Federated machine learning for privacy preserving, collective supply chain risk prediction

The use of Artificial Intelligence (AI) for predicting supply chain risk has gained popularity. However, proposed approaches are based on the premise that organisations act alone, rather than a collective when predicting risk, despite the interconnected nature of supply chains. This yields a problem...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research Vol. 61; no. 23; pp. 8115 - 8132
Main Authors: Zheng, Ge, Kong, Lingxuan, Brintrup, Alexandra
Format: Journal Article
Language:English
Published: London Taylor & Francis 02.12.2023
Taylor & Francis LLC
Subjects:
ISSN:0020-7543, 1366-588X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The use of Artificial Intelligence (AI) for predicting supply chain risk has gained popularity. However, proposed approaches are based on the premise that organisations act alone, rather than a collective when predicting risk, despite the interconnected nature of supply chains. This yields a problem: organisations that have inadequate datasets cannot predict risk. While data-sharing has been proposed to evaluate risk, in practice this does not happen due to privacy concerns. We propose a federated learning approach for collective risk prediction without the risk of data exposure. We ask: Can organisations who have inadequate datasets tap into collective knowledge? This raises a second question: Under what circumstances would collective risk prediction be beneficial? We present an empirical case study where buyers predict order delays from their shared suppliers before and after Covid-19. Results show that federated learning can indeed help supply chain members predict risk effectively, especially for buyers with limited datasets. Training data-imbalance, disruptions, and algorithm choice are significant factors in the efficacy of this approach. Interestingly, data-sharing or collective risk prediction is not always the best choice for buyers with disproportionately larger order-books. We thus call for further research on on local and collective learning paradigms in supply chains.
AbstractList The use of Artificial Intelligence (AI) for predicting supply chain risk has gained popularity. However, proposed approaches are based on the premise that organisations act alone, rather than a collective when predicting risk, despite the interconnected nature of supply chains. This yields a problem: organisations that have inadequate datasets cannot predict risk. While data-sharing has been proposed to evaluate risk, in practice this does not happen due to privacy concerns. We propose a federated learning approach for collective risk prediction without the risk of data exposure. We ask: Can organisations who have inadequate datasets tap into collective knowledge? This raises a second question: Under what circumstances would collective risk prediction be beneficial? We present an empirical case study where buyers predict order delays from their shared suppliers before and after Covid-19. Results show that federated learning can indeed help supply chain members predict risk effectively, especially for buyers with limited datasets. Training data-imbalance, disruptions, and algorithm choice are significant factors in the efficacy of this approach. Interestingly, data-sharing or collective risk prediction is not always the best choice for buyers with disproportionately larger order-books. We thus call for further research on on local and collective learning paradigms in supply chains.
Author Zheng, Ge
Kong, Lingxuan
Brintrup, Alexandra
Author_xml – sequence: 1
  givenname: Ge
  surname: Zheng
  fullname: Zheng, Ge
  organization: Institute for Manufacturing, University of Cambridge
– sequence: 2
  givenname: Lingxuan
  surname: Kong
  fullname: Kong, Lingxuan
  organization: Institute for Manufacturing, University of Cambridge
– sequence: 3
  givenname: Alexandra
  orcidid: 0000-0002-4189-2434
  surname: Brintrup
  fullname: Brintrup, Alexandra
  email: ab702@cam.ac.uk
  organization: Institute for Manufacturing, University of Cambridge
BookMark eNqFkEFLwzAUx4NMcJt-BKHg1c4kTdIML8pwKgheFMRLSNNXF-2SmXSTfXtTNi8eNAQeJL__S95vhAbOO0DolOAJwRJfYExxyVkxoZjSCSWCCSoP0JAUQuRcypcBGvZM3kNHaBTjO06LSzZEr3OoIegO6mypzcI6yFrQwVn3ljU-ZKtgN9psU4UIYZOOzzPj2xZMZzeQxfVq1W4zs9DWZcHGjx6sbbr07hgdNrqNcLKvY_Q8v3ma3eUPj7f3s-uH3DBGu5xVZVUaSN8RmE7ltKTEsJqlDdxUsgQGdVE1vCnryghaaUE4oZUoK4E1B1KM0dmu7yr4zzXETr37dXDpSUWl5CUmjE8TxXeUCT7GAI1Koy112CqCVa9R_WhUvUa115hyl79yxna6n68L2rb_pq92aeuSzaX-8qGtVae3rQ9N0M7YqIq_W3wD4e2OPg
CitedBy_id crossref_primary_10_1080_17452007_2025_2478021
crossref_primary_10_1016_j_physa_2025_130780
crossref_primary_10_1016_j_ijpe_2024_109368
crossref_primary_10_1016_j_cie_2024_110590
crossref_primary_10_1080_00207543_2024_2432469
crossref_primary_10_1109_ACCESS_2023_3283503
crossref_primary_10_1007_s11301_025_00549_x
crossref_primary_10_1080_00207543_2023_2253328
crossref_primary_10_1108_BPMJ_03_2024_0174
crossref_primary_10_1109_ACCESS_2024_3508030
crossref_primary_10_1080_00207543_2024_2448604
crossref_primary_10_1093_jcde_qwaf068
crossref_primary_10_1016_j_sca_2025_100135
crossref_primary_10_1108_MSCRA_10_2024_0041
crossref_primary_10_1108_JMTM_07_2024_0379
crossref_primary_10_3390_info16050399
crossref_primary_10_1016_j_sca_2025_100138
crossref_primary_10_1016_j_ijpe_2023_109130
crossref_primary_10_1016_j_foohum_2025_100542
crossref_primary_10_1080_00207543_2025_2458121
crossref_primary_10_1016_j_sca_2025_100130
crossref_primary_10_1080_00207543_2024_2334420
crossref_primary_10_1038_s41598_025_11510_z
crossref_primary_10_3390_math11173759
crossref_primary_10_1080_00207543_2024_2367685
crossref_primary_10_1186_s40537_025_01143_4
crossref_primary_10_1016_j_neucom_2025_131337
crossref_primary_10_1007_s10479_023_05477_1
crossref_primary_10_1002_qre_3678
crossref_primary_10_1016_j_compind_2024_104132
crossref_primary_10_3390_app14114688
crossref_primary_10_1080_00207543_2025_2543964
crossref_primary_10_1007_s11431_024_2943_2
crossref_primary_10_1016_j_tre_2024_103526
crossref_primary_10_1016_j_ijpe_2023_108938
crossref_primary_10_1080_00207543_2024_2361434
crossref_primary_10_3390_s24216814
crossref_primary_10_1016_j_jclepro_2023_139069
crossref_primary_10_1016_j_omega_2024_103081
crossref_primary_10_1080_00207543_2023_2244604
crossref_primary_10_1016_j_asoc_2024_112475
crossref_primary_10_1108_JMTM_09_2023_0431
crossref_primary_10_1016_j_eij_2025_100704
crossref_primary_10_1016_j_knosys_2025_114315
crossref_primary_10_1080_00207543_2023_2270719
crossref_primary_10_1016_j_pursup_2025_101014
crossref_primary_10_1109_JSEN_2024_3465593
crossref_primary_10_1109_ACCESS_2024_3445281
crossref_primary_10_1080_00207543_2024_2447927
crossref_primary_10_4018_IRMJ_358747
Cites_doi 10.1287/mnsc.45.8.1091
10.1016/j.cie.2022.108206
10.1109/JIoT.6488907
10.1016/j.energy.2020.119712
10.5120/ijca2017915495
10.1109/TII.9424
10.1109/Access.6287639
10.1016/j.ijmedinf.2018.01.007
10.1080/00207543.2021.1840148
10.2139/ssrn.4118108
10.1080/00207543.2020.1720925
10.1108/14637150810888019
10.1038/s41591-021-01506-3
10.1504/IJISM.2022.125995
10.1016/j.protcy.2013.12.194
10.1111/jbl.2019.40.issue-1
10.1007/s41109-017-0058-8
10.1016/j.knosys.2021.106775
10.1109/BigComp51126.2021.00039
10.1007/s00521-021-06007-5
10.1108/09574091211289200
10.1108/09574090410700275
10.1093/oxfordhb/9780190066727.013.24
10.1080/00207543.2020.1750727
10.1007/s12247-019-09396-2
10.1109/JSEN.2021.3122258
10.1080/00207543.2022.2093682
10.1108/JEIM-04-2019-0104
10.1016/B978-0-12-818366-3.00005-8
10.1080/00207543.2017.1421787
10.1038/s41562-020-0896-8
10.1080/00207543.2022.2118892
10.1007/978-981-13-6661-1_6
10.1016/j.cie.2014.04.019
10.1038/s41598-020-69250-1
10.1080/00207543.2020.1712491
10.1016/j.ifacol.2022.10.084
10.1016/B978-0-323-91614-1.00022-8
10.1007/s12063-021-00194-z
10.1007/978-3-031-08871-1_9
10.1007/s10845-014-0953-0
10.1109/OAJPE.2022.3206220
10.1016/j.ijpe.2021.108279
10.1109/ICASSP.2013.6638963
10.1080/00207543.2018.1530476
10.1080/00207543.2019.1685705
10.1016/j.ijpe.2014.12.037
10.1007/978-3-030-23551-2_2
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023
2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207543.2022.2164628
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-588X
EndPage 8132
ExternalDocumentID 10_1080_00207543_2022_2164628
2164628
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
0YH
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c442t-4b7b7ce058602989721c4d44d4e5cb87e4ed3bf5f7dbc62ba61512b67b60a5e13
IEDL.DBID 0YH
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000926926500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7543
IngestDate Mon Nov 10 03:01:03 EST 2025
Sat Nov 29 05:36:24 EST 2025
Tue Nov 18 21:50:38 EST 2025
Mon Oct 20 23:45:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-4b7b7ce058602989721c4d44d4e5cb87e4ed3bf5f7dbc62ba61512b67b60a5e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4189-2434
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/00207543.2022.2164628
PQID 2885701459
PQPubID 30924
PageCount 18
ParticipantIDs proquest_journals_2885701459
informaworld_taylorfrancis_310_1080_00207543_2022_2164628
crossref_primary_10_1080_00207543_2022_2164628
crossref_citationtrail_10_1080_00207543_2022_2164628
PublicationCentury 2000
PublicationDate 2023-12-02
PublicationDateYYYYMMDD 2023-12-02
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of production research
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_3_52_1
e_1_3_3_50_1
Taheri M. (e_1_3_3_55_1) 2021; 9
Zhang Z. (e_1_3_3_63_1) 2018; 31
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
Smith V. (e_1_3_3_53_1) 2017; 30
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
e_1_3_3_61_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
Lee H. L. (e_1_3_3_37_1) 1997; 38
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_59_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_41_1
e_1_3_3_62_1
e_1_3_3_60_1
Kawa D. (e_1_3_3_33_1) 2019; 6
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
e_1_3_3_64_1
References_xml – ident: e_1_3_3_11_1
  doi: 10.1287/mnsc.45.8.1091
– ident: e_1_3_3_22_1
  doi: 10.1016/j.cie.2022.108206
– ident: e_1_3_3_36_1
  doi: 10.1109/JIoT.6488907
– ident: e_1_3_3_14_1
  doi: 10.1016/j.energy.2020.119712
– ident: e_1_3_3_38_1
– ident: e_1_3_3_47_1
  doi: 10.5120/ijca2017915495
– ident: e_1_3_3_41_1
  doi: 10.1109/TII.9424
– ident: e_1_3_3_48_1
  doi: 10.1109/Access.6287639
– ident: e_1_3_3_10_1
  doi: 10.1016/j.ijmedinf.2018.01.007
– ident: e_1_3_3_16_1
– volume: 38
  start-page: 93
  year: 1997
  ident: e_1_3_3_37_1
  article-title: The Bullwhip Effect in Supply Chains
  publication-title: Sloan Management Review
– ident: e_1_3_3_19_1
  doi: 10.1080/00207543.2021.1840148
– ident: e_1_3_3_50_1
  doi: 10.1109/JIoT.6488907
– ident: e_1_3_3_62_1
– ident: e_1_3_3_3_1
  doi: 10.2139/ssrn.4118108
– ident: e_1_3_3_58_1
  doi: 10.1080/00207543.2020.1720925
– ident: e_1_3_3_24_1
  doi: 10.1108/14637150810888019
– ident: e_1_3_3_18_1
  doi: 10.1038/s41591-021-01506-3
– volume: 6
  start-page: 1355
  issue: 4
  year: 2019
  ident: e_1_3_3_33_1
  article-title: Credit Risk Assessment From Combined Bank Records Using Federated Learning
  publication-title: International Research Journal of Engineering and Technology (IRJET)
– ident: e_1_3_3_29_1
  doi: 10.1504/IJISM.2022.125995
– ident: e_1_3_3_40_1
  doi: 10.1016/j.protcy.2013.12.194
– ident: e_1_3_3_46_1
  doi: 10.1111/jbl.2019.40.issue-1
– ident: e_1_3_3_9_1
  doi: 10.1007/s41109-017-0058-8
– ident: e_1_3_3_64_1
  doi: 10.1016/j.knosys.2021.106775
– ident: e_1_3_3_56_1
  doi: 10.1109/BigComp51126.2021.00039
– ident: e_1_3_3_26_1
  doi: 10.1007/s00521-021-06007-5
– volume: 31
  year: 2018
  ident: e_1_3_3_63_1
  article-title: Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_3_23_1
  doi: 10.1108/09574091211289200
– ident: e_1_3_3_17_1
  doi: 10.1108/09574090410700275
– ident: e_1_3_3_6_1
  doi: 10.1093/oxfordhb/9780190066727.013.24
– ident: e_1_3_3_30_1
  doi: 10.1080/00207543.2020.1750727
– ident: e_1_3_3_49_1
  doi: 10.1007/s12247-019-09396-2
– ident: e_1_3_3_61_1
– ident: e_1_3_3_65_1
  doi: 10.1109/JSEN.2021.3122258
– ident: e_1_3_3_2_1
  doi: 10.1080/00207543.2022.2093682
– ident: e_1_3_3_13_1
  doi: 10.1108/JEIM-04-2019-0104
– ident: e_1_3_3_35_1
  doi: 10.1016/B978-0-12-818366-3.00005-8
– ident: e_1_3_3_44_1
– ident: e_1_3_3_42_1
  doi: 10.1080/00207543.2017.1421787
– ident: e_1_3_3_25_1
  doi: 10.1038/s41562-020-0896-8
– ident: e_1_3_3_31_1
  doi: 10.1080/00207543.2022.2118892
– ident: e_1_3_3_21_1
– ident: e_1_3_3_57_1
  doi: 10.1007/978-981-13-6661-1_6
– ident: e_1_3_3_54_1
  doi: 10.1016/j.cie.2014.04.019
– ident: e_1_3_3_52_1
  doi: 10.1038/s41598-020-69250-1
– ident: e_1_3_3_43_1
– ident: e_1_3_3_20_1
  doi: 10.1080/00207543.2020.1712491
– ident: e_1_3_3_34_1
  doi: 10.1016/j.ifacol.2022.10.084
– ident: e_1_3_3_7_1
  doi: 10.1016/B978-0-323-91614-1.00022-8
– ident: e_1_3_3_28_1
  doi: 10.1080/00207543.2022.2118892
– ident: e_1_3_3_32_1
  doi: 10.1007/s12063-021-00194-z
– ident: e_1_3_3_27_1
  doi: 10.1007/978-3-031-08871-1_9
– ident: e_1_3_3_39_1
  doi: 10.1007/s10845-014-0953-0
– ident: e_1_3_3_5_1
  doi: 10.1109/OAJPE.2022.3206220
– ident: e_1_3_3_59_1
  doi: 10.1016/j.ijpe.2021.108279
– ident: e_1_3_3_51_1
  doi: 10.1109/ICASSP.2013.6638963
– volume: 30
  year: 2017
  ident: e_1_3_3_53_1
  article-title: Federated Multi-task Learning
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_3_4_1
  doi: 10.1080/00207543.2018.1530476
– ident: e_1_3_3_8_1
  doi: 10.1080/00207543.2019.1685705
– ident: e_1_3_3_15_1
– ident: e_1_3_3_45_1
– volume: 9
  start-page: 37
  issue: 1
  year: 2021
  ident: e_1_3_3_55_1
  article-title: A Novel Method for Medical Image Segmentation Based on Convolutional Neural Networks with Sgd Optimization
  publication-title: Journal of Electrical and Computer Engineering Innovations (JECEI)
– ident: e_1_3_3_12_1
  doi: 10.1016/j.ijpe.2014.12.037
– ident: e_1_3_3_60_1
  doi: 10.1007/978-3-030-23551-2_2
SSID ssj0000584
Score 2.634752
Snippet The use of Artificial Intelligence (AI) for predicting supply chain risk has gained popularity. However, proposed approaches are based on the premise that...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8115
SubjectTerms Algorithms
Artificial intelligence
Datasets
federated learning
Machine learning
Predictions
Privacy
privacy preserving
Risk
Supply chain
Supply chains
Title Federated machine learning for privacy preserving, collective supply chain risk prediction
URI https://www.tandfonline.com/doi/abs/10.1080/00207543.2022.2164628
https://www.proquest.com/docview/2885701459
Volume 61
WOSCitedRecordID wos000926926500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1366-588X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000584
  issn: 0020-7543
  databaseCode: TFW
  dateStart: 19610101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aPejBt1itkoNHt3Sz2ddRxNJT8VCxelkySbYWdC3dWui_N5NNa4tIDwrLnnZCmEzmscx8HyHXJuaDCIB74AtToHAGntA47C6j1AcTM3JoWbKJuNtN-v30wXUTlq6tEmvovAKKsL4aL7eAct4RhxPcJtDxwFR3jDUZImSxZJNsMVOaYFdX67nz7YzDxAExtzyUmQ_x_LbMSnhaAS_94axtBGrv_8PeD8ieSz_pbWUvh2RDF0dkdwmU8Ji8tBFfwqSgir7bTktNHbXEgJp90tF4OBVyRrGDFh1NMbihaE2V56Ql0oTOqHwVw4Ji4zp-qIZ2fOKEPLbve3cdzzEweNIc28TjEEMstVFiZKHaTbkoueLm0aGEJNZcqwDyMI8VyIiBwPyIQRRD1BKh9oNTUis-Cn1GKAgh8liGIpIpj7USTKtIyRRM_pYoJuqEzxWfSQdPjiwZb5m_QDGtVJeh6jKnujppLsRGFT7HOoF0-VSzif0xklcsJlmwRrYxN4HMXfUyYwlyBPg8TM__sPQF2UEie9sowxqkNhl_6kuyLaeTYTm-sjZt3r320xdfoPN7
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aBfXgW6xWzcGjW7rZ7OsoYqlYe6pYvIS8ti7oWtq10H9vJrurLSI9KOxxJ4TJZB5h5vsQujQxX3BPUEe43BQolAiHaxh2l0HsChMzEtGyZBNhrxcNBvH8LAy0VUINnRRAEdZXw-WGx-iqJQ5GuE2ko54p7whpEoDIItEqWvNNrIW2vn776dsb-1GJxNxyQKaa4vltmYX4tIBe-sNb2xDU3vmPze-i7TIBxdeFxeyhFZ3to605WMID9NwGhAmThCr8ZnstNS7JJYbYbBSPxumUyxmGHlpwNdnwCoM9Fb4TT4AodIblC08zDK3r8KNK7QDFIXps3_ZvOk7JweBIc3C5Q0UoQqmNFgML1m4KRkkVNZ_2pYhCTbXyROInoRIyIIJDhkREEIqgxX3tekeolr1n-hhhwTlPQunzQMY01IoTrQIlY2EyuEgRXke00jyTJUA58GS8MvcLx7RQHQPVsVJ1ddT8EhsVCB3LBOL5Y2W5fRpJCh4T5i2RbVQ2wMrLPmEkApYAl_rxyR-WvkAbnf5Dl3XvevenaBNo7W3bDGmgWj7-0GdoXU7zdDI-twb-CZS29pM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aRfTgW6xWzcGjK91s9nUUdVGU0kPF4iXktbWga2lrof_eTDatLSI9KOwxE8JkMo9l5vsQOjcxX_BAUE_43BQolAiPaxh2l1HqCxMzclG3ZBNxo5G022nTdRMOXFsl1NB5CRRhfTU87p7KJx1xMMFtAh0NTHVHyCUBhCySLKMVC45lTLqVPX874zBxQMx1D2QmQzy_bTMXnubAS384axuBsq1_OPs22nTpJ74q7WUHLeliF23MgBLuoZcM8CVMCqrwu-201NhRS3SwOSfu9bsjLscYOmjB0RSdCwzWVHpOPACa0DGWr7xbYGhch4Wqa8cn9tFTdtu6vvMcA4MnzbUNPSpiEUttlBhZqHZTLkqqqPl0KEUSa6pVIPIwj5WQEREc8iMiolhEdR5qPzhAleKj0IcIC855HsuQRzKlsVacaBUpmQqTvyWK8CqiE8Uz6eDJgSXjjflTFNNSdQxUx5zqquhyKtYr8TkWCaSzt8qG9sdIXrKYsGCBbG1iAsw99QEjCXAE-DRMj_6w9Rlaa95k7PG-8XCM1oHT3vbMkBqqDPuf-gStytGwO-ifWvP-AoaI9Tc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+machine+learning+for+privacy+preserving%2C+collective+supply+chain+risk+prediction&rft.jtitle=International+journal+of+production+research&rft.au=Zheng%2C+Ge&rft.au=Kong%2C+Lingxuan&rft.au=Brintrup%2C+Alexandra&rft.date=2023-12-02&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=61&rft.issue=23&rft.spage=8115&rft.epage=8132&rft_id=info:doi/10.1080%2F00207543.2022.2164628&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon