YOLOv9 for fracture detection in pediatric wrist trauma X‐ray images

The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters Jg. 60; H. 11
Hauptverfasser: Chien, Chun‐Tse, Ju, Rui‐Yang, Chou, Kuang‐Yi, Chiang, Jen‐Shiun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.06.2024
Schlagworte:
ISSN:0013-5194, 1350-911X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surgeons to interpret X‐ray images. Specifically, this paper trained the model on the GRAZPEDWRI‐DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50–95 of the current state‐of‐the‐art model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9‐Fracture‐Detection. YOLOv9 is the latest version of the you only look once (YOLO) series of object detection algorithms released in February 2024. This paper presents a framework for pediatric wrist fracture detection utilizing YOLOv9, which enhances model performance to achieve the state‐of‐the‐art level through training on the GRAZPEDWRI‐DX dataset. This is significant because misinterpretation of fracture X‐ray images may lead to surgery failure and more harm to the patients. The hope is to use artificial intelligence technology to prevent these incidents from occurring.
AbstractList The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surgeons to interpret X‐ray images. Specifically, this paper trained the model on the GRAZPEDWRI‐DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50–95 of the current state‐of‐the‐art model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9‐Fracture‐Detection. YOLOv9 is the latest version of the you only look once (YOLO) series of object detection algorithms released in February 2024. This paper presents a framework for pediatric wrist fracture detection utilizing YOLOv9, which enhances model performance to achieve the state‐of‐the‐art level through training on the GRAZPEDWRI‐DX dataset. This is significant because misinterpretation of fracture X‐ray images may lead to surgery failure and more harm to the patients. The hope is to use artificial intelligence technology to prevent these incidents from occurring.
The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surgeons to interpret X‐ray images. Specifically, this paper trained the model on the GRAZPEDWRI‐DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50–95 of the current state‐of‐the‐art model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9‐Fracture‐Detection .
Abstract The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer‐assisted diagnosis to help radiologists and surgeons to interpret X‐ray images. Specifically, this paper trained the model on the GRAZPEDWRI‐DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50–95 of the current state‐of‐the‐art model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9‐Fracture‐Detection.
Author Chien, Chun‐Tse
Chou, Kuang‐Yi
Ju, Rui‐Yang
Chiang, Jen‐Shiun
Author_xml – sequence: 1
  givenname: Chun‐Tse
  surname: Chien
  fullname: Chien, Chun‐Tse
  organization: Tamkang University
– sequence: 2
  givenname: Rui‐Yang
  orcidid: 0000-0003-2240-1377
  surname: Ju
  fullname: Ju, Rui‐Yang
  organization: National Taiwan University
– sequence: 3
  givenname: Kuang‐Yi
  surname: Chou
  fullname: Chou, Kuang‐Yi
  organization: National Taipei University of Nursing and Health Sciences
– sequence: 4
  givenname: Jen‐Shiun
  orcidid: 0000-0001-7536-8967
  surname: Chiang
  fullname: Chiang, Jen‐Shiun
  email: jsken.chiang@gmail.com
  organization: Tamkang University
BookMark eNp9kM9Kw0AQhxdRsK1efII9C9GdTbKbPUpptRDoRaGelsn-KVtiI5vU0puP4DP6JKateBDxNMzw-30D35Ccrpu1I-QK2A2wTN26uuY3kPKsOCEDSHOWKIDFKRkwBmmSg8rOybBtV_3KlZIDMn2el_M3RX0TqY9ouk101LrOmS40axrW9NXZgF0Mhm5jaDvaRdy8IF18vn9E3NHwgkvXXpAzj3XrLr_niDxNJ4_jh6Sc38_Gd2VisowXiZW2EEzlIKSVHg0HnwrFqxSFxMob71AqLoQRNkcshKykLCTzCJ5BZWw6IrMj1za40q-x_x53usGgD4cmLjXGLpja6UpyVHnKrRAu81WBXjDnpMilh0wA9KzrI8vEpm2j8z88YHpvU-9t6oPNPsx-hU3ocO-o9xHqvytwrGxD7Xb_wPWkLPmx8wVsWIm4
CitedBy_id crossref_primary_10_3390_math13111858
crossref_primary_10_1007_s00521_025_11223_4
crossref_primary_10_1109_ACCESS_2025_3553087
crossref_primary_10_3390_s24185981
crossref_primary_10_3389_fmed_2025_1567119
crossref_primary_10_3390_rs16203810
crossref_primary_10_1016_j_autcon_2025_105987
crossref_primary_10_3390_app15169031
crossref_primary_10_1007_s10278_025_01512_8
crossref_primary_10_1109_TTE_2025_3562604
crossref_primary_10_1002_bab_70030
crossref_primary_10_3390_ani14223197
crossref_primary_10_3390_drones8110680
crossref_primary_10_1016_j_jestch_2025_102161
crossref_primary_10_1109_ACCESS_2025_3526458
crossref_primary_10_1109_TIM_2025_3551489
crossref_primary_10_1109_MAES_2025_3555249
crossref_primary_10_1177_03019233251356022
crossref_primary_10_3390_diagnostics15030271
crossref_primary_10_1109_ACCESS_2025_3577959
Cites_doi 10.1109/CVPR.2016.91
10.3390/math10162939
10.1109/ICASSP39728.2021.9414568
10.1038/s41598-022-16828-6
10.1109/CVPR42600.2020.01155
10.3390/biology11121732
10.1109/ACCESS.2022.3154771
10.1109/ACCESS.2025.3549839
10.1007/978-3-319-10602-1_48
10.1016/S1470-2045(18)30689-2
10.1108/SSMT-04-2021-0013
10.1177/0846537120941671
10.1109/CVPRW50498.2020.00203
10.1007/978-3-031-72751-1_1
10.1109/CVPR.2018.00745
10.1038/s41598-023-47460-7
10.1016/j.compbiomed.2022.106478
10.1007/978-3-030-01234-2_1
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ell2.13248
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_b72a9532d66e4fb8af60ee7657f14611
10_1049_ell2_13248
ELL213248
Genre shortCommunication
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: NSTC 112‐2221‐E‐032‐037‐MY2
GroupedDBID -4A
-~X
.DC
0R~
0ZK
1OC
24P
29G
2QL
3EH
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHJG
AAJGR
AAMMB
ABJCF
ABQXS
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADIYS
AEFGJ
AEGXH
AENEX
AFAZI
AFKRA
AGXDD
AI.
AIAGR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ELQJU
F5P
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IFBGX
IPLJI
ITC
K1G
K7-
L6V
LAI
LXO
M43
M7S
MCNEO
MS~
O9-
OK1
P0-
P2P
P62
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
QWB
R4Z
RNS
RUI
TN5
U5U
UNMZH
VH1
WH7
WIN
ZL0
~ZZ
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c4428-d7d86095167d7fac21f3692b3a67abfcfea79266c6d5aa867b77870fa1f01bcd3
IEDL.DBID 24P
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246174100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
IngestDate Fri Oct 03 12:51:19 EDT 2025
Wed Oct 29 21:25:33 EDT 2025
Tue Nov 18 21:47:11 EST 2025
Sun Sep 21 06:14:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4428-d7d86095167d7fac21f3692b3a67abfcfea79266c6d5aa867b77870fa1f01bcd3
ORCID 0000-0001-7536-8967
0000-0003-2240-1377
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13248
PageCount 3
ParticipantIDs doaj_primary_oai_doaj_org_article_b72a9532d66e4fb8af60ee7657f14611
crossref_primary_10_1049_ell2_13248
crossref_citationtrail_10_1049_ell2_13248
wiley_primary_10_1049_ell2_13248_ELL213248
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2018; 19
2023; 13
2021; 33
2017; 2017
2023; 153
2022
2021
2020
2022; 9
2022; 12
2018
2016
2022; 10
2014
2022; 11
2024
2021; 72
e_1_2_16_15_1
e_1_2_16_25_1
e_1_2_16_13_1
e_1_2_16_24_1
e_1_2_16_12_1
e_1_2_16_23_1
e_1_2_16_19_1
e_1_2_16_18_1
e_1_2_16_17_1
Rimmer A. (e_1_2_16_2_1) 2017; 2017
e_1_2_16_16_1
e_1_2_16_11_1
e_1_2_16_22_1
e_1_2_16_10_1
e_1_2_16_21_1
e_1_2_16_20_1
e_1_2_16_8_1
e_1_2_16_7_1
e_1_2_16_9_1
e_1_2_16_4_1
e_1_2_16_3_1
e_1_2_16_6_1
e_1_2_16_5_1
Nagy E. (e_1_2_16_14_1) 2022; 9
References_xml – volume: 19
  issue: 10
  year: 2018
  article-title: Shortfall of consultant clinical radiologists in the UK
  publication-title: Lancet Oncol.
– start-page: 390
  year: 2020
  end-page: 391
  article-title: CSPNet: a new backbone that can enhance learning capability of CNN
– volume: 12
  issue: 1
  year: 2022
  article-title: A lightweight neural network with multiscale feature enhancement for liver ct segmentation
  publication-title: Sci. Rep
– volume: 11
  start-page: 1732
  issue: 12
  year: 2022
  article-title: Artificial intelligence‐based robust hybrid algorithm design and implementation for real‐time detection of plant diseases in agricultural environments
  publication-title: Biology
– start-page: 779
  year: 2016
  end-page: 788
  article-title: You only look once: unified, real‐time object detection
– volume: 9
  start-page: 222
  issue: 1
  year: 2022
  article-title: A pediatric wrist trauma X‐ray dataset (GRAZPEDWRI‐DX) for machine learning
  publication-title: Sci. Rep
– volume: 13
  issue: 1
  year: 2023
  article-title: Fracture detection in pediatric wrist trauma X‐ray images using YOLOv8 algorithm
  publication-title: Sci. Rep.
– volume: 10
  start-page: 24528
  year: 2022
  end-page: 24539
  article-title: Toward computing cross‐modality symmetric non‐rigid medical image registration
  publication-title: IEEE Access
– year: 2022
– year: 2020
– volume: 10
  start-page: 2939
  issue: 16
  year: 2022
  article-title: Fracture recognition in paediatric wrist radiographs: an object detection approach
  publication-title: Mathematics
– start-page: 2235
  year: 2021
  end-page: 2239
  article-title: Sa‐net: Shuffle attention for deep convolutional neural networks
– year: 2021
– start-page: 3
  year: 2018
  end-page: 19
  article-title: CBAM: convolutional block attention module
– year: 2024
– volume: 72
  start-page: 60
  issue: 1
  year: 2021
  end-page: 72
  article-title: Artificial intelligence solutions for analysis of X‐ray images
  publication-title: Can. Assoc. Radiol. J
– start-page: 7132
  year: 2018
  end-page: 7141
  article-title: Squeeze‐and‐excitation networks
– start-page: 11534
  year: 2020
  end-page: 11542
  article-title: ECA‐Net: efficient channel attention for deep convolutional neural networks
– start-page: 740
  year: 2014
  end-page: 755
  article-title: Microsoft COCO: common objects in context
– volume: 153
  year: 2023
  article-title: Dense‐PSP‐UNet: a neural network for fast inference liver ultrasound segmentation
  publication-title: Comput. Biol. Med.
– volume: 33
  start-page: 291
  issue: 5
  year: 2021
  end-page: 298
  article-title: Detection of solder paste defects with an optimization‐based deep learning model using image processing techniques
  publication-title: Soldering Surf. Mount Technol.
– volume: 2017
  start-page: 359
  year: 2017
  article-title: Radiologist shortage leaves patient care at risk, warns royal college
  publication-title: BMJ
– ident: e_1_2_16_7_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_16_11_1
  doi: 10.3390/math10162939
– ident: e_1_2_16_18_1
  doi: 10.1109/ICASSP39728.2021.9414568
– volume: 9
  start-page: 222
  issue: 1
  year: 2022
  ident: e_1_2_16_14_1
  article-title: A pediatric wrist trauma X‐ray dataset (GRAZPEDWRI‐DX) for machine learning
  publication-title: Sci. Rep
– ident: e_1_2_16_22_1
– ident: e_1_2_16_23_1
  doi: 10.1038/s41598-022-16828-6
– ident: e_1_2_16_17_1
  doi: 10.1109/CVPR42600.2020.01155
– ident: e_1_2_16_5_1
  doi: 10.3390/biology11121732
– ident: e_1_2_16_24_1
  doi: 10.1109/ACCESS.2022.3154771
– ident: e_1_2_16_9_1
– ident: e_1_2_16_13_1
  doi: 10.1109/ACCESS.2025.3549839
– volume: 2017
  start-page: 359
  year: 2017
  ident: e_1_2_16_2_1
  article-title: Radiologist shortage leaves patient care at risk, warns royal college
  publication-title: BMJ
– ident: e_1_2_16_20_1
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_16_3_1
  doi: 10.1016/S1470-2045(18)30689-2
– ident: e_1_2_16_4_1
  doi: 10.1108/SSMT-04-2021-0013
– ident: e_1_2_16_6_1
  doi: 10.1177/0846537120941671
– ident: e_1_2_16_21_1
  doi: 10.1109/CVPRW50498.2020.00203
– ident: e_1_2_16_10_1
  doi: 10.1007/978-3-031-72751-1_1
– ident: e_1_2_16_15_1
  doi: 10.1109/CVPR.2018.00745
– ident: e_1_2_16_12_1
  doi: 10.1038/s41598-023-47460-7
– ident: e_1_2_16_25_1
  doi: 10.1016/j.compbiomed.2022.106478
– ident: e_1_2_16_16_1
  doi: 10.1007/978-3-030-01234-2_1
– ident: e_1_2_16_19_1
– ident: e_1_2_16_8_1
SSID ssj0012997
Score 2.6031144
Snippet The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios. This paper...
Abstract The introduction of YOLOv9, the latest version of the you only look once (YOLO) series, has led to its widespread adoption across various scenarios....
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms biomedical imaging
computer vision
object detection
X‐ray detection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MT6YkEvCrHNZrObPaq0eCitB5V6CvuEQo0lTSve_An-Rn-Ju5ukVBC9eAthYMPMzsw37Ob7ADiTjvFDcZvfgrPAVj8U2CxKgkhJquyW4rFXnnvs0X4_GQ7Z3ZLUl7sTVtIDl45rCYo4iyOkCNHYiIQb0taakpgaJ0ntBx-Leuphqjo_sEWW1toFFqPgmpgUs5Yej9GlncGc4s9SK_KM_d8Rqm8x3U2wUWFDeFV-0xZY0dk2WF9iDNwB3adBbzBn0EJNaNwPTrNcQ6ULf6Eqg6MMTmrtDfjq8hcWOZ89czj8fP_I-RscPdsCMt0FD93O_c1tUEkhBBLbASFQVCWOGi4kVFHDJQpNRBgSESeUCyON5pTZXiuJijlPCBXUZaLhoWmHQqpoDzSyl0zvA5iEUiGNkLLRwywSCWaYS9umlYhNqE0TnNdeSWXFE-7kKsapP6_GLHUeTL0Hm-B0YTsp2TF-tLp2zl1YOEZr_8LGOa3inP4V5ya48KH5ZZ200-sh_3TwHysegjVkEUx5L-wINIp8po_BqpwXo2l-4vfbFz1_2FI
  priority: 102
  providerName: Directory of Open Access Journals
Title YOLOv9 for fracture detection in pediatric wrist trauma X‐ray images
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13248
https://doaj.org/article/b72a9532d66e4fb8af60ee7657f14611
Volume 60
WOSCitedRecordID wos001246174100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: K7-
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ji9RAFH6MMx704D7YLk2BXhSiU5VKLeDFkW4Ump5GXNpTeLVJQ09myHSPePMn-Bv9JVZVOq0DIoiXEMILCW-v7fsAHtuE-OEwxrdBXcTsx4oYRaoonZUuuhRWmXnuw0ROp2o-17MdeNGfhenwIbYTbikycr5OAY6mYyGJTW0y4nLJnsWxFFeXYI_SUiXiBsZn2zWEmGhlz18Q-xTeg5Ny_fzXuxfKUUbtv9il5jIzvv5_P3gDrm3aS_Ky84ebsOObW3D1N9DB2zD-dDQ5OtckdqskpDNS69YT51d5T1ZDFg057ek7yJeUAsiqxfUxkvmPb99b_EoWxzEHnd2B9-PRu1eviw2bQmF5HGMUTjqV0OWokE4GtIyGUmhmShQSTbDBo9SxXFvhKkQlpJEpmAPScECNdeU-7DYnjb8LRFHrmGfMRQfgujSKa442VnpnqkB9GMCTXqm13UCNJ8aLZZ2XvLmuk27qrJsBPNrKnnYAG3-UOky22UokUOz84KT9XG9irDaSoa5K5oTwPBiFQRx4L0UlQ2IvpwN4mu31l-_Uo8mE5bt7_yJ8H66w2Ox0W8gewO6qXfuHcNmerxZn7TC75RD2DkfT2dthHvXH68c3059hRehG
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL0qFAm6aHlVDNBiiW5AChDHseNlQYxAhKELHsMq8rMaaQgozFCx4xP4Rr4E28lMi4QqIXZRdK1E9n3a1-cA_FAe8UMLZ99S8Mh5Pxw5K8qiRCumnUqJNDDPnees08m6Xf6r6c3xd2FqfIjxhpu3jOCvvYH7Dem64CQeJNP0-3jLFVMkm4CPxGUanrnh4rAzPkRwnpaNCAxcokJG6KSEb_8d-yIeBdj-l2lqiDPtL-_8w1n43CSY6GetEXPwwZTz8Okf2MEFaF-e5Cd3HLl8FVl_S2pYGaTNIHRllahXopsRgQf6450AGlRieCVQ9-nhsRL3qHflvNDtIpy190_3DqKGTyFSxFUZkWY68_hyMWWaWaFwbBPKsUwEZUJaZY1g3AVsRXUqREaZZN6crYjtTiyVTr7CZHldmiVAWaw0NhhrpwKEJzIjnAjlYr2WqY2NbcHGaFYL1YCNe86LfhEOvQkv_NwUYW5asD6WvakhNl6V2vWLM5bwsNjhxXX1u2isrJAMC54mWFNqiJWZsHTHGEZTZj1_edyCzbBg__lOsZ_nODwtv0V4DaYPTo_zIj_sHK3ADHapT91QtgqTg2povsGUuhv0bqvvQUefAZpH6QA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iBSH2MGAMrWyAJXgZUrbGcez4kcsqEFHbBzZ1T5GvU6U2rdIL2hs_Yb-RXzLbScsmISS0tyg6UaLjc42Pvw_gvfKIH1o4_5aCRy764ch5URYlWjHtTEqkgXnuPGe9XjYc8kEzm-PPwtT4EJsfbt4zQrz2Dm5m2tYNJ_EgmWY8xseumSLZFjwkKYu9UWMy2GwiuEjL1gQGrlAha3RSwk_-PHsnHwXY_rtlasgz3af3_MJnsNMUmOhjbRHP4YEpd2H7FuzgC-he9PP-iiNXryLrT0ktK4O0WYSprBKNSjRbE3ignz4IoEUllhOBhr9_XVfiCo0mLgrN9-Cse_rj89eo4VOIFHFdRqSZzjy-XEyZZlYoHNuEciwTQZmQVlkjGHcJW1GdCpFRJpl3Zyti24ml0slLaJXT0uwDymKlscFYOxMgPJEZ4UQol-u1TG1sbBuO1lotVAM27jkvxkXY9Ca88Lopgm7a8G4jO6shNv4q9ckvzkbCw2KHG9Pqsmi8rJAMC54mWFNqiJWZsLRjDKMps56_PG7Dh7Bg_3hPcZrnOFy9-h_ht_B48KVb5N963w_gCXaVTz1PdgitRbU0r-GRWi1G8-pNMNEb0d7oFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv9+for+fracture+detection+in+pediatric+wrist+trauma+X%E2%80%90ray+images&rft.jtitle=Electronics+letters&rft.au=Chien%2C+Chun%E2%80%90Tse&rft.au=Ju%2C+Rui%E2%80%90Yang&rft.au=Chou%2C+Kuang%E2%80%90Yi&rft.au=Chiang%2C+Jen%E2%80%90Shiun&rft.date=2024-06-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=60&rft.issue=11&rft_id=info:doi/10.1049%2Fell2.13248&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ell2_13248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon