YOLOv9 for fracture detection in pediatric wrist trauma X‐ray images
The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surg...
Gespeichert in:
| Veröffentlicht in: | Electronics letters Jg. 60; H. 11 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wiley
01.06.2024
|
| Schlagworte: | |
| ISSN: | 0013-5194, 1350-911X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surgeons to interpret X‐ray images. Specifically, this paper trained the model on the GRAZPEDWRI‐DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50–95 of the current state‐of‐the‐art model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9‐Fracture‐Detection.
YOLOv9 is the latest version of the you only look once (YOLO) series of object detection algorithms released in February 2024. This paper presents a framework for pediatric wrist fracture detection utilizing YOLOv9, which enhances model performance to achieve the state‐of‐the‐art level through training on the GRAZPEDWRI‐DX dataset. This is significant because misinterpretation of fracture X‐ray images may lead to surgery failure and more harm to the patients. The hope is to use artificial intelligence technology to prevent these incidents from occurring. |
|---|---|
| AbstractList | The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surgeons to interpret X‐ray images. Specifically, this paper trained the model on the GRAZPEDWRI‐DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50–95 of the current state‐of‐the‐art model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9‐Fracture‐Detection.
YOLOv9 is the latest version of the you only look once (YOLO) series of object detection algorithms released in February 2024. This paper presents a framework for pediatric wrist fracture detection utilizing YOLOv9, which enhances model performance to achieve the state‐of‐the‐art level through training on the GRAZPEDWRI‐DX dataset. This is significant because misinterpretation of fracture X‐ray images may lead to surgery failure and more harm to the patients. The hope is to use artificial intelligence technology to prevent these incidents from occurring. The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surgeons to interpret X‐ray images. Specifically, this paper trained the model on the GRAZPEDWRI‐DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50–95 of the current state‐of‐the‐art model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9‐Fracture‐Detection . Abstract The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surgeons to interpret X‐ray images. Specifically, this paper trained the model on the GRAZPEDWRI‐DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50–95 of the current state‐of‐the‐art model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9‐Fracture‐Detection. |
| Author | Chien, Chun‐Tse Chou, Kuang‐Yi Ju, Rui‐Yang Chiang, Jen‐Shiun |
| Author_xml | – sequence: 1 givenname: Chun‐Tse surname: Chien fullname: Chien, Chun‐Tse organization: Tamkang University – sequence: 2 givenname: Rui‐Yang orcidid: 0000-0003-2240-1377 surname: Ju fullname: Ju, Rui‐Yang organization: National Taiwan University – sequence: 3 givenname: Kuang‐Yi surname: Chou fullname: Chou, Kuang‐Yi organization: National Taipei University of Nursing and Health Sciences – sequence: 4 givenname: Jen‐Shiun orcidid: 0000-0001-7536-8967 surname: Chiang fullname: Chiang, Jen‐Shiun email: jsken.chiang@gmail.com organization: Tamkang University |
| BookMark | eNp9kM9Kw0AQhxdRsK1efII9C9GdTbKbPUpptRDoRaGelsn-KVtiI5vU0puP4DP6JKateBDxNMzw-30D35Ccrpu1I-QK2A2wTN26uuY3kPKsOCEDSHOWKIDFKRkwBmmSg8rOybBtV_3KlZIDMn2el_M3RX0TqY9ouk101LrOmS40axrW9NXZgF0Mhm5jaDvaRdy8IF18vn9E3NHwgkvXXpAzj3XrLr_niDxNJ4_jh6Sc38_Gd2VisowXiZW2EEzlIKSVHg0HnwrFqxSFxMob71AqLoQRNkcshKykLCTzCJ5BZWw6IrMj1za40q-x_x53usGgD4cmLjXGLpja6UpyVHnKrRAu81WBXjDnpMilh0wA9KzrI8vEpm2j8z88YHpvU-9t6oPNPsx-hU3ocO-o9xHqvytwrGxD7Xb_wPWkLPmx8wVsWIm4 |
| CitedBy_id | crossref_primary_10_3390_math13111858 crossref_primary_10_1007_s00521_025_11223_4 crossref_primary_10_1109_ACCESS_2025_3553087 crossref_primary_10_3390_s24185981 crossref_primary_10_3389_fmed_2025_1567119 crossref_primary_10_3390_rs16203810 crossref_primary_10_1016_j_autcon_2025_105987 crossref_primary_10_3390_app15169031 crossref_primary_10_1007_s10278_025_01512_8 crossref_primary_10_1109_TTE_2025_3562604 crossref_primary_10_1002_bab_70030 crossref_primary_10_3390_ani14223197 crossref_primary_10_3390_drones8110680 crossref_primary_10_1016_j_jestch_2025_102161 crossref_primary_10_1109_ACCESS_2025_3526458 crossref_primary_10_1109_TIM_2025_3551489 crossref_primary_10_1109_MAES_2025_3555249 crossref_primary_10_1177_03019233251356022 crossref_primary_10_3390_diagnostics15030271 crossref_primary_10_1109_ACCESS_2025_3577959 |
| Cites_doi | 10.1109/CVPR.2016.91 10.3390/math10162939 10.1109/ICASSP39728.2021.9414568 10.1038/s41598-022-16828-6 10.1109/CVPR42600.2020.01155 10.3390/biology11121732 10.1109/ACCESS.2022.3154771 10.1109/ACCESS.2025.3549839 10.1007/978-3-319-10602-1_48 10.1016/S1470-2045(18)30689-2 10.1108/SSMT-04-2021-0013 10.1177/0846537120941671 10.1109/CVPRW50498.2020.00203 10.1007/978-3-031-72751-1_1 10.1109/CVPR.2018.00745 10.1038/s41598-023-47460-7 10.1016/j.compbiomed.2022.106478 10.1007/978-3-030-01234-2_1 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/ell2.13248 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_b72a9532d66e4fb8af60ee7657f14611 10_1049_ell2_13248 ELL213248 |
| Genre | shortCommunication |
| GrantInformation_xml | – fundername: National Science and Technology Council funderid: NSTC 112‐2221‐E‐032‐037‐MY2 |
| GroupedDBID | -4A -~X .DC 0R~ 0ZK 1OC 24P 29G 2QL 3EH 4.4 4IJ 5GY 6IK 8FE 8FG 8VB 96U AAHJG AAJGR AAMMB ABJCF ABQXS ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADIYS AEFGJ AEGXH AENEX AFAZI AFKRA AGXDD AI. AIAGR AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ELQJU F5P F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IFBGX IPLJI ITC K1G K7- L6V LAI LXO M43 M7S MCNEO MS~ O9- OK1 P0- P2P P62 PHGZM PHGZT PQGLB PTHSS PUEGO QWB R4Z RNS RUI TN5 U5U UNMZH VH1 WH7 WIN ZL0 ~ZZ AAYXX AFFHD CITATION |
| ID | FETCH-LOGICAL-c4428-d7d86095167d7fac21f3692b3a67abfcfea79266c6d5aa867b77870fa1f01bcd3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246174100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 |
| IngestDate | Fri Oct 03 12:51:19 EDT 2025 Wed Oct 29 21:25:33 EDT 2025 Tue Nov 18 21:47:11 EST 2025 Sun Sep 21 06:14:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Attribution-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4428-d7d86095167d7fac21f3692b3a67abfcfea79266c6d5aa867b77870fa1f01bcd3 |
| ORCID | 0000-0001-7536-8967 0000-0003-2240-1377 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13248 |
| PageCount | 3 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b72a9532d66e4fb8af60ee7657f14611 crossref_primary_10_1049_ell2_13248 crossref_citationtrail_10_1049_ell2_13248 wiley_primary_10_1049_ell2_13248_ELL213248 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2018; 19 2023; 13 2021; 33 2017; 2017 2023; 153 2022 2021 2020 2022; 9 2022; 12 2018 2016 2022; 10 2014 2022; 11 2024 2021; 72 e_1_2_16_15_1 e_1_2_16_25_1 e_1_2_16_13_1 e_1_2_16_24_1 e_1_2_16_12_1 e_1_2_16_23_1 e_1_2_16_19_1 e_1_2_16_18_1 e_1_2_16_17_1 Rimmer A. (e_1_2_16_2_1) 2017; 2017 e_1_2_16_16_1 e_1_2_16_11_1 e_1_2_16_22_1 e_1_2_16_10_1 e_1_2_16_21_1 e_1_2_16_20_1 e_1_2_16_8_1 e_1_2_16_7_1 e_1_2_16_9_1 e_1_2_16_4_1 e_1_2_16_3_1 e_1_2_16_6_1 e_1_2_16_5_1 Nagy E. (e_1_2_16_14_1) 2022; 9 |
| References_xml | – volume: 19 issue: 10 year: 2018 article-title: Shortfall of consultant clinical radiologists in the UK publication-title: Lancet Oncol. – start-page: 390 year: 2020 end-page: 391 article-title: CSPNet: a new backbone that can enhance learning capability of CNN – volume: 12 issue: 1 year: 2022 article-title: A lightweight neural network with multiscale feature enhancement for liver ct segmentation publication-title: Sci. Rep – volume: 11 start-page: 1732 issue: 12 year: 2022 article-title: Artificial intelligence‐based robust hybrid algorithm design and implementation for real‐time detection of plant diseases in agricultural environments publication-title: Biology – start-page: 779 year: 2016 end-page: 788 article-title: You only look once: unified, real‐time object detection – volume: 9 start-page: 222 issue: 1 year: 2022 article-title: A pediatric wrist trauma X‐ray dataset (GRAZPEDWRI‐DX) for machine learning publication-title: Sci. Rep – volume: 13 issue: 1 year: 2023 article-title: Fracture detection in pediatric wrist trauma X‐ray images using YOLOv8 algorithm publication-title: Sci. Rep. – volume: 10 start-page: 24528 year: 2022 end-page: 24539 article-title: Toward computing cross‐modality symmetric non‐rigid medical image registration publication-title: IEEE Access – year: 2022 – year: 2020 – volume: 10 start-page: 2939 issue: 16 year: 2022 article-title: Fracture recognition in paediatric wrist radiographs: an object detection approach publication-title: Mathematics – start-page: 2235 year: 2021 end-page: 2239 article-title: Sa‐net: Shuffle attention for deep convolutional neural networks – year: 2021 – start-page: 3 year: 2018 end-page: 19 article-title: CBAM: convolutional block attention module – year: 2024 – volume: 72 start-page: 60 issue: 1 year: 2021 end-page: 72 article-title: Artificial intelligence solutions for analysis of X‐ray images publication-title: Can. Assoc. Radiol. J – start-page: 7132 year: 2018 end-page: 7141 article-title: Squeeze‐and‐excitation networks – start-page: 11534 year: 2020 end-page: 11542 article-title: ECA‐Net: efficient channel attention for deep convolutional neural networks – start-page: 740 year: 2014 end-page: 755 article-title: Microsoft COCO: common objects in context – volume: 153 year: 2023 article-title: Dense‐PSP‐UNet: a neural network for fast inference liver ultrasound segmentation publication-title: Comput. Biol. Med. – volume: 33 start-page: 291 issue: 5 year: 2021 end-page: 298 article-title: Detection of solder paste defects with an optimization‐based deep learning model using image processing techniques publication-title: Soldering Surf. Mount Technol. – volume: 2017 start-page: 359 year: 2017 article-title: Radiologist shortage leaves patient care at risk, warns royal college publication-title: BMJ – ident: e_1_2_16_7_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_16_11_1 doi: 10.3390/math10162939 – ident: e_1_2_16_18_1 doi: 10.1109/ICASSP39728.2021.9414568 – volume: 9 start-page: 222 issue: 1 year: 2022 ident: e_1_2_16_14_1 article-title: A pediatric wrist trauma X‐ray dataset (GRAZPEDWRI‐DX) for machine learning publication-title: Sci. Rep – ident: e_1_2_16_22_1 – ident: e_1_2_16_23_1 doi: 10.1038/s41598-022-16828-6 – ident: e_1_2_16_17_1 doi: 10.1109/CVPR42600.2020.01155 – ident: e_1_2_16_5_1 doi: 10.3390/biology11121732 – ident: e_1_2_16_24_1 doi: 10.1109/ACCESS.2022.3154771 – ident: e_1_2_16_9_1 – ident: e_1_2_16_13_1 doi: 10.1109/ACCESS.2025.3549839 – volume: 2017 start-page: 359 year: 2017 ident: e_1_2_16_2_1 article-title: Radiologist shortage leaves patient care at risk, warns royal college publication-title: BMJ – ident: e_1_2_16_20_1 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_2_16_3_1 doi: 10.1016/S1470-2045(18)30689-2 – ident: e_1_2_16_4_1 doi: 10.1108/SSMT-04-2021-0013 – ident: e_1_2_16_6_1 doi: 10.1177/0846537120941671 – ident: e_1_2_16_21_1 doi: 10.1109/CVPRW50498.2020.00203 – ident: e_1_2_16_10_1 doi: 10.1007/978-3-031-72751-1_1 – ident: e_1_2_16_15_1 doi: 10.1109/CVPR.2018.00745 – ident: e_1_2_16_12_1 doi: 10.1038/s41598-023-47460-7 – ident: e_1_2_16_25_1 doi: 10.1016/j.compbiomed.2022.106478 – ident: e_1_2_16_16_1 doi: 10.1007/978-3-030-01234-2_1 – ident: e_1_2_16_19_1 – ident: e_1_2_16_8_1 |
| SSID | ssj0012997 |
| Score | 2.6031144 |
| Snippet | The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper... Abstract The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios.... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| SubjectTerms | biomedical imaging computer vision object detection X‐ray detection |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MT6YkEvCrHNZrObPaq0eCitB5V6CvuEQo0lTSve_An-Rn-Ju5ukVBC9eAthYMPMzsw37Ob7ADiTjvFDcZvfgrPAVj8U2CxKgkhJquyW4rFXnnvs0X4_GQ7Z3ZLUl7sTVtIDl45rCYo4iyOkCNHYiIQb0taakpgaJ0ntBx-Leuphqjo_sEWW1toFFqPgmpgUs5Yej9GlncGc4s9SK_KM_d8Rqm8x3U2wUWFDeFV-0xZY0dk2WF9iDNwB3adBbzBn0EJNaNwPTrNcQ6ULf6Eqg6MMTmrtDfjq8hcWOZ89czj8fP_I-RscPdsCMt0FD93O_c1tUEkhBBLbASFQVCWOGi4kVFHDJQpNRBgSESeUCyON5pTZXiuJijlPCBXUZaLhoWmHQqpoDzSyl0zvA5iEUiGNkLLRwywSCWaYS9umlYhNqE0TnNdeSWXFE-7kKsapP6_GLHUeTL0Hm-B0YTsp2TF-tLp2zl1YOEZr_8LGOa3inP4V5ya48KH5ZZ200-sh_3TwHysegjVkEUx5L-wINIp8po_BqpwXo2l-4vfbFz1_2FI priority: 102 providerName: Directory of Open Access Journals |
| Title | YOLOv9 for fracture detection in pediatric wrist trauma X‐ray images |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13248 https://doaj.org/article/b72a9532d66e4fb8af60ee7657f14611 |
| Volume | 60 |
| WOSCitedRecordID | wos001246174100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: K7- dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ji9RAFH6MMx704D7YLk2BXhSiU5VKLeDFkW4Ump5GXNpTeLVJQ09myHSPePMn-Bv9JVZVOq0DIoiXEMILCW-v7fsAHtuE-OEwxrdBXcTsx4oYRaoonZUuuhRWmXnuw0ROp2o-17MdeNGfhenwIbYTbikycr5OAY6mYyGJTW0y4nLJnsWxFFeXYI_SUiXiBsZn2zWEmGhlz18Q-xTeg5Ny_fzXuxfKUUbtv9il5jIzvv5_P3gDrm3aS_Ky84ebsOObW3D1N9DB2zD-dDQ5OtckdqskpDNS69YT51d5T1ZDFg057ek7yJeUAsiqxfUxkvmPb99b_EoWxzEHnd2B9-PRu1eviw2bQmF5HGMUTjqV0OWokE4GtIyGUmhmShQSTbDBo9SxXFvhKkQlpJEpmAPScECNdeU-7DYnjb8LRFHrmGfMRQfgujSKa442VnpnqkB9GMCTXqm13UCNJ8aLZZ2XvLmuk27qrJsBPNrKnnYAG3-UOky22UokUOz84KT9XG9irDaSoa5K5oTwPBiFQRx4L0UlQ2IvpwN4mu31l-_Uo8mE5bt7_yJ8H66w2Ox0W8gewO6qXfuHcNmerxZn7TC75RD2DkfT2dthHvXH68c3059hRehG |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL0qFAm6aHlVDNBiiW5AChDHseNlQYxAhKELHsMq8rMaaQgozFCx4xP4Rr4E28lMi4QqIXZRdK1E9n3a1-cA_FAe8UMLZ99S8Mh5Pxw5K8qiRCumnUqJNDDPnees08m6Xf6r6c3xd2FqfIjxhpu3jOCvvYH7Dem64CQeJNP0-3jLFVMkm4CPxGUanrnh4rAzPkRwnpaNCAxcokJG6KSEb_8d-yIeBdj-l2lqiDPtL-_8w1n43CSY6GetEXPwwZTz8Okf2MEFaF-e5Cd3HLl8FVl_S2pYGaTNIHRllahXopsRgQf6450AGlRieCVQ9-nhsRL3qHflvNDtIpy190_3DqKGTyFSxFUZkWY68_hyMWWaWaFwbBPKsUwEZUJaZY1g3AVsRXUqREaZZN6crYjtTiyVTr7CZHldmiVAWaw0NhhrpwKEJzIjnAjlYr2WqY2NbcHGaFYL1YCNe86LfhEOvQkv_NwUYW5asD6WvakhNl6V2vWLM5bwsNjhxXX1u2isrJAMC54mWFNqiJWZsHTHGEZTZj1_edyCzbBg__lOsZ_nODwtv0V4DaYPTo_zIj_sHK3ADHapT91QtgqTg2povsGUuhv0bqvvQUefAZpH6QA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iBSH2MGAMrWyAJXgZUrbGcez4kcsqEFHbBzZ1T5GvU6U2rdIL2hs_Yb-RXzLbScsmISS0tyg6UaLjc42Pvw_gvfKIH1o4_5aCRy764ch5URYlWjHtTEqkgXnuPGe9XjYc8kEzm-PPwtT4EJsfbt4zQrz2Dm5m2tYNJ_EgmWY8xseumSLZFjwkKYu9UWMy2GwiuEjL1gQGrlAha3RSwk_-PHsnHwXY_rtlasgz3af3_MJnsNMUmOhjbRHP4YEpd2H7FuzgC-he9PP-iiNXryLrT0ktK4O0WYSprBKNSjRbE3ignz4IoEUllhOBhr9_XVfiCo0mLgrN9-Cse_rj89eo4VOIFHFdRqSZzjy-XEyZZlYoHNuEciwTQZmQVlkjGHcJW1GdCpFRJpl3Zyti24ml0slLaJXT0uwDymKlscFYOxMgPJEZ4UQol-u1TG1sbBuO1lotVAM27jkvxkXY9Ca88Lopgm7a8G4jO6shNv4q9ckvzkbCw2KHG9Pqsmi8rJAMC54mWFNqiJWZsLRjDKMps56_PG7Dh7Bg_3hPcZrnOFy9-h_ht_B48KVb5N963w_gCXaVTz1PdgitRbU0r-GRWi1G8-pNMNEb0d7oFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv9+for+fracture+detection+in+pediatric+wrist+trauma+X%E2%80%90ray+images&rft.jtitle=Electronics+letters&rft.au=Chien%2C+Chun%E2%80%90Tse&rft.au=Ju%2C+Rui%E2%80%90Yang&rft.au=Chou%2C+Kuang%E2%80%90Yi&rft.au=Chiang%2C+Jen%E2%80%90Shiun&rft.date=2024-06-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=60&rft.issue=11&rft_id=info:doi/10.1049%2Fell2.13248&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ell2_13248 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |