Brain tumour segmentation framework with deep nuanced reasoning and Swin‐T

Tumour medical image segmentation plays a crucial role in clinical imaging diagnosis. Existing research has achieved good results, enabling the segmentation of three tumour regions in MRI brain tumour images. Existing models have limited focus on the brain tumour areas, and the long‐term dependency...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 18; číslo 6; s. 1550 - 1564
Hlavní autoři: Xu, Yang, Yu, Kun, Qi, Guanqiu, Gong, Yifei, Qu, Xiaolong, Yin, Li, Yang, Pan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Wiley 01.05.2024
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tumour medical image segmentation plays a crucial role in clinical imaging diagnosis. Existing research has achieved good results, enabling the segmentation of three tumour regions in MRI brain tumour images. Existing models have limited focus on the brain tumour areas, and the long‐term dependency of features is weakened as the network depth increases, resulting in blurred edge segmentation of the targets. Additionally, considering the excellent segmentation performance of the Swin Transformer(Swin‐T) network, its network structure and parameters are relatively large. To address these limitations, this paper proposes a brain tumour segmentation framework with deep nuanced reasoning and Swin‐T. It is mainly composed of the backbone hybrid network (BHN) and the deep micro texture extraction module (DMTE). The BHN combines the Swin‐T stage with a new downsampling transition module called dual path feature reasoning (DPFR). The entire network framework is designed to extract global and local features from multi‐modal data, enabling it to capture and analyze deep texture features in multi‐modal images. It provides significant optimization over the Swin‐T network structure. Experimental results on the BraTS dataset demonstrate that the proposed method outperforms other state‐of‐the‐art models in terms of segmentation performance. The corresponding source codes are available at https://github.com/CurbUni/Brain‐Tumor‐Segmentation‐Framework‐with‐Deep‐Nuanced‐Reasoning‐and‐Swin‐T. This paper proposes a brain tumour segmentation framework with deep nuanced reasoning and Swin‐T. It is mainly composed of the backbone hybrid network (BHN) and the deep micro texture extraction module (DMTE). The BHN combines the Swin Transformer stage with a new downsampling transition module called dual path feature reasoning. The entire network framework focuses on for extracting global and local features from multi‐modal data and can capture and analyze deep texture features in multi‐modal images. It provides significant optimization over the Swin Transformer network structure. Experimental results on the BraTS dataset demonstrate that the proposed method outperforms other state‐of‐the‐art models in terms of segmentation performance.
AbstractList Abstract Tumour medical image segmentation plays a crucial role in clinical imaging diagnosis. Existing research has achieved good results, enabling the segmentation of three tumour regions in MRI brain tumour images. Existing models have limited focus on the brain tumour areas, and the long‐term dependency of features is weakened as the network depth increases, resulting in blurred edge segmentation of the targets. Additionally, considering the excellent segmentation performance of the Swin Transformer(Swin‐T) network, its network structure and parameters are relatively large. To address these limitations, this paper proposes a brain tumour segmentation framework with deep nuanced reasoning and Swin‐T. It is mainly composed of the backbone hybrid network (BHN) and the deep micro texture extraction module (DMTE). The BHN combines the Swin‐T stage with a new downsampling transition module called dual path feature reasoning (DPFR). The entire network framework is designed to extract global and local features from multi‐modal data, enabling it to capture and analyze deep texture features in multi‐modal images. It provides significant optimization over the Swin‐T network structure. Experimental results on the BraTS dataset demonstrate that the proposed method outperforms other state‐of‐the‐art models in terms of segmentation performance. The corresponding source codes are available at https://github.com/CurbUni/Brain‐Tumor‐Segmentation‐Framework‐with‐Deep‐Nuanced‐Reasoning‐and‐Swin‐T.
Tumour medical image segmentation plays a crucial role in clinical imaging diagnosis. Existing research has achieved good results, enabling the segmentation of three tumour regions in MRI brain tumour images. Existing models have limited focus on the brain tumour areas, and the long‐term dependency of features is weakened as the network depth increases, resulting in blurred edge segmentation of the targets. Additionally, considering the excellent segmentation performance of the Swin Transformer(Swin‐T) network, its network structure and parameters are relatively large. To address these limitations, this paper proposes a brain tumour segmentation framework with deep nuanced reasoning and Swin‐T. It is mainly composed of the backbone hybrid network (BHN) and the deep micro texture extraction module (DMTE). The BHN combines the Swin‐T stage with a new downsampling transition module called dual path feature reasoning (DPFR). The entire network framework is designed to extract global and local features from multi‐modal data, enabling it to capture and analyze deep texture features in multi‐modal images. It provides significant optimization over the Swin‐T network structure. Experimental results on the BraTS dataset demonstrate that the proposed method outperforms other state‐of‐the‐art models in terms of segmentation performance. The corresponding source codes are available at https://github.com/CurbUni/Brain‐Tumor‐Segmentation‐Framework‐with‐Deep‐Nuanced‐Reasoning‐and‐Swin‐T .
Tumour medical image segmentation plays a crucial role in clinical imaging diagnosis. Existing research has achieved good results, enabling the segmentation of three tumour regions in MRI brain tumour images. Existing models have limited focus on the brain tumour areas, and the long‐term dependency of features is weakened as the network depth increases, resulting in blurred edge segmentation of the targets. Additionally, considering the excellent segmentation performance of the Swin Transformer(Swin‐T) network, its network structure and parameters are relatively large. To address these limitations, this paper proposes a brain tumour segmentation framework with deep nuanced reasoning and Swin‐T. It is mainly composed of the backbone hybrid network (BHN) and the deep micro texture extraction module (DMTE). The BHN combines the Swin‐T stage with a new downsampling transition module called dual path feature reasoning (DPFR). The entire network framework is designed to extract global and local features from multi‐modal data, enabling it to capture and analyze deep texture features in multi‐modal images. It provides significant optimization over the Swin‐T network structure. Experimental results on the BraTS dataset demonstrate that the proposed method outperforms other state‐of‐the‐art models in terms of segmentation performance. The corresponding source codes are available at https://github.com/CurbUni/Brain‐Tumor‐Segmentation‐Framework‐with‐Deep‐Nuanced‐Reasoning‐and‐Swin‐T. This paper proposes a brain tumour segmentation framework with deep nuanced reasoning and Swin‐T. It is mainly composed of the backbone hybrid network (BHN) and the deep micro texture extraction module (DMTE). The BHN combines the Swin Transformer stage with a new downsampling transition module called dual path feature reasoning. The entire network framework focuses on for extracting global and local features from multi‐modal data and can capture and analyze deep texture features in multi‐modal images. It provides significant optimization over the Swin Transformer network structure. Experimental results on the BraTS dataset demonstrate that the proposed method outperforms other state‐of‐the‐art models in terms of segmentation performance.
Author Xu, Yang
Qu, Xiaolong
Yang, Pan
Yin, Li
Qi, Guanqiu
Yu, Kun
Gong, Yifei
Author_xml – sequence: 1
  givenname: Yang
  surname: Xu
  fullname: Xu, Yang
  organization: Chongqing University of Posts and Telecommunications
– sequence: 2
  givenname: Kun
  surname: Yu
  fullname: Yu, Kun
  organization: The Second Affiliated Hospital of Chongqing Medical University
– sequence: 3
  givenname: Guanqiu
  orcidid: 0000-0001-9562-3865
  surname: Qi
  fullname: Qi, Guanqiu
  organization: State University of New York at Buffalo State
– sequence: 4
  givenname: Yifei
  surname: Gong
  fullname: Gong, Yifei
  organization: University of Toronto
– sequence: 5
  givenname: Xiaolong
  surname: Qu
  fullname: Qu, Xiaolong
  email: 29352301@qq.com
  organization: Army Medical University
– sequence: 6
  givenname: Li
  surname: Yin
  fullname: Yin, Li
  email: yl1@cqu.edu.cn
  organization: Chongqing University Cancer Hospital
– sequence: 7
  givenname: Pan
  orcidid: 0000-0002-1964-2770
  surname: Yang
  fullname: Yang, Pan
  email: yang.pan@cqmu.edu.cn
  organization: University of Chinese Academy of Sciences
BookMark eNp9kMtKAzEUhoMoaNWNT5C10JpkkplkqeKlUFC8rEMmOanRaVIyU0p3PoLP6JM4OuJCxNU5nPP_3-Iboe2YIiB0RMmEEq5OwjKzCS0Il1toj1aCjlVZVts_u1C7aNS2z4QIRaTYQ7OzbELE3WqRVhm3MF9A7EwXUsQ-mwWsU37B69A9YQewxHFlogWHM5g2xRDn2ESH79chvr--PRygHW-aFg6_5z56vLx4OL8ez26upuens7HlnMmxF4RKX5c1CCaJY7WSnljGJGWmkrywteCVcFAqoCCZVV46Z2teuP5X8arYR9OB65J51sscFiZvdDJBfx1SnmuTu2Ab0LagpeppzAjPnbc1sb5W4HpUTQn4nnU8sGxObZvB__Ao0Z9O9adT_eW0D5NfYRsGW12vsfm7QofKOjSw-Qeup7d3bOh8AFxgjSs
CitedBy_id crossref_primary_10_1049_ipr2_13266
crossref_primary_10_1016_j_jvcir_2025_104452
crossref_primary_10_1016_j_compbiomed_2024_109331
crossref_primary_10_1016_j_compbiomed_2024_109353
crossref_primary_10_1016_j_bspc_2025_107561
crossref_primary_10_1002_ima_70012
crossref_primary_10_1016_j_bspc_2024_107203
crossref_primary_10_1016_j_bspc_2024_107368
crossref_primary_10_1007_s00138_025_01741_5
crossref_primary_10_1016_j_cmpb_2024_108544
crossref_primary_10_1016_j_engappai_2024_109440
crossref_primary_10_1080_21681163_2024_2387458
crossref_primary_10_1016_j_displa_2024_102811
crossref_primary_10_1109_TIM_2025_3551581
crossref_primary_10_1016_j_compbiomed_2025_110309
crossref_primary_10_1016_j_compbiomed_2025_110148
crossref_primary_10_1016_j_compbiomed_2024_109183
crossref_primary_10_1016_j_compbiomed_2025_110129
crossref_primary_10_1016_j_compbiomed_2025_109662
crossref_primary_10_1002_ima_23152
crossref_primary_10_1016_j_compbiomed_2024_109300
crossref_primary_10_1016_j_jvcir_2024_104345
crossref_primary_10_1002_ima_70044
crossref_primary_10_1016_j_compbiomed_2024_109204
crossref_primary_10_1049_ipr2_13193
crossref_primary_10_1016_j_bspc_2024_107456
crossref_primary_10_1016_j_patcog_2025_111637
crossref_primary_10_1016_j_bspc_2025_107510
crossref_primary_10_1016_j_bspc_2025_108225
crossref_primary_10_1049_ipr2_70063
crossref_primary_10_1109_TCE_2025_3526801
crossref_primary_10_1016_j_engappai_2025_110794
crossref_primary_10_1016_j_heliyon_2024_e37804
crossref_primary_10_1109_ACCESS_2025_3547796
crossref_primary_10_1109_JSEN_2024_3444496
crossref_primary_10_1016_j_bspc_2025_108040
crossref_primary_10_1016_j_heliyon_2024_e36119
Cites_doi 10.1109/CAC51589.2020.9326740
10.1007/s00521-022-06960-9
10.1007/978-3-319-75238-9_38
10.1016/j.bspc.2022.104037
10.1109/IPAS50080.2020.9334937
10.1007/978-3-030-72087-2_11
10.3389/fpubh.2023.1091850
10.1155/2022/7911801
10.3390/diagnostics13050872
10.3389/fnins.2022.1009581
10.1007/s00371-021-02328-7
10.1007/978-3-030-87193-2_11
10.1007/978-3-319-55524-9_14
10.1109/TMI.2023.3261707
10.1109/ITOEC49072.2020.9141847
10.1007/978-3-031-16443-9_39
10.1007/s12553-023-00737-3
10.1007/s10462-022-10245-x
10.1109/CVPR.2015.7298965
10.1016/j.simpat.2023.102769
10.1016/j.inffus.2022.10.022
10.1109/ICPR.2018.8546022
10.1109/CVPR46437.2021.00681
10.1038/s41592-020-01008-z
10.1016/j.bspc.2023.104949
10.1016/j.bspc.2022.103861
10.2478/ausi-2022-0004
10.1109/ICASSP40776.2020.9053405
10.3390/brainsci12060797
10.1007/978-3-030-72087-2_19
10.1109/TMI.2023.3250474
10.1109/ACCESS.2021.3108516
10.1007/978-3-031-08999-2_22
10.1109/WACV51458.2022.00181
10.1007/978-3-031-09002-8_16
10.1186/s12880-022-00931-1
10.1109/ICCV48922.2021.00986
10.1007/978-3-319-24574-4_28
10.1007/s10462-023-10453-z
10.1002/ima.22890
10.1016/j.compbiomed.2022.106474
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.13048
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1564
ExternalDocumentID oai_doaj_org_article_c31694752a5f4dfcb0cfb9edd43b10ef
10_1049_ipr2_13048
IPR213048
Genre article
GrantInformation_xml – fundername: 2021 Science and Technology Plan Project of Yuzhong District Chongqing(Basic Research and Frontier Exploration Project
  funderid: 20210164
– fundername: Senior Medical Talents Program of Chongqing for Young and Middle‐aged
  funderid: yxgdrc20210101
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M670111ZX
– fundername: Natural Science Foundation of Chongqing Municipality
  funderid: cstc2020jcyj‐bshX0068; cstc2021jcyj‐bsh0199
– fundername: Development Fund of Key Laboratory of Chongqing University Cancer Hospital
  funderid: cquchkfjj005
– fundername: Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University
  funderid: krycyq‐ 2109
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
ESX
GROUPED_DOAJ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
LAI
MCNEO
MS~
O9-
OCL
OK1
P2P
QWB
RIE
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
K1G
L6V
M43
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
S0W
WIN
ID FETCH-LOGICAL-c4428-f5018fb6be5280d2b98f0c22812a7843cb5475de69e1e82c9f8ddcb43d43c7473
IEDL.DBID 24P
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001180233700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Mon Nov 10 04:35:14 EST 2025
Tue Nov 18 22:12:25 EST 2025
Wed Oct 29 21:33:04 EDT 2025
Wed Jan 22 17:19:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4428-f5018fb6be5280d2b98f0c22812a7843cb5475de69e1e82c9f8ddcb43d43c7473
ORCID 0000-0002-1964-2770
0000-0001-9562-3865
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13048
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_c31694752a5f4dfcb0cfb9edd43b10ef
crossref_primary_10_1049_ipr2_13048
crossref_citationtrail_10_1049_ipr2_13048
wiley_primary_10_1049_ipr2_13048_IPR213048
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2023; 13
2023; 79
2023; 14
2022; 152
2023; 11
2023; 33
2023; 56
2023; 126
2022; 22
2023; 42
2023; 85
2022; 2022
2022
2021
2020
2021; 18
2021; 39
2022; 34
2022; 12
2022; 14
2018
2017
2016
2015
2014
2022; 16
2023; 91
2018; 14
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
Wang Y. (e_1_2_10_14_1) 2023; 14
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Goceri E. (e_1_2_10_37_1) 2018; 14
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – start-page: 401
  year: 2022
  end-page: 411
  article-title: Evidence fusion with contextual discounting for multi‐modality medical image segmentation
– volume: 56
  start-page: 2923
  issue: 4
  year: 2023
  end-page: 2969
  article-title: Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: A review
  publication-title: Artif. Intell. Rev.
– start-page: 109
  year: 2021
  end-page: 119
  article-title: Transbts: Multimodal brain tumor segmentation using transformer
– start-page: 6000
  year: 2017
  end-page: 6010
  article-title: Attention is all you need
– year: 2021
– volume: 2022
  year: 2022
  article-title: Research on segmentation of brain tumor in MRI image based on convolutional neural network
  publication-title: Biomed Res. Int.
– volume: 39
  start-page: 2223
  issue: 6
  year: 2021
  end-page: 2233
  article-title: X‐NeT: A dual encoding‐decoding method in medical image segmentation
  publication-title: Visual Comput.
– volume: 34
  start-page: 5791
  issue: 8
  year: 2022
  end-page: 5812
  article-title: Literature review: Efficient deep neural networks techniques for medical image analysis
  publication-title: Neural Comput. Appl.
– year: 2014
– volume: 13
  start-page: 181
  issue: 2
  year: 2023
  end-page: 201
  article-title: A survey of deep learning for mri brain tumor segmentation methods: Trends, challenges, and future directions
  publication-title: Health Technol.
– start-page: 29
  year: 2021
  end-page: 36
  article-title: Capsule neural networks in classification of skin lesions
– start-page: 10012
  year: 2021
  end-page: 10022
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
– volume: 126
  year: 2023
  article-title: Medical image segmentation method based on multi‐feature interaction and fusion over cloud computing
  publication-title: Simul. Modell. Pract. Theory
– start-page: 234
  year: 2015
  end-page: 241
  article-title: U‐NeT: Convolutional networks for biomedical image segmentation
– start-page: 3431
  year: 2015
  end-page: 3440
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 144
  year: 2020
  end-page: 148
  article-title: Image augmentation for deep learning based lesion classification from skin images
– volume: 91
  start-page: 376
  year: 2023
  end-page: 387
  article-title: Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI
  publication-title: Inf. Fusion
– volume: 13
  start-page: 872
  issue: 5
  year: 2023
  article-title: Efficient u‐net architecture with multiple encoders and attention mechanism decoders for brain tumor segmentation
  publication-title: Diagnostics
– year: 2022
– volume: 14
  start-page: 49
  issue: 1
  year: 2022
  end-page: 74
  article-title: U‐NET architecture variants for brain tumor segmentation of histogram corrected images
  publication-title: Acta Univ. Sapientiae, Inf.
– volume: 42
  start-page: 2577
  issue: 9
  year: 2023
  end-page: 2591
  article-title: One model to synthesize them all: Multi‐contrast multi‐scale transformer for missing data imputation
  publication-title: IEEE Trans. Med. Imaging
– volume: 33
  start-page: 1727
  issue: 5
  year: 2023
  end-page: 1744
  article-title: Comparison of the impacts of dermoscopy image augmentation methods on skin cancer classification and a new augmentation method with wavelet packets
  publication-title: Int. J. Imaging Syst. Technol.
– start-page: 6881
  year: 2021
  end-page: 6890
  article-title: Rethinking semantic segmentation from a sequence‐to‐sequence perspective with transformers
– start-page: 1223
  year: 2018
  end-page: 1228
  article-title: Frelu: Flexible rectified linear units for improving convolutional neural networks
– volume: 14
  start-page: 125
  issue: 1
  year: 2018
  end-page: 134
  article-title: Fully automated and adaptive intensity normalization using statistical features for brain mr images
  publication-title: Celal Bayar Univ. J. Sci.
– year: 2021
  article-title: Analysis of capsule networks for image classification
– volume: 16
  year: 2022
  article-title: A medical image segmentation method based on multi‐dimensional statistical features
  publication-title: Front. Neurosci.
– start-page: 118
  year: 2021
  end-page: 132
  article-title: nnu‐net for brain tumor segmentation
– start-page: 300
  year: 2017
  end-page: 304
  article-title: Intensity normalization in brain mr images using spatially varying distribution matching
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  end-page: 9
  article-title: Brain tumour segmentation based on an improved u‐net
  publication-title: BMC Med. Imaging
– start-page: 4804
  year: 2020
  end-page: 4809
  article-title: An instance segmentation algorithm based on improved mask r‐cnn
– volume: 79
  year: 2023
  article-title: dResU‐Net: 3D deep residual U‐Net based brain tumor segmentation from multimodal MRI
  publication-title: Biomed. Signal Process. Control
– volume: 79
  year: 2023
  article-title: DPAFNET: A residual dual‐path attention‐fusion convolutional neural network for multimodal brain tumor segmentation
  publication-title: Biomed. Signal Process. Control
– volume: 42
  issue: 8
  year: 2023
  article-title: CKD‐TransBTS: Clinical knowledge‐driven hybrid transformer with modality‐correlated cross‐attention for brain tumor segmentation
  publication-title: IEEE Trans. Med. Imaging
– year: 2016
– volume: 12
  start-page: 797
  issue: 6
  year: 2022
  article-title: SWINBTS: A method for 3d multimodal brain tumor segmentation using swin transformer
  publication-title: Brain Sciences
– volume: 11
  start-page: 200
  year: 2023
  article-title: MRI brain tumor segmentation using residual spatial pyramid pooling‐powered 3d U‐NeT
  publication-title: Front. Public Health
– start-page: 173
  year: 2022
  end-page: 186
  article-title: Extending nn‐UNeT for brain tumor segmentation
– start-page: 215
  year: 2021
  end-page: 227
  article-title: 3d semantic segmentation of brain tumor for overall survival prediction
– volume: 152
  year: 2022
  article-title: Evaluation of denoising techniques to remove speckle and gaussian noise from dermoscopy images
  publication-title: Comput. Biol. Med.
– start-page: 450
  year: 2018
  end-page: 462
  article-title: Ensembles of multiple models and architectures for robust brain tumour segmentation
– volume: 85
  year: 2023
  article-title: Classification of skin cancer using adjustable and fully convolutional capsule layers
  publication-title: Biomed. Signal Process. Control
– volume: 14
  start-page: 841
  year: 2023
  article-title: Fine‐grained weed recognition using swin transformer and two‐stage transfer learning
  publication-title: Front. Plant Sci.
– start-page: 272
  year: 2021
  end-page: 284
  article-title: Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images
– start-page: 574
  year: 2022
  end-page: 584
  article-title: Unetr: Transformers for 3d medical image segmentation
– volume: 9
  start-page: 119881
  year: 2021
  end-page: 119893
  article-title: ETDNET: An efficient transformer deraining model
  publication-title: IEEE Access
– volume: 56
  start-page: 12561
  year: 2023
  end-page: 12605
  article-title: Medical image data augmentation: techniques, comparisons and interpretations
  publication-title: Artif. Intell. Rev.
– start-page: 1055
  year: 2020
  end-page: 1059
  article-title: UNet 3+: A full‐scale connected UNet for medical image segmentation
– start-page: 1713
  year: 2020
  end-page: 1720
  article-title: Review of research on lightweight convolutional neural networks
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  end-page: 211
  article-title: nnU‐NeT: A self‐configuring method for deep learning‐based biomedical image segmentation
  publication-title: Nat. Methods
– ident: e_1_2_10_30_1
– ident: e_1_2_10_12_1
  doi: 10.1109/CAC51589.2020.9326740
– ident: e_1_2_10_13_1
– ident: e_1_2_10_2_1
  doi: 10.1007/s00521-022-06960-9
– ident: e_1_2_10_26_1
  doi: 10.1007/978-3-319-75238-9_38
– ident: e_1_2_10_36_1
– ident: e_1_2_10_43_1
  doi: 10.1016/j.bspc.2022.104037
– ident: e_1_2_10_49_1
– ident: e_1_2_10_52_1
  doi: 10.1109/IPAS50080.2020.9334937
– ident: e_1_2_10_27_1
  doi: 10.1007/978-3-030-72087-2_11
– ident: e_1_2_10_25_1
  doi: 10.3389/fpubh.2023.1091850
– ident: e_1_2_10_19_1
– ident: e_1_2_10_6_1
  doi: 10.1155/2022/7911801
– ident: e_1_2_10_9_1
  doi: 10.3390/diagnostics13050872
– ident: e_1_2_10_22_1
  doi: 10.3389/fnins.2022.1009581
– ident: e_1_2_10_20_1
– ident: e_1_2_10_21_1
  doi: 10.1007/s00371-021-02328-7
– ident: e_1_2_10_31_1
  doi: 10.1007/978-3-030-87193-2_11
– ident: e_1_2_10_7_1
  doi: 10.1007/978-3-319-55524-9_14
– ident: e_1_2_10_46_1
  doi: 10.1109/TMI.2023.3261707
– ident: e_1_2_10_17_1
  doi: 10.1109/ITOEC49072.2020.9141847
– ident: e_1_2_10_45_1
  doi: 10.1007/978-3-031-16443-9_39
– ident: e_1_2_10_3_1
  doi: 10.1007/s12553-023-00737-3
– volume: 14
  start-page: 841
  year: 2023
  ident: e_1_2_10_14_1
  article-title: Fine‐grained weed recognition using swin transformer and two‐stage transfer learning
  publication-title: Front. Plant Sci.
– ident: e_1_2_10_5_1
  doi: 10.1007/s10462-022-10245-x
– ident: e_1_2_10_48_1
– ident: e_1_2_10_23_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_10_39_1
– volume: 14
  start-page: 125
  issue: 1
  year: 2018
  ident: e_1_2_10_37_1
  article-title: Fully automated and adaptive intensity normalization using statistical features for brain mr images
  publication-title: Celal Bayar Univ. J. Sci.
– ident: e_1_2_10_18_1
  doi: 10.1016/j.simpat.2023.102769
– ident: e_1_2_10_33_1
  doi: 10.1016/j.inffus.2022.10.022
– ident: e_1_2_10_34_1
  doi: 10.1109/ICPR.2018.8546022
– ident: e_1_2_10_15_1
  doi: 10.1109/CVPR46437.2021.00681
– ident: e_1_2_10_28_1
  doi: 10.1038/s41592-020-01008-z
– ident: e_1_2_10_47_1
  doi: 10.1016/j.bspc.2023.104949
– ident: e_1_2_10_38_1
  doi: 10.1016/j.bspc.2022.103861
– ident: e_1_2_10_8_1
  doi: 10.2478/ausi-2022-0004
– ident: e_1_2_10_40_1
  doi: 10.1109/ICASSP40776.2020.9053405
– ident: e_1_2_10_42_1
  doi: 10.3390/brainsci12060797
– ident: e_1_2_10_4_1
  doi: 10.1007/978-3-030-72087-2_19
– ident: e_1_2_10_32_1
  doi: 10.1109/TMI.2023.3250474
– ident: e_1_2_10_11_1
  doi: 10.1109/ACCESS.2021.3108516
– ident: e_1_2_10_41_1
  doi: 10.1007/978-3-031-08999-2_22
– ident: e_1_2_10_44_1
  doi: 10.1109/WACV51458.2022.00181
– ident: e_1_2_10_29_1
  doi: 10.1007/978-3-031-09002-8_16
– ident: e_1_2_10_10_1
  doi: 10.1186/s12880-022-00931-1
– ident: e_1_2_10_16_1
  doi: 10.1109/ICCV48922.2021.00986
– ident: e_1_2_10_24_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_10_50_1
  doi: 10.1007/s10462-023-10453-z
– ident: e_1_2_10_51_1
  doi: 10.1002/ima.22890
– ident: e_1_2_10_35_1
  doi: 10.1016/j.compbiomed.2022.106474
SSID ssj0059085
Score 2.4874341
Snippet Tumour medical image segmentation plays a crucial role in clinical imaging diagnosis. Existing research has achieved good results, enabling the segmentation of...
Abstract Tumour medical image segmentation plays a crucial role in clinical imaging diagnosis. Existing research has achieved good results, enabling the...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1550
SubjectTerms image segmentation
medical image processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA4yfPDFuzhvBPRFoazNpWkenTgUZAyZsLeSqwy0jm7TV3-Cv9FfYpK2Y4Loiy-llNCU76Q55yQn3wfAmXPCMvGnexTCJiIu5ogEIjTiwrk_ymPMmApiE6zfz0YjPliS-vI1YRU9cAVcR-Ek5YRRJKgl2ioZKyu50ZpgmcTG-tk3ZrxJpqo52At503AU0ovIp5Q3xKSEd8aTEnkNZK_4s-SKAmP_9wg1uJjeJlivY0N4WX3TFlgxxTbYqONEWP-F0x1w1_W6DnA2d2l7Cafm8bk-QFRA29RaQb_ACrUxE1jMwy4_9OXnYfEVisK97m1cfL5_DHfBQ-96eHUT1aoIkSIuV4isp-CzMpWGoizWSPLMxgoh56kFywhWkjq4tEm5SUyGFLeZ1koS7BBTLnnAe6BVvBRmH0DOLBYZMe6S-MRFUGZdRixsbJlSErXBeQNQrmrKcK9c8ZSHrWvCcw9mHsBsg9NF20lFlPFjq67HedHCk1uHB87keW3y_C-Tt8FFsNIv_eS3g3sU7g7-o8dDsIZcMFMVOh6B1qycm2Owql5n42l5EobeFyZ-3eI
  priority: 102
  providerName: Directory of Open Access Journals
Title Brain tumour segmentation framework with deep nuanced reasoning and Swin‐T
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13048
https://doaj.org/article/c31694752a5f4dfcb0cfb9edd43b10ef
Volume 18
WOSCitedRecordID wos001180233700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB6yaQ97afrYpem2QdC9tGBqy5JlwV6a0qWBEsKS0tyMJEshsHWCk7TX_Qn7G_tLOpLtlEAplF6EsccPPUbz8Mx8AJcohHXis3sMTW3EUOeIFGU8kgrFH5dxKoQJYBNiOs0XCznrwVWXC9PUhzg43DxnhP3aM7jSDQoJKrU4iatNTT2WMctP4EGSpMKvacpm3T7swbx5SIf0QPIZl11xUibf_b73SByFqv3HWmoQM9eD__vAx_CoVS_J-2Y9PIGerZ7CoFU1ScvI22fweeyhIchuj5Z_TbZ2-a3NQaqI68K1iPfRktLaDan2IVCA-Aj24L8lqsLH_VhVP-_u52fw5frj_MOnqAVWiAxDcyNyvoqf05m2nOZxSbXMXWwoRWGvRM5SozkTvLSZtInNqZEuL0ujWVriNbQ_0nPoV-vKPgcihUtVziw2ibd9FBcOjWrlYieM0XQIb7rxLUxbddyDX9wW4e83k4UfpiIM0xBeH2g3Ta2NP1KN_TQdKHx97HBiXS-Llt0KkyaZxD5QxR0rndGxcVraEjugk9i6IbwNU_eX9xST2Q0NRy_-hfgCTinqPU1M5Evo7-q9fQUPzffdaluPwgodBcMf26-T6S97zOqo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH64gV6sK9Z1QC8KwWQy02SOVhTFWopU8BYyk5lS0FjSVq_-BH-jv8R5k7QiiCBeQkheltnylrz3fQBHVgnLAKt7FA21x6zN4aWUcU-kVv1x4YdRpBzZRNRuxw8PolPl5mAtTIkPMQ244cpw32tc4BiQLh1OhiCZ_UFBkcyYxbMwz6yaQQIDyjqTDzGyeXNXD4lM8g0uJuikTJx-XftNHznY_u9mqtMzl7V_vuEKLFcGJjkrZ8QqzOh8DWqVsUmqpTxch1YTySHIaGx9_4IMde-pqkLKiZkkbBGM0pJM6wHJxy5VgGAOu4vgkjS3t3vt5x9v790NuL-86J5feRW1gqeYdTg8gzh-Rjak5jT2MypFbHxFqVX3aRSzUEnOIp7phtCBjqkSJs4yJVmY2XPWAwk3YS5_zvUWEBGZMI2ZtpsAvZ-UR8a61anxTaSUpHU4nnRwoirccaS_eEzc_28mEuymxHVTHQ6nsoMSbeNHqSaO01QCEbLdgeeil1QLLlFh0BC2DTTlhmVGSV8ZKXRmGyADX5s6nLix--U5yXXnjrq97b8IH8DiVfe2lbSu2zc7sEStFVRmSO7C3KgY6z1YUC-j_rDYd9P1E1bx7IY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EF-8xfUM6ItCsU2TbfPotSjKsoiCb6W5ZEHr0t3VV3-Cv9FfYibtrggiiC-ltNMjSSczk858H8C-M8IywuoeRWMTMOdzBDllPBC5M39chHGSKE82kbTb6f296NS5OVgLU-FDjBfcUDP8fI0KbnraVgEnQ5DMbq-kSGbM0kmYZtxNsgjszDqjiRjZvLmvh0Qm-SYXI3RSJo6-rv1mjzxs_3c31duZ1sI_33AR5msHkxxXX8QSTJhiGRZqZ5PUqtxfgesTJIcgg6GL_UvSNw9PdRVSQewoYYvgKi3RxvRIMfSpAgRz2P0KLskLd7vXbvHx9n67Cnet89vTi6CmVggUcwFHYBHHz8qmNJymoaZSpDZUlDpznycpi5XkLOHaNIWJTEqVsKnWSrJYu3MuAonXYKp4Lsw6EJHYOE-ZcZsIo5-cJ9aF1bkNbaKUpA04GHVwpmrccaS_eMz8_28mMuymzHdTA_bGsr0KbeNHqRMcp7EEImT7A8_lQ1YrXKbiqClcG2jOLdNWyVBZKYx2DZBRaGwDDv3Y_fKc7LJzQ_3exl-Ed2G2c9bKri_bV5swR50TVCVIbsHUoByabZhRL4Nuv9zxX-snFlTsCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tumour+segmentation+framework+with+deep+nuanced+reasoning+and+Swin%E2%80%90T&rft.jtitle=IET+image+processing&rft.au=Xu%2C+Yang&rft.au=Yu%2C+Kun&rft.au=Qi%2C+Guanqiu&rft.au=Gong%2C+Yifei&rft.date=2024-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=6&rft.spage=1550&rft.epage=1564&rft_id=info:doi/10.1049%2Fipr2.13048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_13048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon