publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2010.00764.x – volume: 58 start-page: 11:1 issue: 3 year: 2011 ident: 10.1016/j.ejor.2017.03.051_bib0009 article-title: Robust Principal Component Analysis? publication-title: Journal of the ACM doi: 10.1145/1970392.1970395 – ident: 10.1016/j.ejor.2017.03.051_bib0021 – volume: 52 start-page: 471 issue: 3 year: 2010 ident: 10.1016/j.ejor.2017.03.051_bib0037 article-title: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization publication-title: SIAM Review doi: 10.1137/070697835 – ident: 10.1016/j.ejor.2017.03.051_bib0044 – volume: 55 start-page: 111 issue: 6 year: 2012 ident: 10.1016/j.ejor.2017.03.051_bib0010 article-title: Exact matrix completion via convex optimization publication-title: Communications of the ACM doi: 10.1145/2184319.2184343 – year: 2002 ident: 10.1016/j.ejor.2017.03.051_bib0017 – volume: 15 start-page: 271 year: 2007 ident: 10.1016/j.ejor.2017.03.051_bib0035 article-title: A survey of robust statistics publication-title: Statistical Methods and Applications doi: 10.1007/s10260-006-0034-4 – year: 2002 ident: 10.1016/j.ejor.2017.03.051_bib0031 article-title: Robust regularization – year: 2006 ident: 10.1016/j.ejor.2017.03.051_bib0012 – volume: 25 start-page: 201 issue: 2 year: 2009 ident: 10.1016/j.ejor.2017.03.051_bib0014 article-title: Elastic-net regularization in learning theory publication-title: Journal of Complexity doi: 10.1016/j.jco.2009.01.002 – year: 2004 ident: 10.1016/j.ejor.2017.03.051_bib0006 – volume: 101 start-page: 1198 issue: 475 year: 2005 ident: 10.1016/j.ejor.2017.03.051_bib0040 article-title: PCA based on multivariate MM-estimators with fast and robust bootstrap publication-title: Journal of the American Statistical Association doi: 10.1198/016214506000000096 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 10.1016/j.ejor.2017.03.051_bib0046 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.1467-9868.2005.00503.x – year: 2009 ident: 10.1016/j.ejor.2017.03.051_bib0002 – year: 2009 ident: 10.1016/j.ejor.2017.03.051_bib0027 – year: 2011 ident: 10.1016/j.ejor.2017.03.051_bib0001 – volume: 1 start-page: 799 year: 1973 ident: 10.1016/j.ejor.2017.03.051_bib0026 article-title: Robust regression: Asymptotics, conjectures and Monte Carlo publication-title: The Annals of Statistics doi: 10.1214/aos/1176342503 – year: 1975 ident: 10.1016/j.ejor.2017.03.051_bib0033 article-title: On some topics in robustness – volume: 79 start-page: 871 year: 1984 ident: 10.1016/j.ejor.2017.03.051_bib0038 article-title: Least median of squares regression publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1984.10477105 – volume: 42 start-page: 324 issue: 1 year: 2014 ident: 10.1016/j.ejor.2017.03.051_bib0016 article-title: Adaptive robust variable selection publication-title: The Annals of Statistics doi: 10.1214/13-AOS1191 – year: 1977 ident: 10.1016/j.ejor.2017.03.051_bib0024 – volume: 87 start-page: 2283 year: 2007 ident: 10.1016/j.ejor.2017.03.051_bib0034 article-title: Overview of total least-squares methods publication-title: Signal Processing doi: 10.1016/j.sigpro.2007.04.004 – start-page: 418 year: 2010 ident: 10.1016/j.ejor.2017.03.051_bib0036 article-title: Solving structured sparsity regularization with proximal methods – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.ejor.2017.03.051_bib0043 article-title: Regression shrinkage and selection via the Lasso publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 17 start-page: 883 issue: 6 year: 1980 ident: 10.1016/j.ejor.2017.03.051_bib0019 article-title: An analysis of the total least squares problem publication-title: SIAM Journal of Numerical Analysis doi: 10.1137/0717073 – volume: 95 start-page: 206 year: 2005 ident: 10.1016/j.ejor.2017.03.051_bib0013 article-title: High breakdown estimators for principal components: The projection-pursuit approach revisited publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2004.08.002 – volume: 18 start-page: 1035 issue: 4 year: 1997 ident: 10.1016/j.ejor.2017.03.051_bib0018 article-title: Robust solutions to least-squares problems with uncertain data publication-title: SIAM Journal of Matrix Analysis and Applications doi: 10.1137/S0895479896298130 – ident: 10.1016/j.ejor.2017.03.051_bib0005 – volume: 1 year: 1936 ident: 10.1016/j.ejor.2017.03.051_sbref0014 article-title: The approximation of one matrix by another of lower rank publication-title: Psychometrika doi: 10.1007/BF02288367 – year: 2004 ident: 10.1016/j.ejor.2017.03.051_bib0007 – ident: 10.1016/j.ejor.2017.03.051_bib0041 – volume: 133 start-page: 315 year: 2005 ident: 10.1016/j.ejor.2017.03.051_bib0030 article-title: Consistency of the structured total least squares estimator in a multivariate errors-in-variables model publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2003.12.020 – volume: 23 start-page: 92 issue: 1 year: 2008 ident: 10.1016/j.ejor.2017.03.051_bib0028 article-title: High-breakdown robust multivariate methods publication-title: Statistical Science doi: 10.1214/088342307000000087 – volume: 69 start-page: 383 year: 1974 ident: 10.1016/j.ejor.2017.03.051_bib0022 article-title: The influence curve and its role in robust estimation publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1974.10482962 – year: 2007 ident: 10.1016/j.ejor.2017.03.051_bib0042 article-title: Soft modelling by latent variables: The nonlinear iterative partial least squares (NIPALS) approach – volume: 48 start-page: 3080 issue: 5 year: 2009 ident: 10.1016/j.ejor.2017.03.051_bib0032 article-title: Lipschitz behavior of the robust regularization publication-title: SIAM Journal on Control and Optimization doi: 10.1137/08073682X – volume: 63 start-page: 628 issue: 3 year: 2015 ident: 10.1016/j.ejor.2017.03.051_bib0003 article-title: Oracle-based robust optimization via online learning publication-title: Operations Research doi: 10.1287/opre.2015.1374 – volume: 56 start-page: 3561 issue: 7 year: 2010 ident: 10.1016/j.ejor.2017.03.051_bib0045 article-title: Robust regression and Lasso publication-title: IEEE Transactions in Information Theory doi: 10.1109/TIT.2010.2048503 |
| SSID | ssj0001515 |
| Score | 2.570896 |
| Snippet | •We characterize the connection between robust optimization and regularization.•We extend the characterization to new settings such as matrix... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 931 |
| SubjectTerms | Adversarial learning Convex programming Penalty methods Robust optimization Statistical regression |
| Title | Characterization of the equivalence of robustification and regularization in linear and matrix regression |
| URI | https://dx.doi.org/10.1016/j.ejor.2017.03.051 |
| Volume | 270 |
| WOSCitedRecordID | wos000438660400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH6qOoTYYYPCxMYP-cCtypQ4yZwcR9kECE1IDKm3yI5tkWpLR9ZN1f4G_mieY8fNCpvYgUsUuXbS5n2xP7--9z2Ad2XKo0hQGXBd8iBhLMazhAcprgaqDGOlRauu_4WdnGTTaf51MPjV5cJcn7G6zpbL_OK_mhrb0NgmdfYB5vYXxQY8R6PjEc2Ox38y_MRLMN94OthGbvy8qvA-7ZuMTc1cmEJe2vnsbJx5W5jeD6zqsSGh3IZZnhsx_6XpY0Nn6zud-o7gYkPTuRqdppD3Pb9XzeKyOrfZZB9MklVTeXY_MSW9fnAXW2qFDsbf9vsOiihzmXqreSxmLKDUpmh2ky615UIcuuLeFJq7VcGuxrnV3vpjorc-h9m-ms2NqmvEWqlap117S1V7bbXzMYhdeNusMNcozDWKMC5Ck4-_QXEblQ1h4_DT0fSzX9kN-Wv_lXI_yCVh2XjB9W_yd6LTIy-nT2HL7TrIoUXLMxioegSPu6SHEWx3xT2Im-tHsNlTqnwO1TqqyFwTRBXpoco0raGKIHDIbVSRqiYWVe2HFlVkhaoX8P346HTyMXBVOoIySegiSCQyGi1Ylkp8ZpTnTEZaHWQRkzxORRzKUisZc1UKoYQ2oayUHyjjakC-iH12YFjPa_USCE0Ez7Wp8MBEImjIQ4k77lAgzcddfSp3IeoeaVE6CXtTSeWsuNuYuzD2Yy6sgMu9vdPOUoWjoJZaFgi8e8btPegur-DJ6kV5DcNFc6XewKPyelFdNm8d6n4DMT6vRg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+equivalence+of+robustification+and+regularization+in+linear+and+matrix+regression&rft.jtitle=European+journal+of+operational+research&rft.au=Bertsimas%2C+Dimitris&rft.au=Copenhaver%2C+Martin+S.&rft.date=2018-11-01&rft.issn=0377-2217&rft.volume=270&rft.issue=3&rft.spage=931&rft.epage=942&rft_id=info:doi/10.1016%2Fj.ejor.2017.03.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2017_03_051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |