The local ternary pattern encoder–decoder neural network for dental image segmentation

Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in radiographs. At the centre of these advances is the ability to explore hierarchical feature representations learned from data. Deep learning is invalu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET image processing Ročník 16; číslo 6; s. 1520 - 1530
Hlavní autori: Salih, Omran, Duffy, Kevin Jan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Wiley 01.05.2022
ISSN:1751-9659, 1751-9667
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in radiographs. At the centre of these advances is the ability to explore hierarchical feature representations learned from data. Deep learning is invaluably becoming the most sought out technique, leading to enhanced performances in the analysis of medical applications and systems. Deep learning techniques have achieved improved performance results in dental image segmentation. Segmentation of dental radiographs is a crucial step that helps dentists to diagnose dental caries. However, the performance of the deep networks used for these analyses are restrained by various challenging features found in dental carious lesions. Segmentation of dental images is often difficult due to the vast variety of types of topology, intricacies of medical structure and poor image quality caused by conditions such as low contrast, noise, irregular, and fuzzy border edges. These issues are exacerbated by low numbers of data images available for any particular analysis. A robust local ternary pattern encoder–decoder network (LTPEDN) is proposed to overcome dental image segmentation challenges and minimise the computational resources required. This new architecture is a modification of existing methods using an LTP. Images are preprocessed via augmentation and normalisation techniques to increase and prepare the datasets. Thereafter, the dataset input is sent to the LTPEDN for training and testing the model. Segmentation is performed using the non‐learnable layers (the LTP layers) and the learnable layers (standard convolution layers), to extract the ROI of the teeth. The method was evaluated on an augmented dataset of 11, 000 dental images. It was trained on 8, 800 training set images and tested on 2, 200 testing set images. The new method is shown to be 94.32% accurate.
AbstractList Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in radiographs. At the centre of these advances is the ability to explore hierarchical feature representations learned from data. Deep learning is invaluably becoming the most sought out technique, leading to enhanced performances in the analysis of medical applications and systems. Deep learning techniques have achieved improved performance results in dental image segmentation. Segmentation of dental radiographs is a crucial step that helps dentists to diagnose dental caries. However, the performance of the deep networks used for these analyses are restrained by various challenging features found in dental carious lesions. Segmentation of dental images is often difficult due to the vast variety of types of topology, intricacies of medical structure and poor image quality caused by conditions such as low contrast, noise, irregular, and fuzzy border edges. These issues are exacerbated by low numbers of data images available for any particular analysis. A robust local ternary pattern encoder–decoder network (LTPEDN) is proposed to overcome dental image segmentation challenges and minimise the computational resources required. This new architecture is a modification of existing methods using an LTP. Images are preprocessed via augmentation and normalisation techniques to increase and prepare the datasets. Thereafter, the dataset input is sent to the LTPEDN for training and testing the model. Segmentation is performed using the non‐learnable layers (the LTP layers) and the learnable layers (standard convolution layers), to extract the ROI of the teeth. The method was evaluated on an augmented dataset of 11, 000 dental images. It was trained on 8, 800 training set images and tested on 2, 200 testing set images. The new method is shown to be 94.32% accurate.
Abstract Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in radiographs. At the centre of these advances is the ability to explore hierarchical feature representations learned from data. Deep learning is invaluably becoming the most sought out technique, leading to enhanced performances in the analysis of medical applications and systems. Deep learning techniques have achieved improved performance results in dental image segmentation. Segmentation of dental radiographs is a crucial step that helps dentists to diagnose dental caries. However, the performance of the deep networks used for these analyses are restrained by various challenging features found in dental carious lesions. Segmentation of dental images is often difficult due to the vast variety of types of topology, intricacies of medical structure and poor image quality caused by conditions such as low contrast, noise, irregular, and fuzzy border edges. These issues are exacerbated by low numbers of data images available for any particular analysis. A robust local ternary pattern encoder–decoder network (LTPEDN) is proposed to overcome dental image segmentation challenges and minimise the computational resources required. This new architecture is a modification of existing methods using an LTP. Images are preprocessed via augmentation and normalisation techniques to increase and prepare the datasets. Thereafter, the dataset input is sent to the LTPEDN for training and testing the model. Segmentation is performed using the non‐learnable layers (the LTP layers) and the learnable layers (standard convolution layers), to extract the ROI of the teeth. The method was evaluated on an augmented dataset of 11, 000 dental images. It was trained on 8, 800 training set images and tested on 2, 200 testing set images. The new method is shown to be 94.32% accurate.
Author Salih, Omran
Duffy, Kevin Jan
Author_xml – sequence: 1
  givenname: Omran
  orcidid: 0000-0002-7861-5502
  surname: Salih
  fullname: Salih, Omran
  email: omran@aims.ac.za
  organization: Durban University of Technology
– sequence: 2
  givenname: Kevin Jan
  orcidid: 0000-0002-2580-8984
  surname: Duffy
  fullname: Duffy, Kevin Jan
  organization: Durban University of Technology
BookMark eNp9kM1KAzEUhYNUsK1ufIJZC9WbNJlMllL8KRQUqeAuZJKbOnU6KZmR0p3v4Bv6JE470oWIq3vu5ZyP5AxIrwoVEnJO4ZICV1fFOrJLyjhNj0ifSkFHKk1l76CFOiGDul4CCAWZ6JOX-SsmZbCmTBqMlYnbZG2anUywssFh_Pr4dLhXSYXvsTVW2GxCfEt8iInDqmlPxcosMKlxsdrtTRGqU3LsTVnj2c8ckufbm_nkfjR7uJtOrmcjyzlLR5aCY2muPFUsd8i8zwBs7j1wbzw4MCyXzDoJCqT1XjlBnZAGvOSpzGA8JNOO64JZ6nVsXxK3OphC7w8hLrSJTWFL1NJy5cZpLsaoODci83nm0CiXZwJyJVvWRceyMdR1RH_gUdC7fvWuX73vtzXDL7Mtuq830RTl3xHaRTZFidt_4Hr6-MS6zDc15pIr
CitedBy_id crossref_primary_10_1007_s00521_024_09995_2
crossref_primary_10_1007_s11282_023_00717_3
crossref_primary_10_1016_j_compbiomed_2024_108800
crossref_primary_10_1016_j_neucom_2023_126629
crossref_primary_10_3390_signals6030040
Cites_doi 10.7717/peerj-cs.620
10.1109/TIP.2010.2042645
10.1109/CVPR.2017.456
10.1016/j.engappai.2017.01.003
10.1016/j.neucom.2012.02.008
10.1177/0022034515573272
10.1109/SIBGRAPI.2018.00058
10.1016/j.asej.2016.03.016
10.3390/sym8110132
10.1038/s41598-019-56123-5
10.1109/ICDE51399.2021.00319
10.1109/CASH.2014.10
10.1007/s00784-020-03544-6
10.1109/ICCSE.2013.6553944
10.1117/1.1631315
10.3389/fbioe.2020.00794
10.5812/iranjradiol.12(2)2015.16242
10.1016/j.eswa.2018.04.001
10.1016/j.procs.2016.09.407
10.5566/ias.2397
10.1002/mp.12045
10.1007/978-3-319-46493-0_32
10.1016/j.oooo.2011.10.002
10.5334/jors.ae
10.1109/WiSPNET48689.2020.9198370
10.1016/0031-3203(95)00067-4
10.1109/SIBGRAPI51738.2020.00030
10.24018/ejers.2017.2.1.237
10.4103/1119-3077.181360
10.1007/s11042-018-6035-0
10.1016/j.cmpb.2013.10.015
10.1177/0022034519871884
10.1109/CCECE.2011.6030501
10.1177/0022034514557546
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12416
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1530
ExternalDocumentID oai_doaj_org_article_7c49d36b53e944a58fb8dea9db850b97
10_1049_ipr2_12416
IPR212416
Genre article
GrantInformation_xml – fundername: The National Research Foundation of South Africa
  funderid: 131604
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P2P
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4426-c10d26b9f192bde2ff800cbff04faf0d0a2b72cd70907cff9d51d57a0f7467803
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Fri Oct 03 12:50:26 EDT 2025
Tue Nov 18 22:41:40 EST 2025
Wed Oct 29 21:16:42 EDT 2025
Wed Jan 22 16:24:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4426-c10d26b9f192bde2ff800cbff04faf0d0a2b72cd70907cff9d51d57a0f7467803
ORCID 0000-0002-2580-8984
0000-0002-7861-5502
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12416
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7c49d36b53e944a58fb8dea9db850b97
crossref_primary_10_1049_ipr2_12416
crossref_citationtrail_10_1049_ipr2_12416
wiley_primary_10_1049_ipr2_12416_IPR212416
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 25
2015; 12
2017; 20
2021; 7
2019; 9
2013; 4
2017; 2
2013; 1
2011
2010; 19
2010
2015; 94
2019; 98
2018; 107
2017; 44
2016; 102
2020; 39
2014; 113
2020; 8
2018; 9
1996; 29
2014; 4
2012; 113
2017; 59
2021
2020
2004; 13
2018
2017
2016
2015
2014
2013
2018; 77
2016; 8
2012; 87
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Nokhbatolfoghahaie H. (e_1_2_9_7_1) 2013; 4
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
Zhao S. (e_1_2_9_26_1) 2020
Subramanyam R.B. (e_1_2_9_9_1) 2014; 4
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 19
  year: 2017
  end-page: 28
  article-title: Local binary convolutional neural networks
– volume: 113
  start-page: 433
  issue: 2
  year: 2014
  end-page: 445
  article-title: Teeth segmentation of dental periapical radiographs based on local singularity analysis
  publication-title: Comput. Methods Programs Biomed.
– volume: 87
  start-page: 90
  year: 2012
  end-page: 98
  article-title: Quantum evolutionary clustering algorithm based on watershed applied to SAR image segmentation
  publication-title: Neurocomputing
– start-page: 396
  year: 2013
  end-page: 401
  article-title: Active contour model to extract boundaries of teeth in dental X‐ray images
– start-page: 400
  year: 2018
  end-page: 407
  article-title: Deep instance segmentation of teeth in panoramic X‐ray images
– start-page: 3165
  year: 2016
  end-page: 3169
  article-title: Color based segmentation using k‐mean clustering and watershed segmentation
– start-page: 000504
  year: 2011
  end-page: 000507
  article-title: A simple and novel algorithm for automatic selection of roi for dental radiograph segmentation
– volume: 8
  start-page: 132
  issue: 11
  year: 2016
  article-title: Segmentation of brain tumors in MRI images using three‐dimensional active contour without edge
  publication-title: Symmetry
– volume: 13
  start-page: 146
  issue: 1
  year: 2004
  end-page: 165
  article-title: Survey over image thresholding techniques and quantitative performance evaluation
  publication-title: J. Electron. Imaging
– start-page: 525
  year: 2016
  end-page: 542
  article-title: Xnor‐net: Imagenet classification using binary convolutional neural networks
– volume: 44
  start-page: 547
  issue: 2
  year: 2017
  end-page: 557
  article-title: Segmentation of organs‐at‐risks in head and neck ct images using convolutional neural networks
  publication-title: Med. Phys.
– volume: 8
  start-page: 794
  year: 2020
  article-title: Reconstruction of panoramic dental images through Bézier function optimization
  publication-title: Front. Bioeng. Biotechnol.
– volume: 12
  issue: 4
  year: 2015
  article-title: Designing of a computer software for detection of approximal caries in posterior teeth
  publication-title: Iran. J. Radiol.
– volume: 98
  start-page: 1227
  issue: 11
  year: 2019
  end-page: 1233
  article-title: Caries detection with near‐infrared transillumination using deep learning
  publication-title: J. Dent. Res.
– start-page: 187
  year: 2020
  end-page: 191
  article-title: Unet architecture based dental panoramic image segmentation
– volume: 19
  start-page: 1635
  issue: 6
  year: 2010
  end-page: 1650
  article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions
  publication-title: IEEE Trans. Image Process.
– volume: 9
  start-page: 697
  issue: 4
  year: 2018
  end-page: 706
  article-title: A hybrid fuzzy c‐means and neutrosophic for jaw lesions segmentation
  publication-title: Ain Shams Eng. J.
– volume: 102
  start-page: 317
  year: 2016
  end-page: 324
  article-title: Review of MRI‐based brain tumor image segmentation using deep learning methods
  publication-title: Procedia Comput. Sci.
– start-page: 62
  year: 2014
  end-page: 66
  article-title: Sobel and canny edges segmentations for the dental age assessment
– year: 2016
– volume: 7
  year: 2021
  article-title: Descriptive analysis of dental x‐ray images using various practical methods: a review
  publication-title: PeerJ Comput. Sci.
– volume: 20
  start-page: 382
  issue: 3
  year: 2017
  end-page: 387
  article-title: Diagnostic methods for dental caries used by private dental practitioners in Ankara
  publication-title: Niger. J. Clin. Pract.
– volume: 94
  start-page: 10
  issue: 1
  year: 2015
  end-page: 18
  article-title: Socioeconomic inequality and caries: a systematic review and meta‐analysis
  publication-title: J. Dent. Res.
– volume: 4
  start-page: 173
  issue: 7
  year: 2014
  end-page: 177
  article-title: Different image segmentation techniques for dental image extraction
  publication-title: Int. J. Eng. Res. Appl.
– year: 2010
– volume: 77
  start-page: 28843
  issue: 21
  year: 2018
  end-page: 28862
  article-title: Automatic computer‐aided caries detection from dental X‐ray images using intelligent level set
  publication-title: Multimedia Tools and Applications
– volume: 1
  start-page: 6
  issue: 1
  year: 2013
  end-page: 8
  article-title: IJBlob: an ImageJ library for connected component analysis and shape analysis
  publication-title: J. Open Res. Software
– volume: 94
  start-page: 650
  issue: 5
  year: 2015
  end-page: 658
  article-title: Global burden of untreated caries: a systematic review and metaregression
  publication-title: J. Dent. Res.
– volume: 113
  start-page: 549
  issue: 4
  year: 2012
  end-page: 558
  article-title: Recursive hierarchic segmentation analysis of bone mineral density changes on digital panoramic images
  publication-title: Oral surgery, oral medicine, oral pathology and oral radiology
– volume: 25
  start-page: 2257
  issue: 4
  year: 2021
  end-page: 2267
  article-title: Artificial intelligence‐driven novel tool for tooth detection and segmentation on panoramic radiographs
  publication-title: Clinical Oral Investigations
– volume: 107
  start-page: 15
  year: 2018
  end-page: 31
  article-title: Automatic segmenting teeth in x‐ray images: Trends, a novel data set, benchmarking and future perspectives
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 169
  issue: 3
  year: 2020
  end-page: 185
  article-title: Skin lesion segmentation using local binary convolution‐deconvolution architecture
  publication-title: Image Anal. Stereol.
– volume: 2
  start-page: 15
  issue: 1
  year: 2017
  end-page: 20
  article-title: A survey on image segmentation methods using clustering techniques
  publication-title: Eur. J. Eng. Technol. Res.
– volume: 59
  start-page: 186
  year: 2017
  end-page: 195
  article-title: Dental segmentation from x‐ray images using semi‐supervised fuzzy clustering with spatial constraints
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 164
  year: 2020
  end-page: 171
  article-title: A study on tooth segmentation and numbering using end‐to‐end deep neural networks
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  end-page: 59
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
– year: 2017
– start-page: 2750
  year: 2021
  end-page: 2755
  article-title: Combining anatomical constraints and deep learning for 3‐D CBCT dental image multi‐label segmentation
– year: 2020
  article-title: Automatic tooth segmentation and classification in dental panoramic X‐ray images
  publication-title: Res. Square
– year: 2015
– volume: 4
  start-page: 159
  issue: 4
  year: 2013
  end-page: 167
  article-title: Evaluation of accuracy of diagnodent in diagnosis of primary and secondary caries in comparison to conventional methods
  publication-title: J. Lasers Med. Sci.
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 11
  article-title: A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films
  publication-title: Sci. Rep.
– ident: e_1_2_9_31_1
– ident: e_1_2_9_37_1
  doi: 10.7717/peerj-cs.620
– ident: e_1_2_9_35_1
  doi: 10.1109/TIP.2010.2042645
– ident: e_1_2_9_32_1
  doi: 10.1109/CVPR.2017.456
– ident: e_1_2_9_18_1
  doi: 10.1016/j.engappai.2017.01.003
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neucom.2012.02.008
– ident: e_1_2_9_2_1
  doi: 10.1177/0022034515573272
– ident: e_1_2_9_10_1
  doi: 10.1109/SIBGRAPI.2018.00058
– ident: e_1_2_9_17_1
  doi: 10.1016/j.asej.2016.03.016
– ident: e_1_2_9_22_1
  doi: 10.3390/sym8110132
– ident: e_1_2_9_28_1
  doi: 10.1038/s41598-019-56123-5
– volume: 4
  start-page: 173
  issue: 7
  year: 2014
  ident: e_1_2_9_9_1
  article-title: Different image segmentation techniques for dental image extraction
  publication-title: Int. J. Eng. Res. Appl.
– ident: e_1_2_9_36_1
  doi: 10.1109/ICDE51399.2021.00319
– ident: e_1_2_9_14_1
  doi: 10.1109/CASH.2014.10
– ident: e_1_2_9_38_1
  doi: 10.1007/s00784-020-03544-6
– ident: e_1_2_9_21_1
  doi: 10.1109/ICCSE.2013.6553944
– ident: e_1_2_9_13_1
– ident: e_1_2_9_11_1
  doi: 10.1117/1.1631315
– ident: e_1_2_9_42_1
  doi: 10.3389/fbioe.2020.00794
– ident: e_1_2_9_6_1
  doi: 10.5812/iranjradiol.12(2)2015.16242
– ident: e_1_2_9_12_1
  doi: 10.1016/j.eswa.2018.04.001
– ident: e_1_2_9_24_1
– ident: e_1_2_9_20_1
  doi: 10.1016/j.procs.2016.09.407
– ident: e_1_2_9_27_1
  doi: 10.5566/ias.2397
– ident: e_1_2_9_39_1
  doi: 10.1002/mp.12045
– ident: e_1_2_9_5_1
– ident: e_1_2_9_33_1
  doi: 10.1007/978-3-319-46493-0_32
– ident: e_1_2_9_15_1
  doi: 10.1016/j.oooo.2011.10.002
– ident: e_1_2_9_25_1
  doi: 10.5334/jors.ae
– ident: e_1_2_9_43_1
  doi: 10.1109/WiSPNET48689.2020.9198370
– ident: e_1_2_9_34_1
  doi: 10.1016/0031-3203(95)00067-4
– ident: e_1_2_9_29_1
  doi: 10.1109/SIBGRAPI51738.2020.00030
– ident: e_1_2_9_30_1
– volume: 4
  start-page: 159
  issue: 4
  year: 2013
  ident: e_1_2_9_7_1
  article-title: Evaluation of accuracy of diagnodent in diagnosis of primary and secondary caries in comparison to conventional methods
  publication-title: J. Lasers Med. Sci.
– ident: e_1_2_9_19_1
  doi: 10.24018/ejers.2017.2.1.237
– year: 2020
  ident: e_1_2_9_26_1
  article-title: Automatic tooth segmentation and classification in dental panoramic X‐ray images
  publication-title: Res. Square
– ident: e_1_2_9_8_1
  doi: 10.4103/1119-3077.181360
– ident: e_1_2_9_40_1
  doi: 10.1007/s11042-018-6035-0
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cmpb.2013.10.015
– ident: e_1_2_9_3_1
  doi: 10.1177/0022034519871884
– ident: e_1_2_9_16_1
  doi: 10.1109/CCECE.2011.6030501
– ident: e_1_2_9_4_1
  doi: 10.1177/0022034514557546
SSID ssj0059085
Score 2.312806
Snippet Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in...
Abstract Recent advances in medical imaging analyses, especially the use of deep learning, are helping to identify, detect, classify, and quantify patterns in...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1520
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePDit7h-EdCLQt20TdrmqOKil2URhb2VJpPIgluX7ip48z_4D_0lJtPusoLoxVsoAykzbeZNO_MeISdaurLDKAgKHXtS7UQGWcIh4CBduo-Fhx0oNpH2etlgIPsLUl--J6ymB64d10k1lxAnSsRGcl6IzKoMTCFBZYIpiXPkLJWzYqo-g72Qt8BRSC8inwg5IyblsjMcV9G5y2pe4XwhFSFj_3eEiimmu05WG2xIL-p72iBLptwkaw1OpM1bONkiAxdbikmI4ue86o2OkSazpJ6WEkz1-f4BBlfUE1Y6w7Ju96YOo1LAEUg6HLmzhE7M46iZPyq3yUP3-v7qJmgUEgLNXWoNdMggSpS0DqcpMJG1Dv9pZS3jtrAMWBGpNNKQMlcDa2sliBBEWjDrVUYyFu-QVvlcml1CXWXiwBsDYVXKQfPM1TqQhsCsC6cxYZuczpyV64Y-3KtYPOX4G5vL3Ds2R8e2yfHcdlyTZvxodel9PrfwRNd4wYU_b8Kf_xX-NjnDiP2yT37bv4twtfcfO-6TlciPQGDT4wFpTasXc0iW9et0OKmO8DH8ArFt4fM
  priority: 102
  providerName: Directory of Open Access Journals
Title The local ternary pattern encoder–decoder neural network for dental image segmentation
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12416
https://doaj.org/article/7c49d36b53e944a58fb8dea9db850b97
Volume 16
WOSCitedRecordID wos000755017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9q64MvtvUPntqyUF8UoptkN5sFX2yx2JfjKIr3FrI7u-WgTY9cFXzzO_gN_STOTnInBRHEl7CECQm7Mzu_mez8BuCFtxR2BIdZ68tEql3ZrK4UZgotuftSJ9jBzSbMdFrP53a2BW_XtTADP8Qm4ZYsg_frZOCtG7qQEKilRVws--I1eae8ugM7eV6apNOFmq334dTMW3M5ZGokX2m7JidV9s3vZ2-5I2btv41S2c2c7v7fB-7B_RFeineDPuzDVugewO4INcVoyKuHMCf1EOzHBGcE-29iyUybnUjMlhj6n99_YOCRSJyXJNgNJ8YFwVyBXEUpFle0HYlVuLgaS5i6R_Dp9P3Hkw_Z2GQh84q8c-ZziUXlbCSo5zAUMRKE9C5GqWIbJcq2cKbwaCSF0T5GizpHbVoZU6OSWpaPYbu77sITEBTcEP6TqKMzCr2qKVxCk6OMpBEh5BN4uZ7rxo8M5KkRxmXDf8KVbdKUNTxlEzjayC4H3o0_Sh2nJdtIJK5svnHdXzSj6TXGK4tl5XQZrFKtrqOrMbQWXa2ls2YCr3gZ__Ke5mx2XvDo6b8IP4N7RaqW4PORz2H7pv8SDuCu_3qzWPWHrK2HnASg6-ez6S8IPO-X
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qFfTFWv_g-add0BeF2E2ym2QfbbG0tB6HVLi3kN3ZPQ5seuSq0Ld-B7-hn8SdSe6kIIL0bQkTEnZndn6zO_MbgLfOxLDDW0walxOpdmGSqlCYKDTR3eeaYAc3myjH42o6NZMhN4dqYXp-iPWBG1kG79dk4HQg3Qecikgy54su-xDdU1rcgbsquiXK6MvUZLURUzdvzfWQ1Em-0GbFTqrM3p93b_gjpu2_CVPZzxxu3fIPH8HDAWCKj71GbMOGbx_D1gA2xWDKyycwjQoi2JMJPhPsrsSCuTZbQdyW6Ltf1z_R80gQ62UUbPuccRGBrkCuoxTz87ghiaWfnQ9FTO1T-Hr46ezgKBnaLCRORf-cuFRiVlgTItiz6LMQIoh0NgSpQhMkyiazZeawlDGQdiEY1CnqspGBWpVUMn8Gm-1F65-DiOFNRIASdbClQqeqGDBhmaIMUSe8T0fwbjXZtRs4yKkVxrea78KVqWnKap6yEbxZyy565o2_Su3Tmq0liC2bH1x0s3owvrp0ymBeWJ17o1Sjq2Ar9I1BW2lpTTmC97yO__hOfTz5kvHoxf8I78L9o7PPp_Xp8fjkJTzIqHaCsyVfweZl992_hnvux-V82e2w6v4G9P_xdw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7aNIRckiZp6KZ_gvbSgBvZlizr2L-lIWVZSgJ7M5ZGCguNd_FuA7nlHfqGfZJKY--WQCmE3oQZYyPNaL6RZr4BeGN1CDucwaS2eSTVLnRSFgITgTq4-1xG2EHNJtRoVE4metzn5sRamI4fYn3gFi2D9uto4G6Ovgs4RSTJnM7b7F1wT2nxEB4JqcguMzFebcSxm7ekesjYSb6QesVOKvTJn3fv-COi7b8LU8nPDHf_8w8fw04PMNn7TiP24IFr9mG3B5usN-XFAUyCgjDyZIzOBNsbNieuzYZFbkt07a_bn-hoxCLrZRBsupxxFoAuQ6qjZNOrsCGxhbu86ouYmidwMfx8_vFL0rdZSKwI_jmxKcesMNoHsGfQZd4HEGmN91z42nPkdWZUZlHxEEhb7zXKFKWquY-tSkqeH8JGM2vcU2AhvAkIkKP0Rgm0ogwBE6oUuQ864Vw6gLerya5sz0EeW2F8r-guXOgqTllFUzaA12vZece88VepD3HN1hKRLZsezNrLqje-SlmhMS-MzJ0WopalNyW6WqMpJTdaDeCY1vEf36lOx98yGh3dR_gVbI0_Dauvp6OzZ7CdxdIJSpZ8DhvL9od7AZv2ejldtC9Jc38DlSfw8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+local+ternary+pattern+encoder%E2%80%93decoder+neural+network+for+dental+image+segmentation&rft.jtitle=IET+image+processing&rft.au=Salih%2C+Omran&rft.au=Duffy%2C+Kevin+Jan&rft.date=2022-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=16&rft.issue=6&rft.spage=1520&rft.epage=1530&rft_id=info:doi/10.1049%2Fipr2.12416&rft.externalDBID=10.1049%252Fipr2.12416&rft.externalDocID=IPR212416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon