Estimating the spectrum in computed tomography via Kullback–Leibler divergence constrained optimization
Purpose We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately model the x‐ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system. Methods Spectrum estimati...
Gespeichert in:
| Veröffentlicht in: | Medical physics (Lancaster) Jg. 46; H. 1; S. 81 - 92 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.01.2019
|
| Schlagworte: | |
| ISSN: | 0094-2405, 2473-4209, 2473-4209 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately model the x‐ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system.
Methods
Spectrum estimation is posed as an optimization problem with x‐ray spectrum as unknown variables, and a Kullback–Leibler (KL)‐divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated‐gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation–maximization (EM) method is also discussed.
Results
In simulations, the proposed algorithm is seen to yield x‐ray spectra that closely match the ground truth and represent the attenuation process of x‐ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization‐based approach and EM.
Conclusions
Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL‐divergence constraint can include a prior spectrum and appears to capture important features of x‐ray spectrum, allowing accurate and robust estimation of x‐ray spectrum in CT imaging. |
|---|---|
| AbstractList | We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model the x-ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system.PURPOSEWe study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model the x-ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system.Spectrum estimation is posed as an optimization problem with x-ray spectrum as unknown variables, and a Kullback-Leibler (KL)-divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated-gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation-maximization (EM) method is also discussed.METHODSSpectrum estimation is posed as an optimization problem with x-ray spectrum as unknown variables, and a Kullback-Leibler (KL)-divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated-gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation-maximization (EM) method is also discussed.In simulations, the proposed algorithm is seen to yield x-ray spectra that closely match the ground truth and represent the attenuation process of x-ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization-based approach and EM.RESULTSIn simulations, the proposed algorithm is seen to yield x-ray spectra that closely match the ground truth and represent the attenuation process of x-ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization-based approach and EM.Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL-divergence constraint can include a prior spectrum and appears to capture important features of x-ray spectrum, allowing accurate and robust estimation of x-ray spectrum in CT imaging.CONCLUSIONSOur formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL-divergence constraint can include a prior spectrum and appears to capture important features of x-ray spectrum, allowing accurate and robust estimation of x-ray spectrum in CT imaging. Purpose We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately model the x‐ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system. Methods Spectrum estimation is posed as an optimization problem with x‐ray spectrum as unknown variables, and a Kullback–Leibler (KL)‐divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated‐gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation–maximization (EM) method is also discussed. Results In simulations, the proposed algorithm is seen to yield x‐ray spectra that closely match the ground truth and represent the attenuation process of x‐ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization‐based approach and EM. Conclusions Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL‐divergence constraint can include a prior spectrum and appears to capture important features of x‐ray spectrum, allowing accurate and robust estimation of x‐ray spectrum in CT imaging. We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model the x-ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system. Spectrum estimation is posed as an optimization problem with x-ray spectrum as unknown variables, and a Kullback-Leibler (KL)-divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated-gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation-maximization (EM) method is also discussed. In simulations, the proposed algorithm is seen to yield x-ray spectra that closely match the ground truth and represent the attenuation process of x-ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization-based approach and EM. Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL-divergence constraint can include a prior spectrum and appears to capture important features of x-ray spectrum, allowing accurate and robust estimation of x-ray spectrum in CT imaging. |
| Author | Ha, Wooseok Barber, Rina Foygel Sidky, Emil Y. Schmidt, Taly Gilat Pan, Xiaochuan |
| Author_xml | – sequence: 1 givenname: Wooseok surname: Ha fullname: Ha, Wooseok email: haywse@berkeley.edu organization: UC Berkeley – sequence: 2 givenname: Emil Y. surname: Sidky fullname: Sidky, Emil Y. organization: The University of Chicago – sequence: 3 givenname: Rina Foygel surname: Barber fullname: Barber, Rina Foygel organization: The University of Chicago – sequence: 4 givenname: Taly Gilat surname: Schmidt fullname: Schmidt, Taly Gilat organization: Marquette University – sequence: 5 givenname: Xiaochuan surname: Pan fullname: Pan, Xiaochuan organization: The University of Chicago |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30370544$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1u1DAUhS1U1E5LJZ4AZckmg_8SJxskVBWoOggW3Vu2czNjcOxgJ1MNK96hb9gnwe2U8iNY3YXP-c71ucfowAcPCD0neEkwpq-GcUkYrcQTtKBcsJJT3B6gBcYtLynH1RE6TukzxrhmFT5ERwwzgSvOF8iep8kOarJ-XUwbKNIIZorzUFhfmDCM8wRdMYUhrKMaN7tia1VxOTunlfly-_1mBVY7iEVntxDX4A1kl09TVNZnYxgz3H7L-OCfoae9cglOH-YJunp7fnX2vlx9fHdx9mZVGs6pKAkDygRhSui2oi2viBGasK5vm0orQQjRDdWKCW56oSvRdbgB1Xe8002NG3aCXu-x46wH6Az4vIyTY8y_jDsZlJV_vni7keuwlTWvCed1Brx8AMTwdYY0ycEmA84pD2FOkhJat7jKYVn64vesx5Cf9f5imRhSitA_SgiWd5eTwyjvL5ely7-kxk73xd2V6f5lKPeGa-tg91-w_PBpr_8BpEisVQ |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ac7bcd crossref_primary_10_1088_1361_6560_ad494f crossref_primary_10_1016_j_autcon_2024_105670 crossref_primary_10_1063_5_0189038 crossref_primary_10_1109_ACCESS_2019_2950427 crossref_primary_10_1016_j_eswa_2021_115208 crossref_primary_10_1109_TCI_2025_3578762 crossref_primary_10_1109_JSEN_2022_3174779 crossref_primary_10_1002_mp_15168 crossref_primary_10_1007_s11222_024_10480_y crossref_primary_10_1109_TRPMS_2020_2997880 crossref_primary_10_1088_2057_1976_acb158 crossref_primary_10_1002_mp_15621 crossref_primary_10_1016_j_ejmp_2024_104819 crossref_primary_10_1002_mp_15942 crossref_primary_10_1002_mp_14219 crossref_primary_10_1002_mp_14715 crossref_primary_10_3389_fphy_2021_678171 crossref_primary_10_1117_1_JMI_12_S1_S13013 crossref_primary_10_1109_TIT_2022_3215496 crossref_primary_10_7566_JPSJ_90_074801 crossref_primary_10_1088_1361_6420_acdaee crossref_primary_10_1259_bjr_20201236 crossref_primary_10_1109_TMI_2024_3440651 |
| Cites_doi | 10.1109/TIT.1980.1056144 10.1561/2200000050 10.1038/272686a0 10.1118/1.1350585 10.1109/TMI.2015.2395438 10.1117/12.2217100 10.1088/0031-9155/61/10/3784 10.1118/1.4820371 10.1118/1.598159 10.1109/TMI.2017.2696338 10.1088/0031-9155/50/17/005 10.1088/0031-9155/53/15/002 10.1118/1.598622 10.1117/1.JMI.4.2.023506 10.1002/mp.12607 10.1364/JOSA.22.000265 10.1063/1.1586963 10.1063/1.1928312 10.1118/1.596956 10.1006/inco.1996.2612 10.1118/1.3547718 10.1088/0031-9155/49/22/005 |
| ContentType | Journal Article |
| Copyright | 2018 American Association of Physicists in Medicine 2018 American Association of Physicists in Medicine. |
| Copyright_xml | – notice: 2018 American Association of Physicists in Medicine – notice: 2018 American Association of Physicists in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1002/mp.13257 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 92 |
| ExternalDocumentID | PMC6461446 30370544 10_1002_mp_13257 MP13257 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: NIH funderid: R21EB015094; R01‐EB018102; R01‐CA182264 – fundername: NSF funderid: DMS‐1654076 – fundername: Berkeley Institute for Data Science – fundername: NIH HHS grantid: R21EB015094 – fundername: NIH HHS grantid: R01-CA182264 – fundername: NIBIB NIH HHS grantid: R01 EB018102 – fundername: NSF grantid: DMS-1654076 – fundername: NIBIB NIH HHS grantid: R01 EB026282 – fundername: NIH HHS grantid: R01-EB018102 – fundername: NIBIB NIH HHS grantid: R21 EB015094 – fundername: NCI NIH HHS grantid: R01 CA182264 |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ABUFD ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c4427-13e23713a7b9529451c7b13df985ba7111b82ba374cf7b57dd08eafd4db86083 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455029900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-2405 2473-4209 |
| IngestDate | Tue Nov 04 01:52:11 EST 2025 Thu Sep 04 14:07:07 EDT 2025 Thu Apr 03 06:59:06 EDT 2025 Sat Nov 29 06:02:38 EST 2025 Tue Nov 18 21:38:39 EST 2025 Wed Jan 22 16:20:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | EM KL divergence spectral calibration exponentiated-gradient algorithm x-ray spectrum |
| Language | English |
| License | 2018 American Association of Physicists in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4427-13e23713a7b9529451c7b13df985ba7111b82ba374cf7b57dd08eafd4db86083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30370544 |
| PQID | 2126905860 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461446 proquest_miscellaneous_2126905860 pubmed_primary_30370544 crossref_primary_10_1002_mp_13257 crossref_citationtrail_10_1002_mp_13257 wiley_primary_10_1002_mp_13257_MP13257 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2019 |
| References | 2015; 34 1980; 26 2017; 4 2004; 49 2013; 40 2017; 44 1997; 132 1999; 26 1997; 24 1993; 20 1997 2001; 28 2008; 53 2003; 94 2011; 38 2015; 8 2016; 9783 1990; 48 2017; 36 1978; 272 2005; 97 1932; 22 2016; 61 2005; 50 2013 1998; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 Barrett HH (e_1_2_8_20_1) 2013 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Berger MJ (e_1_2_8_26_1) 1998; 8 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 Engler P (e_1_2_8_4_1) 1990; 48 |
| References_xml | – volume: 44 start-page: 6183 year: 2017 end-page: 6194 article-title: X‐ray spectrum estimation for accurate attenuation simulation publication-title: Med Phys – volume: 34 start-page: 1403 year: 2015 end-page: 1413 article-title: A single scatter model for x‐ray CT energy spectrum estimation and polychromatic reconstruction publication-title: IEEE Trans Med Imaging – volume: 28 start-page: 325 year: 2001 end-page: 327 article-title: Computer algebra for x‐ray spectral reconstruction between 6 and 25 MV publication-title: Med Phys – volume: 97 start-page: 124701 year: 2005 article-title: A robust method of x‐ray source spectrum estimation from transmission measurements: demonstrated on computer simulated, scatter‐free transmission data publication-title: J Appl Phys – volume: 20 start-page: 1695 year: 1993 end-page: 1703 article-title: Simulation of x‐ray spectral reconstruction from transmission data by direct resolution of the numeric system AF = T publication-title: Med Phys – volume: 94 start-page: 2073 year: 2003 end-page: 2079 article-title: Density and atomic number measurements with spectral x‐ray attenuation method publication-title: J Appl Phys – volume: 38 start-page: 993 year: 2011 end-page: 997 article-title: CT scanner x‐ray spectrum estimation from transmission measurements publication-title: Med Phys – volume: 4 start-page: 023506 year: 2017 article-title: Segmentation‐free x‐ray energy spectrum estimation for computed tomography using dual‐energy material decomposition publication-title: J Med Imaging – volume: 8 start-page: 231 year: 2015 end-page: 357 article-title: Convex optimization: algorithms and complexity publication-title: Found Trends Mach Learn – volume: 26 start-page: 26 year: 1980 end-page: 37 article-title: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross‐entropy publication-title: IEEE Trans Inf Theory – volume: 36 start-page: 1808 year: 2017 end-page: 1819 article-title: A spectral CT method to directly estimate basis material maps from experimental photon‐counting data publication-title: IEEE Trans Med Imaging – volume: 9783 start-page: 97834 year: 2016 article-title: X‐ray spectrum estimation from transmission measurements by an exponential of a polynomial model publication-title: SPIE Med Imaging – volume: 26 start-page: 1269 year: 1999 end-page: 1278 article-title: X‐ray spectra estimation using attenuation measurements from 25 kVp to 18 MV publication-title: Med Phys – volume: 53 start-page: 4031 year: 2008 end-page: 4047 article-title: Experimental feasibility of multi‐energy photon‐counting K‐edge imaging in pre‐clinical computed tomography publication-title: Phys Med Biol – volume: 272 start-page: 686 year: 1978 end-page: 690 article-title: Image reconstruction from incomplete and noisy data publication-title: Nature – volume: 132 start-page: 1 year: 1997 end-page: 63 article-title: Exponentiated gradient versus gradient descent for linear predictors publication-title: Inf Comput – volume: 8 start-page: 3587 year: 1998 end-page: 3597 article-title: XCOM: photon cross sections database publication-title: NIST Stand Ref Database – volume: 24 start-page: 695 year: 1997 end-page: 702 article-title: Estimation of a photon energy spectrum for a computed tomography scanner publication-title: Med Phys – year: 1997 – volume: 61 start-page: 3784 year: 2016 end-page: 3818 article-title: An algorithm for constrained one‐step inversion of spectral CT data publication-title: Phys Med Biol – volume: 48 start-page: 623 year: 1990 end-page: 629 article-title: Review of dual‐energy computed tomography techniques publication-title: Mater Eval – volume: 22 start-page: 265 year: 1932 end-page: 280 article-title: Determination of the spectral composition of X‐ray radiation from filtration data publication-title: JOSA – volume: 50 start-page: 3989 year: 2005 end-page: 4004 article-title: A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms publication-title: Phys Med Biol – volume: 49 start-page: 5087 year: 2004 end-page: 5099 article-title: Spectrum reconstruction from dose measurements as a linear inverse problem publication-title: Phys Med Biol – start-page: 280 year: 2013 end-page: 288 – volume: 40 start-page: 100901 year: 2013 article-title: Vision 20/20: single photon counting x‐ray detectors in medical imaging publication-title: Med Phys – year: 2013 – ident: e_1_2_8_22_1 doi: 10.1109/TIT.1980.1056144 – ident: e_1_2_8_24_1 doi: 10.1561/2200000050 – ident: e_1_2_8_21_1 doi: 10.1038/272686a0 – ident: e_1_2_8_15_1 doi: 10.1118/1.1350585 – ident: e_1_2_8_28_1 doi: 10.1109/TMI.2015.2395438 – ident: e_1_2_8_9_1 doi: 10.1117/12.2217100 – ident: e_1_2_8_18_1 doi: 10.1088/0031-9155/61/10/3784 – ident: e_1_2_8_5_1 doi: 10.1118/1.4820371 – ident: e_1_2_8_12_1 doi: 10.1118/1.598159 – ident: e_1_2_8_25_1 – ident: e_1_2_8_7_1 doi: 10.1109/TMI.2017.2696338 – ident: e_1_2_8_2_1 doi: 10.1088/0031-9155/50/17/005 – ident: e_1_2_8_6_1 doi: 10.1088/0031-9155/53/15/002 – ident: e_1_2_8_27_1 – volume: 8 start-page: 3587 year: 1998 ident: e_1_2_8_26_1 article-title: XCOM: photon cross sections database publication-title: NIST Stand Ref Database – ident: e_1_2_8_11_1 doi: 10.1118/1.598622 – ident: e_1_2_8_10_1 doi: 10.1117/1.JMI.4.2.023506 – ident: e_1_2_8_17_1 doi: 10.1002/mp.12607 – volume: 48 start-page: 623 year: 1990 ident: e_1_2_8_4_1 article-title: Review of dual‐energy computed tomography techniques publication-title: Mater Eval – ident: e_1_2_8_8_1 doi: 10.1364/JOSA.22.000265 – ident: e_1_2_8_3_1 doi: 10.1063/1.1586963 – ident: e_1_2_8_13_1 doi: 10.1063/1.1928312 – ident: e_1_2_8_14_1 doi: 10.1118/1.596956 – ident: e_1_2_8_23_1 doi: 10.1006/inco.1996.2612 – ident: e_1_2_8_19_1 doi: 10.1118/1.3547718 – ident: e_1_2_8_16_1 doi: 10.1088/0031-9155/49/22/005 – volume-title: Foundations of Image Science year: 2013 ident: e_1_2_8_20_1 |
| SSID | ssj0006350 |
| Score | 2.423081 |
| Snippet | Purpose
We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x‐ray spectrum that can accurately... We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 81 |
| SubjectTerms | Algorithms exponentiated‐gradient algorithm Image Processing, Computer-Assisted KL divergence Models, Theoretical spectral calibration Tomography, X-Ray Computed - methods x‐ray spectrum |
| Title | Estimating the spectrum in computed tomography via Kullback–Leibler divergence constrained optimization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13257 https://www.ncbi.nlm.nih.gov/pubmed/30370544 https://www.proquest.com/docview/2126905860 https://pubmed.ncbi.nlm.nih.gov/PMC6461446 |
| Volume | 46 |
| WOSCitedRecordID | wos000455029900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2473-4209 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLSAuPMorPCojITilTRw7kxwRdIVEW1WoSHuL_ApENNnVbtsz_4F_yC9h7GQDq4KExCmHTJJRPI9v7PFngJeOkjrVCS5OrS5iUQqKg3VNhWuBmZICc21FOGwCj4-L2aw8Gboq_V6Ynh9inHDznhHitXdwpVf7v0hD28UeVVISt2Cbk9nKCWy_-zj9dDjGYUql_QaUUvg1BLmmnk34_vrZzWR0BWFebZT8HcCGDDS98z-634XbA-5kb3pDuQfXXLcDN4-GlfUduBFaQc3qPjQH5PUex3afGaFDFvZiLi9a1nTM9GdAWHY-bweua3bZKPaBClmtzNcf374fukafuSWzvuEjMH3SU56mVtF3LJtTiGqHvZ8P4HR6cPr2fTwcyBAbITjGaeZ4RlWtQl1KXgqZGtRpZuuykFohhU1dcK0yFKZGLdHapHCqtoLsICes9xAm3bxzj4EZyR0m3JPToaiLRDlphUCrVG4IUKYRvF4PTGUGsnKv6FnV0yzzql1U4RdG8GKUXPQEHX-SWY9tRd7jl0RU5-YXq4oSd14mkrSL4FE_1uNbKLkjAVoRAW5YwSjgmbk373TNl8DQnYtQZ0fwKljBXxWrjk7C9cm_Cj6FW4TYyn4O6BlMaPjdc7huLs-b1XIXtnBW7A5-8BNUAQyk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFmgvLZRH01IwEoJT2jzsOBGnqnRV1N1VhRapt8ivlIgmu9pte-Y_8A_5JYydB6wKEhKnHDKOrXge39iezwBvDAZ1zBOMH2qZ-jSj6AeLAhPXlMeCUZ5ITd1lE3w8Ti8usvMVeN_VwjT8EP2Cm7UM56-tgdsF6cNfrKHV7ABTKcbvwRpFLUL1XvvwafB52DtijKVNBUpG7SYC67hng-iwa7scje5AzLsnJX9HsC4EDbb-a_CPYLNFnuSoUZXHsGLqbXg4avfWt-GBOwyqFk-gPEG7t0i2viSID4mrxpzfVKSsiWpugdDkelq1bNfkthTkDDuWQn398e370JTyysyJtkc-HNcntrJEtQL70WSKTqpqqz-fwmRwMjk-9dsrGXxFacT9MDZRjHmt4DJjUUZZqLgMY11kKZOCo-OUaSRFzKkquGRc6yA1otAUNSFBtPcMVutpbXaAKBYZHkSWno7TIg2EYZpSroVIFELK0IN33czkqqUrtwO9yhui5SivZrn7hR687iVnDUXHn2S6yc3RfuymiKjN9GaRY-hOsoDh6Dx43kx2_xUM7xwhLfWAL6lBL2C5uZff1OUXx9GdUJdpe_DWqcFfB5aPzt1z918FX8H66WQ0zIcfx2d7sIH4LWtWhF7AKqqC2Yf76va6XMxftubwEwIqD6w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD7BRYkvgngroo6J0adKLzOdNj4ZYCNh2WwMJrw1cys00u5mF3j2P_gP_SWcmV5ggyQmPvWhp-2kcy7fmZnzHYAPBoM65gnGD7VMfZpR9INFgYlrymPBKE-kpq7ZBB-P05OTbLICX7pamIYfol9ws5bh_LU1cDPTxc4Na2g1-4ypFOMPYJXaHjIDWN37Pvwx6h0xxtKmAiWjdhOBddyzQbTTPbscje5AzLsnJW8jWBeChuv_NfgNeNIiT_K1UZWnsGLqTVg7avfWN-GROwyqFs-g3Ee7t0i2PiWID4mrxpxfVqSsiWq6QGhyMa1atmtyVQpyiKmsFOrnn1-_R6aU52ZOtD3y4bg-8SlLVCvwO5pM0UlVbfXnczge7h_vfvPblgy-ojTifhibKMa8VnCZsSijLFRchrEuspRJwdFxyjSSIuZUFVwyrnWQGlFoipqQINp7AYN6WptXQBSLDA8iS0_HaZEGwjBNKddCJAohZejBp25mctXSlduBnucN0XKUV7Pc_UIP3veSs4ai428y3eTmaD92U0TUZnq5yDF0J1nAcHQevGwmu38LhneOkJZ6wJfUoBew3NzLd-ryzHF0J9Rl2h58dGpw78Dyo4m7bv2r4DtYm-wN89HB-PA1PEb4ljULQtswQE0wb-ChurooF_O3rTVcA3jWDyc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+spectrum+in+computed+tomography+via+Kullback-Leibler+divergence+constrained+optimization&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Ha%2C+Wooseok&rft.au=Sidky%2C+Emil+Y&rft.au=Barber%2C+Rina+Foygel&rft.au=Schmidt%2C+Taly+Gilat&rft.date=2019-01-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=46&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1002%2Fmp.13257&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |