Low‐complexity linear massive MIMO detection based on the improved BFGS method

Linear minimum mean square error (MMSE) detection achieves a good trade‐off between performance and complexity for massive multiple‐input multiple‐output (MIMO) systems. To avoid the high‐dimensional matrix inversion involved, MMSE detection can be transformed into an unconstrained optimization prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET communications Jg. 16; H. 14; S. 1699 - 1707
Hauptverfasser: Li, Lin, Hu, Jianhao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Stevenage John Wiley & Sons, Inc 01.08.2022
Schlagworte:
ISSN:1751-8628, 1751-8636
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Linear minimum mean square error (MMSE) detection achieves a good trade‐off between performance and complexity for massive multiple‐input multiple‐output (MIMO) systems. To avoid the high‐dimensional matrix inversion involved, MMSE detection can be transformed into an unconstrained optimization problem and then solved by efficient numerical algorithms in an iterative way. Three low‐complexity Broyden‐Fletcher‐Goldfarb‐Shanno (BFGS) quasi‐Newton methods are proposed to iteratively realize massive MIMO MMSE detection without matrix inversion. The complexity can be reduced from O(K3)$\mathcal {O}(K^{3})$ to O(LK2)$\mathcal {O}(LK^{2})$, where K and L denote the number of users and iterations, respectively. Leveraging the special properties of massive MIMO, the authors first explore a simplified BFGS method (named S‐BFGS) to alleviate the computational burden in the search direction. For lower complexity, BFGS method with the unit step size (named U‐BFGS) is presented subsequently. When the base station (BS)‐to‐user‐antenna ratio (BUAR) is large enough, the two proposed BFGS methods can be integrated (named U‐S‐BFGS) to further reduce complexity. In addition, an efficient initialization strategy is devised to accelerate convergence. Simulation results verify that the proposed detection scheme can achieve near‐MMSE performance with a small number of iterations L as low as 2 or 3.
AbstractList Linear minimum mean square error (MMSE) detection achieves a good trade‐off between performance and complexity for massive multiple‐input multiple‐output (MIMO) systems. To avoid the high‐dimensional matrix inversion involved, MMSE detection can be transformed into an unconstrained optimization problem and then solved by efficient numerical algorithms in an iterative way. Three low‐complexity Broyden‐Fletcher‐Goldfarb‐Shanno (BFGS) quasi‐Newton methods are proposed to iteratively realize massive MIMO MMSE detection without matrix inversion. The complexity can be reduced from O(K3)$\mathcal {O}(K^{3})$ to O(LK2)$\mathcal {O}(LK^{2})$, where K and L denote the number of users and iterations, respectively. Leveraging the special properties of massive MIMO, the authors first explore a simplified BFGS method (named S‐BFGS) to alleviate the computational burden in the search direction. For lower complexity, BFGS method with the unit step size (named U‐BFGS) is presented subsequently. When the base station (BS)‐to‐user‐antenna ratio (BUAR) is large enough, the two proposed BFGS methods can be integrated (named U‐S‐BFGS) to further reduce complexity. In addition, an efficient initialization strategy is devised to accelerate convergence. Simulation results verify that the proposed detection scheme can achieve near‐MMSE performance with a small number of iterations L as low as 2 or 3.
Linear minimum mean square error (MMSE) detection achieves a good trade‐off between performance and complexity for massive multiple‐input multiple‐output (MIMO) systems. To avoid the high‐dimensional matrix inversion involved, MMSE detection can be transformed into an unconstrained optimization problem and then solved by efficient numerical algorithms in an iterative way. Three low‐complexity Broyden‐Fletcher‐Goldfarb‐Shanno (BFGS) quasi‐Newton methods are proposed to iteratively realize massive MIMO MMSE detection without matrix inversion. The complexity can be reduced from to , where K and L denote the number of users and iterations, respectively. Leveraging the special properties of massive MIMO, the authors first explore a simplified BFGS method (named S‐BFGS) to alleviate the computational burden in the search direction. For lower complexity, BFGS method with the unit step size (named U‐BFGS) is presented subsequently. When the base station (BS)‐to‐user‐antenna ratio (BUAR) is large enough, the two proposed BFGS methods can be integrated (named U‐S‐BFGS) to further reduce complexity. In addition, an efficient initialization strategy is devised to accelerate convergence. Simulation results verify that the proposed detection scheme can achieve near‐MMSE performance with a small number of iterations L as low as 2 or 3.
Author Hu, Jianhao
Li, Lin
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0003-4595-9242
  surname: Li
  fullname: Li, Lin
  organization: Qinghai Normal University
– sequence: 2
  givenname: Jianhao
  surname: Hu
  fullname: Hu, Jianhao
  email: jhhu@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BookMark eNp9kMtOAjEUhhuDiYBufIIm7kzAttMWulQiSALBRFk3bacTSuaCbQHZ-Qg-o0_i4BgXxrg65-R8_7n8HdAqq9ICcIlRHyMqbkyxJX1MKBYnoI0HDPeGPOGtn5wMz0AnhDVCjHFK2-BxVu0_3t5NVWxy--riAeautMrDQoXgdhbOp_MFTG20JrqqhFoFm8I6iSsLXbHx1a6u78aTJ1jYuKrSc3CaqTzYi-_YBcvx_fPooTdbTKaj21nPUEpEz1jMGDGaM57xVGOOqWZEa40oxcwONBNKUEt1NlBpVjeHSithCElSqjTFSRdcNXPrE162NkS5rra-rFfKBAlCBKYc1RRqKOOrELzNpHFRHT-JXrlcYiSPvsmjb_LLt1py_Uuy8a5Q_vA3jBt473J7-IeUo_mSNJpP6k6AXw
CitedBy_id crossref_primary_10_1109_LCOMM_2024_3363234
crossref_primary_10_1109_ACCESS_2023_3242210
Cites_doi 10.1137/1019005
10.1109/TCSII.2018.2801867
10.1109/TWC.2010.092810.091092
10.1090/S0025-5718-1967-0224273-2
10.1109/COMST.2019.2935810
10.1109/ICC.2015.7248580
10.1007/s10589-017-9940-7
10.1109/ICC.2017.7996693
10.1109/COMST.2015.2475242
10.1109/ACCESS.2020.2979371
10.1023/B:COAP.0000044184.25410.39
10.1109/MSP.2011.2178495
10.1109/MCOM.2014.6736761
10.1109/TSP.2017.2698410
10.1109/LCOMM.2021.3121445
10.1109/WCSP.2017.8170902
10.1109/LCOMM.2019.2897798
10.1109/ACCESS.2021.3065923
10.1109/TSP.2020.2964234
10.1109/ICDSP.2015.7251869
10.1109/TCSI.2020.2966318
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1049/cmu2.12419
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Advanced Technologies & Aerospace Collection
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 1707
ExternalDocumentID 10_1049_cmu2_12419
CMU212419
Genre article
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
2QL
4.4
4IJ
5GY
6IK
6OB
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4429-ce1552cb656f6db1614b52bbb04415e7b59a94e4bf7adf14b8aba9c223d4ab413
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000801844700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8628
IngestDate Wed Aug 13 05:29:06 EDT 2025
Wed Oct 29 21:10:04 EDT 2025
Tue Nov 18 22:29:58 EST 2025
Wed Jan 22 16:20:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4429-ce1552cb656f6db1614b52bbb04415e7b59a94e4bf7adf14b8aba9c223d4ab413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4595-9242
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12419
PQID 3092291460
PQPubID 1936360
PageCount 9
ParticipantIDs proquest_journals_3092291460
crossref_citationtrail_10_1049_cmu2_12419
crossref_primary_10_1049_cmu2_12419
wiley_primary_10_1049_cmu2_12419_CMU212419
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET communications
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 9
2020; 8
2021; 26
2004; 29
1967; 21
2017; 17
2019; 21
1977; 19
2019; 23
2017; 65
2013; 30
1996
2017
2006; 175
2020; 68
2015
2020; 67
2014; 52
2018; 65
2010; 9
2018; 69
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_24_1
e_1_2_8_14_1
e_1_2_8_15_1
Wei Z. (e_1_2_8_16_1) 2006; 175
e_1_2_8_3_1
Dennis J.E. (e_1_2_8_22_1) 1996
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_23_1
References_xml – volume: 9
  start-page: 45740
  year: 2021
  end-page: 45753
  article-title: Low complexity linear detectors for massive MIMO: a comparative study
  publication-title: IEEE Access
– volume: 19
  start-page: 46
  year: 1977
  end-page: 89
  article-title: Quasi‐newton methods, motivation and theory
  publication-title: Siam. Rev.
– volume: 65
  start-page: 1194
  year: 2018
  end-page: 1198
  article-title: An improved Gauss‐Seidel algorithm and its efficient architecture for massive MIMO systems
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– year: 1996
  article-title: Numerical methods for unconstrained optimization and nonlinear equations
  publication-title: SIAM Classics in Applied Mathematics.
– volume: 8
  start-page: 50244
  year: 2020
  end-page: 50255
  article-title: Fast converging iterative precoding for massive MIMO systems: an accelerated weighted Neumann series‐steepest descent approach
  publication-title: IEEE Access
– volume: 68
  start-page: 573
  year: 2020
  end-page: 588
  article-title: Energy‐and area‐efficient recursive‐conjugate‐gradient‐based MMSE detector for massive MIMO systems
  publication-title: IEEE Trans. Signal Process.
– volume: 52
  start-page: 186
  year: 2014
  end-page: 195
  article-title: Massive MIMO for next generation wireless systems
  publication-title: IEEE Commun. Mag.
– volume: 67
  start-page: 2128
  year: 2020
  end-page: 2139
  article-title: Efficient successive over relaxation detectors for massive MIMO
  publication-title: IEEE Trans. Circuits Syst. I Regul. Paper
– start-page: 1
  year: 2017
  end-page: 6
– start-page: 248
  year: 2015
  end-page: 252
– start-page: 1
  year: 2017
  end-page: 5
– volume: 26
  start-page: 138
  issue: 1
  year: 2021
  end-page: 142
  article-title: An efficient linear detection scheme based on L‐BFGS method for massive MIMO systems
  publication-title: IEEE Commun. Lett.
– volume: 29
  start-page: 315
  year: 2004
  end-page: 332
  article-title: The superlinear convergence of a modified BFGS‐type method for unconstrained optimization
  publication-title: Comput. Optim. Appl.
– volume: 175
  start-page: 1156
  issue: 2
  year: 2006
  end-page: 1188
  article-title: New quasi‐Newton methods for unconstrained optimization problems
  publication-title: Appl. Math. Comput.
– volume: 21
  start-page: 368
  year: 1967
  end-page: 381
  article-title: Quasi‐newton methods and their application to function minimisation
  publication-title: Math. Compu.
– volume: 65
  start-page: 3775
  year: 2017
  end-page: 3788
  article-title: Low‐computing‐load, high‐parallelism detection method based on Chebyshev iteration for massive MIMO systems with VLSI architecture
  publication-title: IEEE Trans. Signal Process
– volume: 30
  start-page: 40
  year: 2013
  end-page: 60
  article-title: Scaling up MIMO: Opportunities and challenges with very large arrays
  publication-title: IEEE Signal Process Mag.
– volume: 69
  start-page: 225
  year: 2018
  end-page: 241
  article-title: On exact linesearch quasi‐Newton methods for minimizing a quadratic function
  publication-title: Comput. Optim. Appl.
– volume: 21
  start-page: 3109
  year: 2019
  end-page: 3132
  article-title: Massive MIMO detection techniques: a survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 17
  start-page: 1941
  year: 2017
  end-page: 1988
  article-title: Fifty years of MIMO detection: the road to large‐scale MIMOs
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 1763
  year: 2015
  end-page: 1769
– volume: 23
  start-page: 748
  year: 2019
  end-page: 751
  article-title: A low complexity signal detection scheme based on improved Newton iteration for massive MIMO systems
  publication-title: IEEE Commun. Lett.
– volume: 9
  start-page: 3590
  year: 2010
  end-page: 3600
  article-title: Noncooperative cellular wireless with unlimited numbers of base station antennas
  publication-title: IEEE Trans. Wirel. Commun.
– ident: e_1_2_8_23_1
  doi: 10.1137/1019005
– year: 1996
  ident: e_1_2_8_22_1
  article-title: Numerical methods for unconstrained optimization and nonlinear equations
  publication-title: SIAM Classics in Applied Mathematics.
– ident: e_1_2_8_11_1
  doi: 10.1109/TCSII.2018.2801867
– ident: e_1_2_8_3_1
  doi: 10.1109/TWC.2010.092810.091092
– ident: e_1_2_8_19_1
  doi: 10.1090/S0025-5718-1967-0224273-2
– ident: e_1_2_8_5_1
  doi: 10.1109/COMST.2019.2935810
– ident: e_1_2_8_7_1
  doi: 10.1109/ICC.2015.7248580
– ident: e_1_2_8_21_1
  doi: 10.1007/s10589-017-9940-7
– ident: e_1_2_8_10_1
  doi: 10.1109/ICC.2017.7996693
– ident: e_1_2_8_4_1
  doi: 10.1109/COMST.2015.2475242
– ident: e_1_2_8_14_1
  doi: 10.1109/ACCESS.2020.2979371
– ident: e_1_2_8_20_1
  doi: 10.1023/B:COAP.0000044184.25410.39
– ident: e_1_2_8_24_1
  doi: 10.1109/MSP.2011.2178495
– volume: 175
  start-page: 1156
  issue: 2
  year: 2006
  ident: e_1_2_8_16_1
  article-title: New quasi‐Newton methods for unconstrained optimization problems
  publication-title: Appl. Math. Comput.
– ident: e_1_2_8_2_1
  doi: 10.1109/MCOM.2014.6736761
– ident: e_1_2_8_9_1
  doi: 10.1109/TSP.2017.2698410
– ident: e_1_2_8_17_1
  doi: 10.1109/LCOMM.2021.3121445
– ident: e_1_2_8_13_1
  doi: 10.1109/WCSP.2017.8170902
– ident: e_1_2_8_8_1
  doi: 10.1109/LCOMM.2019.2897798
– ident: e_1_2_8_6_1
  doi: 10.1109/ACCESS.2021.3065923
– ident: e_1_2_8_15_1
  doi: 10.1109/TSP.2020.2964234
– ident: e_1_2_8_18_1
  doi: 10.1109/ICDSP.2015.7251869
– ident: e_1_2_8_12_1
  doi: 10.1109/TCSI.2020.2966318
SSID ssj0055644
Score 2.3170671
Snippet Linear minimum mean square error (MMSE) detection achieves a good trade‐off between performance and complexity for massive multiple‐input multiple‐output...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1699
SubjectTerms Algorithms
Approximation
Complexity
Error detection
MIMO communication
Newton methods
Optimization
Random variables
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHrR704FusVlnQi0Jsst002ZNosSrYWqiF3kL2ESjYh32oRz-Cn9FP4uw2sT1IL94SsixhZ3f-v-xOZgDOAhQJX4QK1zd3HeZ7Gv0ggpwsGR7xqArL0habCOr1sN3mjXTDbZSGVWY-0Tpq1Zdmj7xYcjmlHNe1ezV4dUzVKHO6mpbQWIYVkyXBs6F7zcwT-37ZFnNFhfQcJPcwS0_KeFF2J_QStc1k2JkXpBllzrOqFZvq5n9fcws2Uswk19N5sQ1LurcD63PJB3eh8dh___78sjHl-gNhnBjijIekizyNPpDUHmpPROmxDdbqEaN3iuAFIiPp2L0IvL-p3jXJtAz1HrSqt8-Veyetr-BIhjLkSG3yr0mBSJeUlUD2Y8KnQgjXfGTpQPg85kwzkQSxSvBhGIuYSwQKxWKB6rcPuV6_pw-AJAiejItYCqEYk5oHSIKu5NRligexzsN5NsiRTJOPmxoYL5E9BGc8MgaJrEHycPrbdjBNufFnq0JmgChddqNoNvp5uLD2W9BDVKm1qL06XNzXEaxR89ODDfsrQG48nOhjWJVv485oeGKn3A-N5t29
  priority: 102
  providerName: ProQuest
Title Low‐complexity linear massive MIMO detection based on the improved BFGS method
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12419
https://www.proquest.com/docview/3092291460
Volume 16
WOSCitedRecordID wos000801844700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Journals
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6I80EfvIvTOQL6olBts3RtwBcnTgU3i3MovpTcBgM3ZW7qoz_B3-gv8SRdvYAI4ktJaXohyTnfl_TkOwBbEYJEKGON9s19j4WBQT-IRE5VLB8JqI6ryiWbiJrN-PqaJxOwn--FyfQhPhbcrGU4f20NXMgsCwmSWuxE1RvRXUQnq_lZCIJKZMc0ZUnuh8Ow6lK5Ij4GHvL2OBcnZXzv897vcPTJMb8yVQc19bn_feQ8zI4pJjnIxsQCTJj-Isx8ER5cguTs7unt5dXFk5tnJOLEvkoMSA-5NPo_0jhtnBNthi5Qq08s1mmCBaSLpOvWIfC8Vj9ukSwF9TK060eXhyfeOLeCpxhCkKeM1V5TEulcp6ol8j4mQyql9O0Ey0Qy5IIzw2QnErqDF2MhBVdIJjQTEpFvBSb7d32zCqSDpJNxKZSUmjFleIQs0Fec-kzzSJgibOdNnKqx8LjNf3Gbuh_gjKe2lVLXSkXY_Kh7n8lt_FirlPdUOja5h7Tic0o5On6_CDuuT355QnrYaFNXWvtL5XWYpnb7gwsALMHkcDAyGzClHofdh0HZDb8yFGpHzeSi7Gb3ZRtL2sJjEt7g8eq0-Q5R3OGM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xScCBHVFWS8ABpEBqnCY-IMRWWnWhUluJW4iXSkjQQlu2G5_Al_BRfAljt6E9oN564OYoI0vJjN-8scczADs-OglPBArXN3cd5iU14iASOXlk-EiSqiAlbbMJv1gMbm54aQS-4rswJq0yxkQL1KohzR754ZHLKeW4rt2TxyfHdI0yp6txC42OWeT0-yuGbK3j7AXqd5fS9GXlPON0uwo4kiH4OlKbqmNSIJGppZRAxsOER4UQrgkttC88HnGmmaj5karhyyASEZfoRhWLBGI-zjsK4yhMuU0VLMfI73kp2zwWPXLSwUghiMuhMn4oH57pAfpSU9Gn3wH2WG0_N7bOLT37337LHMx0aTQ57dj9PIzo-gJM9xVXXIRSvvH6_fFpc-b1GwYbxDDqqEkeMF5AjCeFbOGaKN22yWh1Yvy5IjhASkzu7F4LPp-lr8qk02Z7CapD-aRlGKs36noFSA2JNeMikkIoxqTmPjJdV3LqMsX9SCdgL1ZqKLvF1U2Pj_vQHvIzHhoDCK0BJGD7V_axU1LkT6n1WOFhF1ZaYU_bCdi39jJghvC8UKV2tDp4ri2YzFQK-TCfLebWYIqaCx42xXEdxtrNZ70BE_KlfddqblpzJ3A7bEP6AfHOO6Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xCcGBHVFWS8ABpNDUdZr4gBBboYKWSlAJcQnxEgmJttCW7cYn8D18Dl_C2E2gB8SNAzdHsSwls7w39ngGYM1HkPBEoNC-ueswL6fRDyKRk3nDR3JUBQVpm034lUpwecmrffCe3oUxaZWpT7SOWjWl2SPP5l1OKUe7drNxkhZRPSju3N07poOUOWlN22l0VeREvzxh-NbeLh2grNcpLR5e7B87SYcBRzJ0xI7UpgKZFEhq4oISyH6Y8KgQwjVhhvaFxyPONBOxH6kYXwaRiLhESFUsEuj_cd1-GPQxxjTphFXvKkUBzyvYRrKIzjkHo4YgLY3KeFbWH-gW4qqp7tMLht8Mt5cnW6Arjv_nXzQBYwm9Jrtde5iEPt2YgtGeoovTUD1tPn28vtlcev2MQQgxTDtqkTrGEej7SblUPiNKd2ySWoMYnFcEB0iVyY3dg8HnveLROem2356B2p980iwMNJoNPQckRsLNuIikEIoxqbmPDNiVnLpMcT_SGdhIBRzKpOi66f1xG9rDf8ZDowyhVYYMrH7NveuWGvlx1mIq_DBxN-3wW_IZ2LS688sK4X65Ru1o_ve1VmAY9Sc8LVVOFmCEmnsfNvNxEQY6rQe9BEPysXPTbi1bzSdw_dd69AnVZ0R9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90complexity+linear+massive+MIMO+detection+based+on+the+improved+BFGS+method&rft.jtitle=IET+communications&rft.au=Li%2C+Lin&rft.au=Hu%2C+Jianhao&rft.date=2022-08-01&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=16&rft.issue=14&rft.spage=1699&rft.epage=1707&rft_id=info:doi/10.1049%2Fcmu2.12419&rft.externalDBID=10.1049%252Fcmu2.12419&rft.externalDocID=CMU212419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon