A multi‐objective method for virtual machines allocation in cloud data centres using an improved grey wolf optimization algorithm

Cloud computing is a rapidly evolving computational technology. It is a distributed computational system that offers dynamically scaled computational resources, such as processing power, storage, and applications, delivered as a service through the Internet. Virtual machines (VMs) allocation is know...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET communications Ročník 15; číslo 18; s. 2342 - 2353
Hlavní autoři: Hashemi, Masoud, Javaheri, Danial, Sabbagh, Parisa, Arandian, Behdad, Abnoosian, Karlo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage John Wiley & Sons, Inc 01.11.2021
Wiley
Témata:
ISSN:1751-8628, 1751-8636
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Cloud computing is a rapidly evolving computational technology. It is a distributed computational system that offers dynamically scaled computational resources, such as processing power, storage, and applications, delivered as a service through the Internet. Virtual machines (VMs) allocation is known as one of the most significant problems in cloud computing. It aims to find a suitable location for VMs on physical machines (PMs) to attain predefined aims. So, the main purpose is to reduce energy consumption and improve resource utilization. Because the VM allocation issue is NP‐hard, meta‐heuristic and heuristic methods are frequently utilized to address it. This paper presents an energy‐aware VM allocation method using the improved grey wolf optimization (IGWO) algorithm. Our key goals are to decrease both energy consumption and allocation time. The simulation outcomes from the MATLAB simulator approve the excellence of the algorithm compared to previous works.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1751-8628
1751-8636
DOI:10.1049/cmu2.12274