Petroleum demand forecasting for Taiwan using modified fuzzy-grey algorithms

In this paper, we adopt the exponentially weighted moving average (EWMA) method to develop the residual modification EWMA grey forecasting model REGM(1,1) and combines it with fuzzy theory to derive the fuzzy REGM or the FREGM(1,1) model. The proposed model is used to forecast annual petroleum deman...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems Ročník 33; číslo 1; s. 60 - 69
Hlavní autoři: Lu, Shin-Li, Tsai, Chen-Fang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.02.2016
Témata:
ISSN:0266-4720, 1468-0394
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we adopt the exponentially weighted moving average (EWMA) method to develop the residual modification EWMA grey forecasting model REGM(1,1) and combines it with fuzzy theory to derive the fuzzy REGM or the FREGM(1,1) model. The proposed model is used to forecast annual petroleum demand in Taiwan. The experimental results show that the mean absolute percentage errors, median absolute percentage error, and symmetric mean absolute percentage error of FREGM(1,1) model are higher by 23.71, 12.26, and 23.06% respectively, compared with those obtained using the traditional GM(1,1) model.
Bibliografie:ArticleID:EXSY12129
ark:/67375/WNG-1WT6NGK1-M
istex:B173FEA271F17400C0A39CA0FCD38E3A8AFE67F5
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0266-4720
1468-0394
DOI:10.1111/exsy.12129