The local ternary pattern encoder–decoder neural network for dental image segmentation
Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in radiographs. At the centre of these advances is the ability to explore hierarchical feature representations learned from data. Deep learning is invalu...
Uložené v:
| Vydané v: | IET image processing Ročník 16; číslo 6; s. 1520 - 1530 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Wiley
01.05.2022
|
| ISSN: | 1751-9659, 1751-9667 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in radiographs. At the centre of these advances is the ability to explore hierarchical feature representations learned from data. Deep learning is invaluably becoming the most sought out technique, leading to enhanced performances in the analysis of medical applications and systems. Deep learning techniques have achieved improved performance results in dental image segmentation. Segmentation of dental radiographs is a crucial step that helps dentists to diagnose dental caries. However, the performance of the deep networks used for these analyses are restrained by various challenging features found in dental carious lesions. Segmentation of dental images is often difficult due to the vast variety of types of topology, intricacies of medical structure and poor image quality caused by conditions such as low contrast, noise, irregular, and fuzzy border edges. These issues are exacerbated by low numbers of data images available for any particular analysis. A robust local ternary pattern encoder–decoder network (LTPEDN) is proposed to overcome dental image segmentation challenges and minimise the computational resources required. This new architecture is a modification of existing methods using an LTP. Images are preprocessed via augmentation and normalisation techniques to increase and prepare the datasets. Thereafter, the dataset input is sent to the LTPEDN for training and testing the model. Segmentation is performed using the non‐learnable layers (the LTP layers) and the learnable layers (standard convolution layers), to extract the ROI of the teeth. The method was evaluated on an augmented dataset of 11, 000 dental images. It was trained on 8, 800 training set images and tested on 2, 200 testing set images. The new method is shown to be 94.32% accurate. |
|---|---|
| AbstractList | Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in radiographs. At the centre of these advances is the ability to explore hierarchical feature representations learned from data. Deep learning is invaluably becoming the most sought out technique, leading to enhanced performances in the analysis of medical applications and systems. Deep learning techniques have achieved improved performance results in dental image segmentation. Segmentation of dental radiographs is a crucial step that helps dentists to diagnose dental caries. However, the performance of the deep networks used for these analyses are restrained by various challenging features found in dental carious lesions. Segmentation of dental images is often difficult due to the vast variety of types of topology, intricacies of medical structure and poor image quality caused by conditions such as low contrast, noise, irregular, and fuzzy border edges. These issues are exacerbated by low numbers of data images available for any particular analysis. A robust local ternary pattern encoder–decoder network (LTPEDN) is proposed to overcome dental image segmentation challenges and minimise the computational resources required. This new architecture is a modification of existing methods using an LTP. Images are preprocessed via augmentation and normalisation techniques to increase and prepare the datasets. Thereafter, the dataset input is sent to the LTPEDN for training and testing the model. Segmentation is performed using the non‐learnable layers (the LTP layers) and the learnable layers (standard convolution layers), to extract the ROI of the teeth. The method was evaluated on an augmented dataset of 11, 000 dental images. It was trained on 8, 800 training set images and tested on 2, 200 testing set images. The new method is shown to be 94.32% accurate. Abstract Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in radiographs. At the centre of these advances is the ability to explore hierarchical feature representations learned from data. Deep learning is invaluably becoming the most sought out technique, leading to enhanced performances in the analysis of medical applications and systems. Deep learning techniques have achieved improved performance results in dental image segmentation. Segmentation of dental radiographs is a crucial step that helps dentists to diagnose dental caries. However, the performance of the deep networks used for these analyses are restrained by various challenging features found in dental carious lesions. Segmentation of dental images is often difficult due to the vast variety of types of topology, intricacies of medical structure and poor image quality caused by conditions such as low contrast, noise, irregular, and fuzzy border edges. These issues are exacerbated by low numbers of data images available for any particular analysis. A robust local ternary pattern encoder–decoder network (LTPEDN) is proposed to overcome dental image segmentation challenges and minimise the computational resources required. This new architecture is a modification of existing methods using an LTP. Images are preprocessed via augmentation and normalisation techniques to increase and prepare the datasets. Thereafter, the dataset input is sent to the LTPEDN for training and testing the model. Segmentation is performed using the non‐learnable layers (the LTP layers) and the learnable layers (standard convolution layers), to extract the ROI of the teeth. The method was evaluated on an augmented dataset of 11, 000 dental images. It was trained on 8, 800 training set images and tested on 2, 200 testing set images. The new method is shown to be 94.32% accurate. |
| Author | Salih, Omran Duffy, Kevin Jan |
| Author_xml | – sequence: 1 givenname: Omran orcidid: 0000-0002-7861-5502 surname: Salih fullname: Salih, Omran email: omran@aims.ac.za organization: Durban University of Technology – sequence: 2 givenname: Kevin Jan orcidid: 0000-0002-2580-8984 surname: Duffy fullname: Duffy, Kevin Jan organization: Durban University of Technology |
| BookMark | eNp9kM1KAzEUhYNUsK1ufIJZC9WbNJlMllL8KRQUqeAuZJKbOnU6KZmR0p3v4Bv6JE470oWIq3vu5ZyP5AxIrwoVEnJO4ZICV1fFOrJLyjhNj0ifSkFHKk1l76CFOiGDul4CCAWZ6JOX-SsmZbCmTBqMlYnbZG2anUywssFh_Pr4dLhXSYXvsTVW2GxCfEt8iInDqmlPxcosMKlxsdrtTRGqU3LsTVnj2c8ckufbm_nkfjR7uJtOrmcjyzlLR5aCY2muPFUsd8i8zwBs7j1wbzw4MCyXzDoJCqT1XjlBnZAGvOSpzGA8JNOO64JZ6nVsXxK3OphC7w8hLrSJTWFL1NJy5cZpLsaoODci83nm0CiXZwJyJVvWRceyMdR1RH_gUdC7fvWuX73vtzXDL7Mtuq830RTl3xHaRTZFidt_4Hr6-MS6zDc15pIr |
| CitedBy_id | crossref_primary_10_1007_s00521_024_09995_2 crossref_primary_10_1007_s11282_023_00717_3 crossref_primary_10_1016_j_compbiomed_2024_108800 crossref_primary_10_1016_j_neucom_2023_126629 crossref_primary_10_3390_signals6030040 |
| Cites_doi | 10.7717/peerj-cs.620 10.1109/TIP.2010.2042645 10.1109/CVPR.2017.456 10.1016/j.engappai.2017.01.003 10.1016/j.neucom.2012.02.008 10.1177/0022034515573272 10.1109/SIBGRAPI.2018.00058 10.1016/j.asej.2016.03.016 10.3390/sym8110132 10.1038/s41598-019-56123-5 10.1109/ICDE51399.2021.00319 10.1109/CASH.2014.10 10.1007/s00784-020-03544-6 10.1109/ICCSE.2013.6553944 10.1117/1.1631315 10.3389/fbioe.2020.00794 10.5812/iranjradiol.12(2)2015.16242 10.1016/j.eswa.2018.04.001 10.1016/j.procs.2016.09.407 10.5566/ias.2397 10.1002/mp.12045 10.1007/978-3-319-46493-0_32 10.1016/j.oooo.2011.10.002 10.5334/jors.ae 10.1109/WiSPNET48689.2020.9198370 10.1016/0031-3203(95)00067-4 10.1109/SIBGRAPI51738.2020.00030 10.24018/ejers.2017.2.1.237 10.4103/1119-3077.181360 10.1007/s11042-018-6035-0 10.1016/j.cmpb.2013.10.015 10.1177/0022034519871884 10.1109/CCECE.2011.6030501 10.1177/0022034514557546 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/ipr2.12416 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ: Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 1530 |
| ExternalDocumentID | oai_doaj_org_article_7c49d36b53e944a58fb8dea9db850b97 10_1049_ipr2_12416 IPR212416 |
| Genre | article |
| GrantInformation_xml | – fundername: The National Research Foundation of South Africa funderid: 131604 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG 8VB AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ESX GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ O9- OCL OK1 P2P P62 PTHSS QWB RIE RNS ROL RUI S0W ZL0 AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c4426-c10d26b9f192bde2ff800cbff04faf0d0a2b72cd70907cff9d51d57a0f7467803 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9659 |
| IngestDate | Fri Oct 03 12:50:26 EDT 2025 Tue Nov 18 22:41:40 EST 2025 Wed Oct 29 21:16:42 EDT 2025 Wed Jan 22 16:24:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4426-c10d26b9f192bde2ff800cbff04faf0d0a2b72cd70907cff9d51d57a0f7467803 |
| ORCID | 0000-0002-2580-8984 0000-0002-7861-5502 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12416 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7c49d36b53e944a58fb8dea9db850b97 crossref_primary_10_1049_ipr2_12416 crossref_citationtrail_10_1049_ipr2_12416 wiley_primary_10_1049_ipr2_12416_IPR212416 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2022 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2021; 25 2015; 12 2017; 20 2021; 7 2019; 9 2013; 4 2017; 2 2013; 1 2011 2010; 19 2010 2015; 94 2019; 98 2018; 107 2017; 44 2016; 102 2020; 39 2014; 113 2020; 8 2018; 9 1996; 29 2014; 4 2012; 113 2017; 59 2021 2020 2004; 13 2018 2017 2016 2015 2014 2013 2018; 77 2016; 8 2012; 87 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Nokhbatolfoghahaie H. (e_1_2_9_7_1) 2013; 4 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 Zhao S. (e_1_2_9_26_1) 2020 Subramanyam R.B. (e_1_2_9_9_1) 2014; 4 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – start-page: 19 year: 2017 end-page: 28 article-title: Local binary convolutional neural networks – volume: 113 start-page: 433 issue: 2 year: 2014 end-page: 445 article-title: Teeth segmentation of dental periapical radiographs based on local singularity analysis publication-title: Comput. Methods Programs Biomed. – volume: 87 start-page: 90 year: 2012 end-page: 98 article-title: Quantum evolutionary clustering algorithm based on watershed applied to SAR image segmentation publication-title: Neurocomputing – start-page: 396 year: 2013 end-page: 401 article-title: Active contour model to extract boundaries of teeth in dental X‐ray images – start-page: 400 year: 2018 end-page: 407 article-title: Deep instance segmentation of teeth in panoramic X‐ray images – start-page: 3165 year: 2016 end-page: 3169 article-title: Color based segmentation using k‐mean clustering and watershed segmentation – start-page: 000504 year: 2011 end-page: 000507 article-title: A simple and novel algorithm for automatic selection of roi for dental radiograph segmentation – volume: 8 start-page: 132 issue: 11 year: 2016 article-title: Segmentation of brain tumors in MRI images using three‐dimensional active contour without edge publication-title: Symmetry – volume: 13 start-page: 146 issue: 1 year: 2004 end-page: 165 article-title: Survey over image thresholding techniques and quantitative performance evaluation publication-title: J. Electron. Imaging – start-page: 525 year: 2016 end-page: 542 article-title: Xnor‐net: Imagenet classification using binary convolutional neural networks – volume: 44 start-page: 547 issue: 2 year: 2017 end-page: 557 article-title: Segmentation of organs‐at‐risks in head and neck ct images using convolutional neural networks publication-title: Med. Phys. – volume: 8 start-page: 794 year: 2020 article-title: Reconstruction of panoramic dental images through Bézier function optimization publication-title: Front. Bioeng. Biotechnol. – volume: 12 issue: 4 year: 2015 article-title: Designing of a computer software for detection of approximal caries in posterior teeth publication-title: Iran. J. Radiol. – volume: 98 start-page: 1227 issue: 11 year: 2019 end-page: 1233 article-title: Caries detection with near‐infrared transillumination using deep learning publication-title: J. Dent. Res. – start-page: 187 year: 2020 end-page: 191 article-title: Unet architecture based dental panoramic image segmentation – volume: 19 start-page: 1635 issue: 6 year: 2010 end-page: 1650 article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions publication-title: IEEE Trans. Image Process. – volume: 9 start-page: 697 issue: 4 year: 2018 end-page: 706 article-title: A hybrid fuzzy c‐means and neutrosophic for jaw lesions segmentation publication-title: Ain Shams Eng. J. – volume: 102 start-page: 317 year: 2016 end-page: 324 article-title: Review of MRI‐based brain tumor image segmentation using deep learning methods publication-title: Procedia Comput. Sci. – start-page: 62 year: 2014 end-page: 66 article-title: Sobel and canny edges segmentations for the dental age assessment – year: 2016 – volume: 7 year: 2021 article-title: Descriptive analysis of dental x‐ray images using various practical methods: a review publication-title: PeerJ Comput. Sci. – volume: 20 start-page: 382 issue: 3 year: 2017 end-page: 387 article-title: Diagnostic methods for dental caries used by private dental practitioners in Ankara publication-title: Niger. J. Clin. Pract. – volume: 94 start-page: 10 issue: 1 year: 2015 end-page: 18 article-title: Socioeconomic inequality and caries: a systematic review and meta‐analysis publication-title: J. Dent. Res. – volume: 4 start-page: 173 issue: 7 year: 2014 end-page: 177 article-title: Different image segmentation techniques for dental image extraction publication-title: Int. J. Eng. Res. Appl. – year: 2010 – volume: 77 start-page: 28843 issue: 21 year: 2018 end-page: 28862 article-title: Automatic computer‐aided caries detection from dental X‐ray images using intelligent level set publication-title: Multimedia Tools and Applications – volume: 1 start-page: 6 issue: 1 year: 2013 end-page: 8 article-title: IJBlob: an ImageJ library for connected component analysis and shape analysis publication-title: J. Open Res. Software – volume: 94 start-page: 650 issue: 5 year: 2015 end-page: 658 article-title: Global burden of untreated caries: a systematic review and metaregression publication-title: J. Dent. Res. – volume: 113 start-page: 549 issue: 4 year: 2012 end-page: 558 article-title: Recursive hierarchic segmentation analysis of bone mineral density changes on digital panoramic images publication-title: Oral surgery, oral medicine, oral pathology and oral radiology – volume: 25 start-page: 2257 issue: 4 year: 2021 end-page: 2267 article-title: Artificial intelligence‐driven novel tool for tooth detection and segmentation on panoramic radiographs publication-title: Clinical Oral Investigations – volume: 107 start-page: 15 year: 2018 end-page: 31 article-title: Automatic segmenting teeth in x‐ray images: Trends, a novel data set, benchmarking and future perspectives publication-title: Expert Syst. Appl. – volume: 39 start-page: 169 issue: 3 year: 2020 end-page: 185 article-title: Skin lesion segmentation using local binary convolution‐deconvolution architecture publication-title: Image Anal. Stereol. – volume: 2 start-page: 15 issue: 1 year: 2017 end-page: 20 article-title: A survey on image segmentation methods using clustering techniques publication-title: Eur. J. Eng. Technol. Res. – volume: 59 start-page: 186 year: 2017 end-page: 195 article-title: Dental segmentation from x‐ray images using semi‐supervised fuzzy clustering with spatial constraints publication-title: Eng. Appl. Artif. Intell. – start-page: 164 year: 2020 end-page: 171 article-title: A study on tooth segmentation and numbering using end‐to‐end deep neural networks – volume: 29 start-page: 51 issue: 1 year: 1996 end-page: 59 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit. – year: 2017 – start-page: 2750 year: 2021 end-page: 2755 article-title: Combining anatomical constraints and deep learning for 3‐D CBCT dental image multi‐label segmentation – year: 2020 article-title: Automatic tooth segmentation and classification in dental panoramic X‐ray images publication-title: Res. Square – year: 2015 – volume: 4 start-page: 159 issue: 4 year: 2013 end-page: 167 article-title: Evaluation of accuracy of diagnodent in diagnosis of primary and secondary caries in comparison to conventional methods publication-title: J. Lasers Med. Sci. – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 11 article-title: A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films publication-title: Sci. Rep. – ident: e_1_2_9_31_1 – ident: e_1_2_9_37_1 doi: 10.7717/peerj-cs.620 – ident: e_1_2_9_35_1 doi: 10.1109/TIP.2010.2042645 – ident: e_1_2_9_32_1 doi: 10.1109/CVPR.2017.456 – ident: e_1_2_9_18_1 doi: 10.1016/j.engappai.2017.01.003 – ident: e_1_2_9_23_1 doi: 10.1016/j.neucom.2012.02.008 – ident: e_1_2_9_2_1 doi: 10.1177/0022034515573272 – ident: e_1_2_9_10_1 doi: 10.1109/SIBGRAPI.2018.00058 – ident: e_1_2_9_17_1 doi: 10.1016/j.asej.2016.03.016 – ident: e_1_2_9_22_1 doi: 10.3390/sym8110132 – ident: e_1_2_9_28_1 doi: 10.1038/s41598-019-56123-5 – volume: 4 start-page: 173 issue: 7 year: 2014 ident: e_1_2_9_9_1 article-title: Different image segmentation techniques for dental image extraction publication-title: Int. J. Eng. Res. Appl. – ident: e_1_2_9_36_1 doi: 10.1109/ICDE51399.2021.00319 – ident: e_1_2_9_14_1 doi: 10.1109/CASH.2014.10 – ident: e_1_2_9_38_1 doi: 10.1007/s00784-020-03544-6 – ident: e_1_2_9_21_1 doi: 10.1109/ICCSE.2013.6553944 – ident: e_1_2_9_13_1 – ident: e_1_2_9_11_1 doi: 10.1117/1.1631315 – ident: e_1_2_9_42_1 doi: 10.3389/fbioe.2020.00794 – ident: e_1_2_9_6_1 doi: 10.5812/iranjradiol.12(2)2015.16242 – ident: e_1_2_9_12_1 doi: 10.1016/j.eswa.2018.04.001 – ident: e_1_2_9_24_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.procs.2016.09.407 – ident: e_1_2_9_27_1 doi: 10.5566/ias.2397 – ident: e_1_2_9_39_1 doi: 10.1002/mp.12045 – ident: e_1_2_9_5_1 – ident: e_1_2_9_33_1 doi: 10.1007/978-3-319-46493-0_32 – ident: e_1_2_9_15_1 doi: 10.1016/j.oooo.2011.10.002 – ident: e_1_2_9_25_1 doi: 10.5334/jors.ae – ident: e_1_2_9_43_1 doi: 10.1109/WiSPNET48689.2020.9198370 – ident: e_1_2_9_34_1 doi: 10.1016/0031-3203(95)00067-4 – ident: e_1_2_9_29_1 doi: 10.1109/SIBGRAPI51738.2020.00030 – ident: e_1_2_9_30_1 – volume: 4 start-page: 159 issue: 4 year: 2013 ident: e_1_2_9_7_1 article-title: Evaluation of accuracy of diagnodent in diagnosis of primary and secondary caries in comparison to conventional methods publication-title: J. Lasers Med. Sci. – ident: e_1_2_9_19_1 doi: 10.24018/ejers.2017.2.1.237 – year: 2020 ident: e_1_2_9_26_1 article-title: Automatic tooth segmentation and classification in dental panoramic X‐ray images publication-title: Res. Square – ident: e_1_2_9_8_1 doi: 10.4103/1119-3077.181360 – ident: e_1_2_9_40_1 doi: 10.1007/s11042-018-6035-0 – ident: e_1_2_9_41_1 doi: 10.1016/j.cmpb.2013.10.015 – ident: e_1_2_9_3_1 doi: 10.1177/0022034519871884 – ident: e_1_2_9_16_1 doi: 10.1109/CCECE.2011.6030501 – ident: e_1_2_9_4_1 doi: 10.1177/0022034514557546 |
| SSID | ssj0059085 |
| Score | 2.312806 |
| Snippet | Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in... Abstract Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1520 |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePDit7h-EdCLQt20TdrmqOKil2URhb2VJpPIgluX7ip48z_4D_0lJtPusoLoxVsoAykzbeZNO_MeISdaurLDKAgKHXtS7UQGWcIh4CBduo-Fhx0oNpH2etlgIPsLUl--J6ymB64d10k1lxAnSsRGcl6IzKoMTCFBZYIpiXPkLJWzYqo-g72Qt8BRSC8inwg5IyblsjMcV9G5y2pe4XwhFSFj_3eEiimmu05WG2xIL-p72iBLptwkaw1OpM1bONkiAxdbikmI4ue86o2OkSazpJ6WEkz1-f4BBlfUE1Y6w7Ju96YOo1LAEUg6HLmzhE7M46iZPyq3yUP3-v7qJmgUEgLNXWoNdMggSpS0DqcpMJG1Dv9pZS3jtrAMWBGpNNKQMlcDa2sliBBEWjDrVUYyFu-QVvlcml1CXWXiwBsDYVXKQfPM1TqQhsCsC6cxYZuczpyV64Y-3KtYPOX4G5vL3Ds2R8e2yfHcdlyTZvxodel9PrfwRNd4wYU_b8Kf_xX-NjnDiP2yT37bv4twtfcfO-6TlciPQGDT4wFpTasXc0iW9et0OKmO8DH8ArFt4fM priority: 102 providerName: Directory of Open Access Journals |
| Title | The local ternary pattern encoder–decoder neural network for dental image segmentation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12416 https://doaj.org/article/7c49d36b53e944a58fb8dea9db850b97 |
| Volume | 16 |
| WOSCitedRecordID | wos000755017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9q64MvtvUPntqyUF8UoptkN5sFX2yx2JfjKIr3FrI7u-WgTY9cFXzzO_gN_STOTnInBRHEl7CECQm7Mzu_mez8BuCFtxR2BIdZ68tEql3ZrK4UZgotuftSJ9jBzSbMdFrP53a2BW_XtTADP8Qm4ZYsg_frZOCtG7qQEKilRVws--I1eae8ugM7eV6apNOFmq334dTMW3M5ZGokX2m7JidV9s3vZ2-5I2btv41S2c2c7v7fB-7B_RFeineDPuzDVugewO4INcVoyKuHMCf1EOzHBGcE-29iyUybnUjMlhj6n99_YOCRSJyXJNgNJ8YFwVyBXEUpFle0HYlVuLgaS5i6R_Dp9P3Hkw_Z2GQh84q8c-ZziUXlbCSo5zAUMRKE9C5GqWIbJcq2cKbwaCSF0T5GizpHbVoZU6OSWpaPYbu77sITEBTcEP6TqKMzCr2qKVxCk6OMpBEh5BN4uZ7rxo8M5KkRxmXDf8KVbdKUNTxlEzjayC4H3o0_Sh2nJdtIJK5svnHdXzSj6TXGK4tl5XQZrFKtrqOrMbQWXa2ls2YCr3gZ__Ke5mx2XvDo6b8IP4N7RaqW4PORz2H7pv8SDuCu_3qzWPWHrK2HnASg6-ez6S8IPO-X |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qFfTFWv_g-add0BeF2E2ym2QfbbG0tB6HVLi3kN3ZPQ5seuSq0Ld-B7-hn8SdSe6kIIL0bQkTEnZndn6zO_MbgLfOxLDDW0walxOpdmGSqlCYKDTR3eeaYAc3myjH42o6NZMhN4dqYXp-iPWBG1kG79dk4HQg3Qecikgy54su-xDdU1rcgbsquiXK6MvUZLURUzdvzfWQ1Em-0GbFTqrM3p93b_gjpu2_CVPZzxxu3fIPH8HDAWCKj71GbMOGbx_D1gA2xWDKyycwjQoi2JMJPhPsrsSCuTZbQdyW6Ltf1z_R80gQ62UUbPuccRGBrkCuoxTz87ghiaWfnQ9FTO1T-Hr46ezgKBnaLCRORf-cuFRiVlgTItiz6LMQIoh0NgSpQhMkyiazZeawlDGQdiEY1CnqspGBWpVUMn8Gm-1F65-DiOFNRIASdbClQqeqGDBhmaIMUSe8T0fwbjXZtRs4yKkVxrea78KVqWnKap6yEbxZyy565o2_Su3Tmq0liC2bH1x0s3owvrp0ymBeWJ17o1Sjq2Ar9I1BW2lpTTmC97yO__hOfTz5kvHoxf8I78L9o7PPp_Xp8fjkJTzIqHaCsyVfweZl992_hnvux-V82e2w6v4G9P_xdw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7aNIRckiZp6KZ_gvbSgBvZlizr2L-lIWVZSgJ7M5ZGCguNd_FuA7nlHfqGfZJKY--WQCmE3oQZYyPNaL6RZr4BeGN1CDucwaS2eSTVLnRSFgITgTq4-1xG2EHNJtRoVE4metzn5sRamI4fYn3gFi2D9uto4G6Ovgs4RSTJnM7b7F1wT2nxEB4JqcguMzFebcSxm7ekesjYSb6QesVOKvTJn3fv-COi7b8LU8nPDHf_8w8fw04PMNn7TiP24IFr9mG3B5usN-XFAUyCgjDyZIzOBNsbNieuzYZFbkt07a_bn-hoxCLrZRBsupxxFoAuQ6qjZNOrsCGxhbu86ouYmidwMfx8_vFL0rdZSKwI_jmxKcesMNoHsGfQZd4HEGmN91z42nPkdWZUZlHxEEhb7zXKFKWquY-tSkqeH8JGM2vcU2AhvAkIkKP0Rgm0ogwBE6oUuQ864Vw6gLerya5sz0EeW2F8r-guXOgqTllFUzaA12vZece88VepD3HN1hKRLZsezNrLqje-SlmhMS-MzJ0WopalNyW6WqMpJTdaDeCY1vEf36lOx98yGh3dR_gVbI0_Dauvp6OzZ7CdxdIJSpZ8DhvL9od7AZv2ejldtC9Jc38DlSfw8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+local+ternary+pattern+encoder%E2%80%93decoder+neural+network+for+dental+image+segmentation&rft.jtitle=IET+image+processing&rft.au=Salih%2C+Omran&rft.au=Duffy%2C+Kevin+Jan&rft.date=2022-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=16&rft.issue=6&rft.spage=1520&rft.epage=1530&rft_id=info:doi/10.1049%2Fipr2.12416&rft.externalDBID=10.1049%252Fipr2.12416&rft.externalDocID=IPR212416 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |