Estimating the spectrum in computed tomography via Kullback–Leibler divergence constrained optimization

Purpose We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately model the x‐ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system. Methods Spectrum estimati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) Jg. 46; H. 1; S. 81 - 92
Hauptverfasser: Ha, Wooseok, Sidky, Emil Y., Barber, Rina Foygel, Schmidt, Taly Gilat, Pan, Xiaochuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.01.2019
Schlagworte:
ISSN:0094-2405, 2473-4209, 2473-4209
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately model the x‐ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system. Methods Spectrum estimation is posed as an optimization problem with x‐ray spectrum as unknown variables, and a Kullback–Leibler (KL)‐divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated‐gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation–maximization (EM) method is also discussed. Results In simulations, the proposed algorithm is seen to yield x‐ray spectra that closely match the ground truth and represent the attenuation process of x‐ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization‐based approach and EM. Conclusions Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL‐divergence constraint can include a prior spectrum and appears to capture important features of x‐ray spectrum, allowing accurate and robust estimation of x‐ray spectrum in CT imaging.
AbstractList We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model the x-ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system.PURPOSEWe study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model the x-ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system.Spectrum estimation is posed as an optimization problem with x-ray spectrum as unknown variables, and a Kullback-Leibler (KL)-divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated-gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation-maximization (EM) method is also discussed.METHODSSpectrum estimation is posed as an optimization problem with x-ray spectrum as unknown variables, and a Kullback-Leibler (KL)-divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated-gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation-maximization (EM) method is also discussed.In simulations, the proposed algorithm is seen to yield x-ray spectra that closely match the ground truth and represent the attenuation process of x-ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization-based approach and EM.RESULTSIn simulations, the proposed algorithm is seen to yield x-ray spectra that closely match the ground truth and represent the attenuation process of x-ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization-based approach and EM.Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL-divergence constraint can include a prior spectrum and appears to capture important features of x-ray spectrum, allowing accurate and robust estimation of x-ray spectrum in CT imaging.CONCLUSIONSOur formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL-divergence constraint can include a prior spectrum and appears to capture important features of x-ray spectrum, allowing accurate and robust estimation of x-ray spectrum in CT imaging.
Purpose We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately model the x‐ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system. Methods Spectrum estimation is posed as an optimization problem with x‐ray spectrum as unknown variables, and a Kullback–Leibler (KL)‐divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated‐gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation–maximization (EM) method is also discussed. Results In simulations, the proposed algorithm is seen to yield x‐ray spectra that closely match the ground truth and represent the attenuation process of x‐ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization‐based approach and EM. Conclusions Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL‐divergence constraint can include a prior spectrum and appears to capture important features of x‐ray spectrum, allowing accurate and robust estimation of x‐ray spectrum in CT imaging.
We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model the x-ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system. Spectrum estimation is posed as an optimization problem with x-ray spectrum as unknown variables, and a Kullback-Leibler (KL)-divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated-gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation-maximization (EM) method is also discussed. In simulations, the proposed algorithm is seen to yield x-ray spectra that closely match the ground truth and represent the attenuation process of x-ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization-based approach and EM. Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL-divergence constraint can include a prior spectrum and appears to capture important features of x-ray spectrum, allowing accurate and robust estimation of x-ray spectrum in CT imaging.
Author Ha, Wooseok
Barber, Rina Foygel
Sidky, Emil Y.
Schmidt, Taly Gilat
Pan, Xiaochuan
Author_xml – sequence: 1
  givenname: Wooseok
  surname: Ha
  fullname: Ha, Wooseok
  email: haywse@berkeley.edu
  organization: UC Berkeley
– sequence: 2
  givenname: Emil Y.
  surname: Sidky
  fullname: Sidky, Emil Y.
  organization: The University of Chicago
– sequence: 3
  givenname: Rina Foygel
  surname: Barber
  fullname: Barber, Rina Foygel
  organization: The University of Chicago
– sequence: 4
  givenname: Taly Gilat
  surname: Schmidt
  fullname: Schmidt, Taly Gilat
  organization: Marquette University
– sequence: 5
  givenname: Xiaochuan
  surname: Pan
  fullname: Pan, Xiaochuan
  organization: The University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30370544$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1U1E5LJZ4AZckmg_8SJxskVBWoOggW3Vu2czNjcOxgJ1MNK96hb9gnwe2U8iNY3YXP-c71ucfowAcPCD0neEkwpq-GcUkYrcQTtKBcsJJT3B6gBcYtLynH1RE6TukzxrhmFT5ERwwzgSvOF8iep8kOarJ-XUwbKNIIZorzUFhfmDCM8wRdMYUhrKMaN7tia1VxOTunlfly-_1mBVY7iEVntxDX4A1kl09TVNZnYxgz3H7L-OCfoae9cglOH-YJunp7fnX2vlx9fHdx9mZVGs6pKAkDygRhSui2oi2viBGasK5vm0orQQjRDdWKCW56oSvRdbgB1Xe8002NG3aCXu-x46wH6Az4vIyTY8y_jDsZlJV_vni7keuwlTWvCed1Brx8AMTwdYY0ycEmA84pD2FOkhJat7jKYVn64vesx5Cf9f5imRhSitA_SgiWd5eTwyjvL5ely7-kxk73xd2V6f5lKPeGa-tg91-w_PBpr_8BpEisVQ
CitedBy_id crossref_primary_10_1088_1361_6560_ac7bcd
crossref_primary_10_1088_1361_6560_ad494f
crossref_primary_10_1016_j_autcon_2024_105670
crossref_primary_10_1063_5_0189038
crossref_primary_10_1109_ACCESS_2019_2950427
crossref_primary_10_1016_j_eswa_2021_115208
crossref_primary_10_1109_TCI_2025_3578762
crossref_primary_10_1109_JSEN_2022_3174779
crossref_primary_10_1002_mp_15168
crossref_primary_10_1007_s11222_024_10480_y
crossref_primary_10_1109_TRPMS_2020_2997880
crossref_primary_10_1088_2057_1976_acb158
crossref_primary_10_1002_mp_15621
crossref_primary_10_1016_j_ejmp_2024_104819
crossref_primary_10_1002_mp_15942
crossref_primary_10_1002_mp_14219
crossref_primary_10_1002_mp_14715
crossref_primary_10_3389_fphy_2021_678171
crossref_primary_10_1117_1_JMI_12_S1_S13013
crossref_primary_10_1109_TIT_2022_3215496
crossref_primary_10_7566_JPSJ_90_074801
crossref_primary_10_1088_1361_6420_acdaee
crossref_primary_10_1259_bjr_20201236
crossref_primary_10_1109_TMI_2024_3440651
Cites_doi 10.1109/TIT.1980.1056144
10.1561/2200000050
10.1038/272686a0
10.1118/1.1350585
10.1109/TMI.2015.2395438
10.1117/12.2217100
10.1088/0031-9155/61/10/3784
10.1118/1.4820371
10.1118/1.598159
10.1109/TMI.2017.2696338
10.1088/0031-9155/50/17/005
10.1088/0031-9155/53/15/002
10.1118/1.598622
10.1117/1.JMI.4.2.023506
10.1002/mp.12607
10.1364/JOSA.22.000265
10.1063/1.1586963
10.1063/1.1928312
10.1118/1.596956
10.1006/inco.1996.2612
10.1118/1.3547718
10.1088/0031-9155/49/22/005
ContentType Journal Article
Copyright 2018 American Association of Physicists in Medicine
2018 American Association of Physicists in Medicine.
Copyright_xml – notice: 2018 American Association of Physicists in Medicine
– notice: 2018 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mp.13257
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 92
ExternalDocumentID PMC6461446
30370544
10_1002_mp_13257
MP13257
Genre article
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: R21EB015094; R01‐EB018102; R01‐CA182264
– fundername: NSF
  funderid: DMS‐1654076
– fundername: Berkeley Institute for Data Science
– fundername: NIH HHS
  grantid: R21EB015094
– fundername: NIH HHS
  grantid: R01-CA182264
– fundername: NIBIB NIH HHS
  grantid: R01 EB018102
– fundername: NSF
  grantid: DMS-1654076
– fundername: NIBIB NIH HHS
  grantid: R01 EB026282
– fundername: NIH HHS
  grantid: R01-EB018102
– fundername: NIBIB NIH HHS
  grantid: R21 EB015094
– fundername: NCI NIH HHS
  grantid: R01 CA182264
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4427-13e23713a7b9529451c7b13df985ba7111b82ba374cf7b57dd08eafd4db86083
IEDL.DBID DRFUL
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455029900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Tue Nov 04 01:52:11 EST 2025
Thu Sep 04 14:07:07 EDT 2025
Thu Apr 03 06:59:06 EDT 2025
Sat Nov 29 06:02:38 EST 2025
Tue Nov 18 21:38:39 EST 2025
Wed Jan 22 16:20:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EM
KL divergence
spectral calibration
exponentiated-gradient algorithm
x-ray spectrum
Language English
License 2018 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4427-13e23713a7b9529451c7b13df985ba7111b82ba374cf7b57dd08eafd4db86083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30370544
PQID 2126905860
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461446
proquest_miscellaneous_2126905860
pubmed_primary_30370544
crossref_primary_10_1002_mp_13257
crossref_citationtrail_10_1002_mp_13257
wiley_primary_10_1002_mp_13257_MP13257
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2019
References 2015; 34
1980; 26
2017; 4
2004; 49
2013; 40
2017; 44
1997; 132
1999; 26
1997; 24
1993; 20
1997
2001; 28
2008; 53
2003; 94
2011; 38
2015; 8
2016; 9783
1990; 48
2017; 36
1978; 272
2005; 97
1932; 22
2016; 61
2005; 50
2013
1998; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Barrett HH (e_1_2_8_20_1) 2013
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Berger MJ (e_1_2_8_26_1) 1998; 8
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
Engler P (e_1_2_8_4_1) 1990; 48
References_xml – volume: 44
  start-page: 6183
  year: 2017
  end-page: 6194
  article-title: X‐ray spectrum estimation for accurate attenuation simulation
  publication-title: Med Phys
– volume: 34
  start-page: 1403
  year: 2015
  end-page: 1413
  article-title: A single scatter model for x‐ray CT energy spectrum estimation and polychromatic reconstruction
  publication-title: IEEE Trans Med Imaging
– volume: 28
  start-page: 325
  year: 2001
  end-page: 327
  article-title: Computer algebra for x‐ray spectral reconstruction between 6 and 25 MV
  publication-title: Med Phys
– volume: 97
  start-page: 124701
  year: 2005
  article-title: A robust method of x‐ray source spectrum estimation from transmission measurements: demonstrated on computer simulated, scatter‐free transmission data
  publication-title: J Appl Phys
– volume: 20
  start-page: 1695
  year: 1993
  end-page: 1703
  article-title: Simulation of x‐ray spectral reconstruction from transmission data by direct resolution of the numeric system AF = T
  publication-title: Med Phys
– volume: 94
  start-page: 2073
  year: 2003
  end-page: 2079
  article-title: Density and atomic number measurements with spectral x‐ray attenuation method
  publication-title: J Appl Phys
– volume: 38
  start-page: 993
  year: 2011
  end-page: 997
  article-title: CT scanner x‐ray spectrum estimation from transmission measurements
  publication-title: Med Phys
– volume: 4
  start-page: 023506
  year: 2017
  article-title: Segmentation‐free x‐ray energy spectrum estimation for computed tomography using dual‐energy material decomposition
  publication-title: J Med Imaging
– volume: 8
  start-page: 231
  year: 2015
  end-page: 357
  article-title: Convex optimization: algorithms and complexity
  publication-title: Found Trends Mach Learn
– volume: 26
  start-page: 26
  year: 1980
  end-page: 37
  article-title: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross‐entropy
  publication-title: IEEE Trans Inf Theory
– volume: 36
  start-page: 1808
  year: 2017
  end-page: 1819
  article-title: A spectral CT method to directly estimate basis material maps from experimental photon‐counting data
  publication-title: IEEE Trans Med Imaging
– volume: 9783
  start-page: 97834
  year: 2016
  article-title: X‐ray spectrum estimation from transmission measurements by an exponential of a polynomial model
  publication-title: SPIE Med Imaging
– volume: 26
  start-page: 1269
  year: 1999
  end-page: 1278
  article-title: X‐ray spectra estimation using attenuation measurements from 25 kVp to 18 MV
  publication-title: Med Phys
– volume: 53
  start-page: 4031
  year: 2008
  end-page: 4047
  article-title: Experimental feasibility of multi‐energy photon‐counting K‐edge imaging in pre‐clinical computed tomography
  publication-title: Phys Med Biol
– volume: 272
  start-page: 686
  year: 1978
  end-page: 690
  article-title: Image reconstruction from incomplete and noisy data
  publication-title: Nature
– volume: 132
  start-page: 1
  year: 1997
  end-page: 63
  article-title: Exponentiated gradient versus gradient descent for linear predictors
  publication-title: Inf Comput
– volume: 8
  start-page: 3587
  year: 1998
  end-page: 3597
  article-title: XCOM: photon cross sections database
  publication-title: NIST Stand Ref Database
– volume: 24
  start-page: 695
  year: 1997
  end-page: 702
  article-title: Estimation of a photon energy spectrum for a computed tomography scanner
  publication-title: Med Phys
– year: 1997
– volume: 61
  start-page: 3784
  year: 2016
  end-page: 3818
  article-title: An algorithm for constrained one‐step inversion of spectral CT data
  publication-title: Phys Med Biol
– volume: 48
  start-page: 623
  year: 1990
  end-page: 629
  article-title: Review of dual‐energy computed tomography techniques
  publication-title: Mater Eval
– volume: 22
  start-page: 265
  year: 1932
  end-page: 280
  article-title: Determination of the spectral composition of X‐ray radiation from filtration data
  publication-title: JOSA
– volume: 50
  start-page: 3989
  year: 2005
  end-page: 4004
  article-title: A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms
  publication-title: Phys Med Biol
– volume: 49
  start-page: 5087
  year: 2004
  end-page: 5099
  article-title: Spectrum reconstruction from dose measurements as a linear inverse problem
  publication-title: Phys Med Biol
– start-page: 280
  year: 2013
  end-page: 288
– volume: 40
  start-page: 100901
  year: 2013
  article-title: Vision 20/20: single photon counting x‐ray detectors in medical imaging
  publication-title: Med Phys
– year: 2013
– ident: e_1_2_8_22_1
  doi: 10.1109/TIT.1980.1056144
– ident: e_1_2_8_24_1
  doi: 10.1561/2200000050
– ident: e_1_2_8_21_1
  doi: 10.1038/272686a0
– ident: e_1_2_8_15_1
  doi: 10.1118/1.1350585
– ident: e_1_2_8_28_1
  doi: 10.1109/TMI.2015.2395438
– ident: e_1_2_8_9_1
  doi: 10.1117/12.2217100
– ident: e_1_2_8_18_1
  doi: 10.1088/0031-9155/61/10/3784
– ident: e_1_2_8_5_1
  doi: 10.1118/1.4820371
– ident: e_1_2_8_12_1
  doi: 10.1118/1.598159
– ident: e_1_2_8_25_1
– ident: e_1_2_8_7_1
  doi: 10.1109/TMI.2017.2696338
– ident: e_1_2_8_2_1
  doi: 10.1088/0031-9155/50/17/005
– ident: e_1_2_8_6_1
  doi: 10.1088/0031-9155/53/15/002
– ident: e_1_2_8_27_1
– volume: 8
  start-page: 3587
  year: 1998
  ident: e_1_2_8_26_1
  article-title: XCOM: photon cross sections database
  publication-title: NIST Stand Ref Database
– ident: e_1_2_8_11_1
  doi: 10.1118/1.598622
– ident: e_1_2_8_10_1
  doi: 10.1117/1.JMI.4.2.023506
– ident: e_1_2_8_17_1
  doi: 10.1002/mp.12607
– volume: 48
  start-page: 623
  year: 1990
  ident: e_1_2_8_4_1
  article-title: Review of dual‐energy computed tomography techniques
  publication-title: Mater Eval
– ident: e_1_2_8_8_1
  doi: 10.1364/JOSA.22.000265
– ident: e_1_2_8_3_1
  doi: 10.1063/1.1586963
– ident: e_1_2_8_13_1
  doi: 10.1063/1.1928312
– ident: e_1_2_8_14_1
  doi: 10.1118/1.596956
– ident: e_1_2_8_23_1
  doi: 10.1006/inco.1996.2612
– ident: e_1_2_8_19_1
  doi: 10.1118/1.3547718
– ident: e_1_2_8_16_1
  doi: 10.1088/0031-9155/49/22/005
– volume-title: Foundations of Image Science
  year: 2013
  ident: e_1_2_8_20_1
SSID ssj0006350
Score 2.423081
Snippet Purpose We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately...
We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms Algorithms
exponentiated‐gradient algorithm
Image Processing, Computer-Assisted
KL divergence
Models, Theoretical
spectral calibration
Tomography, X-Ray Computed - methods
x‐ray spectrum
Title Estimating the spectrum in computed tomography via Kullback–Leibler divergence constrained optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13257
https://www.ncbi.nlm.nih.gov/pubmed/30370544
https://www.proquest.com/docview/2126905860
https://pubmed.ncbi.nlm.nih.gov/PMC6461446
Volume 46
WOSCitedRecordID wos000455029900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLSAuPMorPCojITilTRw7kxwRdIVEW1WoSHuL_ApENNnVbtsz_4F_yC9h7GQDq4KExCmHTJJRPI9v7PFngJeOkjrVCS5OrS5iUQqKg3VNhWuBmZICc21FOGwCj4-L2aw8Gboq_V6Ynh9inHDznhHitXdwpVf7v0hD28UeVVISt2Cbk9nKCWy_-zj9dDjGYUql_QaUUvg1BLmmnk34_vrZzWR0BWFebZT8HcCGDDS98z-634XbA-5kb3pDuQfXXLcDN4-GlfUduBFaQc3qPjQH5PUex3afGaFDFvZiLi9a1nTM9GdAWHY-bweua3bZKPaBClmtzNcf374fukafuSWzvuEjMH3SU56mVtF3LJtTiGqHvZ8P4HR6cPr2fTwcyBAbITjGaeZ4RlWtQl1KXgqZGtRpZuuykFohhU1dcK0yFKZGLdHapHCqtoLsICes9xAm3bxzj4EZyR0m3JPToaiLRDlphUCrVG4IUKYRvF4PTGUGsnKv6FnV0yzzql1U4RdG8GKUXPQEHX-SWY9tRd7jl0RU5-YXq4oSd14mkrSL4FE_1uNbKLkjAVoRAW5YwSjgmbk373TNl8DQnYtQZ0fwKljBXxWrjk7C9cm_Cj6FW4TYyn4O6BlMaPjdc7huLs-b1XIXtnBW7A5-8BNUAQyk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFmgvLZRH01IwEoJT2jzsOBGnqnRV1N1VhRapt8ivlIgmu9pte-Y_8A_5JYydB6wKEhKnHDKOrXge39iezwBvDAZ1zBOMH2qZ-jSj6AeLAhPXlMeCUZ5ITd1lE3w8Ti8usvMVeN_VwjT8EP2Cm7UM56-tgdsF6cNfrKHV7ABTKcbvwRpFLUL1XvvwafB52DtijKVNBUpG7SYC67hng-iwa7scje5AzLsnJX9HsC4EDbb-a_CPYLNFnuSoUZXHsGLqbXg4avfWt-GBOwyqFk-gPEG7t0i2viSID4mrxpzfVKSsiWpugdDkelq1bNfkthTkDDuWQn398e370JTyysyJtkc-HNcntrJEtQL70WSKTqpqqz-fwmRwMjk-9dsrGXxFacT9MDZRjHmt4DJjUUZZqLgMY11kKZOCo-OUaSRFzKkquGRc6yA1otAUNSFBtPcMVutpbXaAKBYZHkSWno7TIg2EYZpSroVIFELK0IN33czkqqUrtwO9yhui5SivZrn7hR687iVnDUXHn2S6yc3RfuymiKjN9GaRY-hOsoDh6Dx43kx2_xUM7xwhLfWAL6lBL2C5uZff1OUXx9GdUJdpe_DWqcFfB5aPzt1z918FX8H66WQ0zIcfx2d7sIH4LWtWhF7AKqqC2Yf76va6XMxftubwEwIqD6w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD7BRYkvgngroo6J0adKLzOdNj4ZYCNh2WwMJrw1cys00u5mF3j2P_gP_SWcmV5ggyQmPvWhp-2kcy7fmZnzHYAPBoM65gnGD7VMfZpR9INFgYlrymPBKE-kpq7ZBB-P05OTbLICX7pamIYfol9ws5bh_LU1cDPTxc4Na2g1-4ypFOMPYJXaHjIDWN37Pvwx6h0xxtKmAiWjdhOBddyzQbTTPbscje5AzLsnJW8jWBeChuv_NfgNeNIiT_K1UZWnsGLqTVg7avfWN-GROwyqFs-g3Ee7t0i2PiWID4mrxpxfVqSsiWq6QGhyMa1atmtyVQpyiKmsFOrnn1-_R6aU52ZOtD3y4bg-8SlLVCvwO5pM0UlVbfXnczge7h_vfvPblgy-ojTifhibKMa8VnCZsSijLFRchrEuspRJwdFxyjSSIuZUFVwyrnWQGlFoipqQINp7AYN6WptXQBSLDA8iS0_HaZEGwjBNKddCJAohZejBp25mctXSlduBnucN0XKUV7Pc_UIP3veSs4ai428y3eTmaD92U0TUZnq5yDF0J1nAcHQevGwmu38LhneOkJZ6wJfUoBew3NzLd-ryzHF0J9Rl2h58dGpw78Dyo4m7bv2r4DtYm-wN89HB-PA1PEb4ljULQtswQE0wb-ChurooF_O3rTVcA3jWDyc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+spectrum+in+computed+tomography+via+Kullback-Leibler+divergence+constrained+optimization&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Ha%2C+Wooseok&rft.au=Sidky%2C+Emil+Y&rft.au=Barber%2C+Rina+Foygel&rft.au=Schmidt%2C+Taly+Gilat&rft.date=2019-01-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=46&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1002%2Fmp.13257&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon