SAM‐Y: Attention‐enhanced hazardous vehicle object detection algorithm
Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection...
Saved in:
| Published in: | IET computer vision Vol. 18; no. 8; pp. 1149 - 1161 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Stevenage
John Wiley & Sons, Inc
01.12.2024
Wiley |
| Subjects: | |
| ISSN: | 1751-9632, 1751-9640 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability.
The proposed algorithm addresses challenges such as complex environments, low resolution, and small‐sized targets, making significant contributions to the detection of hazardous chemical vehicles. This is achieved through the introduction of the receptive field expansion block (RFEB) and the separable attention mechanism, enhancing the model's ability to capture detailed information and improve feature representation. Experimental results demonstrate that the improved model surpasses the baseline in terms of accuracy, achieving more precise object detection. |
|---|---|
| AbstractList | Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability. Abstract Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability. Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability. The proposed algorithm addresses challenges such as complex environments, low resolution, and small‐sized targets, making significant contributions to the detection of hazardous chemical vehicles. This is achieved through the introduction of the receptive field expansion block (RFEB) and the separable attention mechanism, enhancing the model's ability to capture detailed information and improve feature representation. Experimental results demonstrate that the improved model surpasses the baseline in terms of accuracy, achieving more precise object detection. |
| Author | Chen, Liqing Chen, Bolun Meng, Xianchun Wang, Shanshan Shao, Wei Liu, Bushi Zhu, Pengcheng |
| Author_xml | – sequence: 1 givenname: Shanshan orcidid: 0009-0001-6149-7503 surname: Wang fullname: Wang, Shanshan organization: Huaiyin Institute of Technology – sequence: 2 givenname: Bushi surname: Liu fullname: Liu, Bushi email: bsliu@hyit.edu.cn organization: Huaiyin Institute of Technology – sequence: 3 givenname: Pengcheng surname: Zhu fullname: Zhu, Pengcheng organization: Huaiyin Institute of Technology – sequence: 4 givenname: Xianchun surname: Meng fullname: Meng, Xianchun organization: Huaiyin Institute of Technology – sequence: 5 givenname: Bolun surname: Chen fullname: Chen, Bolun organization: University of Fribourg – sequence: 6 givenname: Wei surname: Shao fullname: Shao, Wei organization: Nanjing University of Aeronautics and Astronautics – sequence: 7 givenname: Liqing surname: Chen fullname: Chen, Liqing organization: Huaiyin Institute of Technology |
| BookMark | eNp9kM1O3DAUha0KpDLApk8QqbtKA_a1x0nYjUalHQRiwY_EyvIv8SjEU8czFV31EfqMPAkOKV2gitX1tb5zdO6ZoJ0udBahTwQfEczqY731cEQAavoB7ZFyRqY1Z3jn35vCRzTp-xXGM17XbA-dXc0vnn7_uTsp5inZLvnQ5dV2jey0NUUjf8lowqYvtrbxurVFUCurU2FsyiPThWzvQ_SpeThAu062vT38O_fRzenX68X36fnlt-Vifj7VjAGdluAkw4pXmCnnqCRlJXmpKHOaa6bzUoMBrUqKDTDNOFSWWqOJoxqAO7qPlqOvCXIl1tE_yPgogvTi5SPEeyFjGsIKjrMQZ42iJTOMKe0UKMKZdTOjYPD6PHqtY_ixsX0Sq7CJXY4vKBDgFWG8yhQeKR1D30frhPZJDtenKH0rCBZD-2JoX7y0nyVf3kheg_4XJiP807f28R1SLG6XMGqeAWEimOY |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0326376 |
| Cites_doi | 10.1155/2014/647380 10.1016/j.engappai.2022.104914 10.1007/978-3-319-46448-0_2 10.1016/j.jhazmat.2013.10.051 10.1109/IEMECON.2017.8079571 10.1109/ICEIEC.2018.8473575 10.1016/j.measurement.2010.09.044 10.1049/iet‐its.2015.0157 10.1109/tvt.2010.2058134 10.1007/s00500‐020‐05042‐z 10.1049/ipr2.12799 10.1016/j.ijleo.2020.165818 10.1016/j.matcom.2017.12.011 10.1016/j.image.2021.116402 10.1016/j.eswa.2022.119108 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W DOA |
| DOI | 10.1049/cvi2.12293 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Download PDF from ProQuest Central Technology collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9640 |
| EndPage | 1161 |
| ExternalDocumentID | oai_doaj_org_article_60edc06f3b374d44bcfb2b164ef5db2f 10_1049_cvi2_12293 CVI212293 |
| Genre | article |
| GrantInformation_xml | – fundername: Humanities and Social Sciences Project of the Ministry of Education of China under grant funderid: 22YJCZH014 – fundername: Shenzhen Science and Technology Program under Grant funderid: JCYJ20220530172403008 – fundername: Natural Science Research Project of Jiangsu Provincial Universities funderid: 22KJB520013 – fundername: National Natural Science Foundation of China under grant funderid: 61602202 – fundername: Future Network Scientific Research Fund Project funderid: FNSRFP‐2021‐YB‐44 – fundername: The Six talent peaks project in Jiangsu Province funderid: XYDXX‐034 – fundername: National Statistical Science Research General Project funderid: 2021LY005 – fundername: Opening Foundation of the Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund, Fujian Normal University funderid: NSCL‐KF2021‐08 – fundername: Natural Science Foundation of Education Department of Jiangsu Province under contract funderid: 20KJA520008 – fundername: Natural Science Foundation of Jiangsu Province under contract funderid: BK20160428 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 3V. 5GY 6IK 8FE 8FG 8VB AAHHS AAHJG AAJGR ABJCF ABQXS ABUWG ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU AZQEC BENPR BGLVJ BPHCQ CCPQU CS3 DU5 DWQXO EBS EJD ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC J9A JAVBF K1G K6V K7- L6V LAI LXU M0N M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P62 PQQKQ PROAC PTHSS QWB RIE RNS RUI S0W UNMZH ZL0 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN 7XB 8AL 8FK JQ2 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c4423-72fa40b6804bff3a178a67b34fc6c4c8a692d2cb730d24c4628e3edc1f3c226f3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001248464000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9632 |
| IngestDate | Fri Oct 03 12:45:46 EDT 2025 Sun Jul 27 14:38:37 EDT 2025 Wed Oct 29 21:12:02 EDT 2025 Tue Nov 18 20:57:25 EST 2025 Wed Jan 22 17:13:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4423-72fa40b6804bff3a178a67b34fc6c4c8a692d2cb730d24c4628e3edc1f3c226f3 |
| Notes | Bolun Chen and Wei Shao authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-6149-7503 |
| OpenAccessLink | https://doaj.org/article/60edc06f3b374d44bcfb2b164ef5db2f |
| PQID | 3212681468 |
| PQPubID | 1936354 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_60edc06f3b374d44bcfb2b164ef5db2f proquest_journals_3212681468 crossref_citationtrail_10_1049_cvi2_12293 crossref_primary_10_1049_cvi2_12293 wiley_primary_10_1049_cvi2_12293_CVI212293 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 20241201 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Stevenage |
| PublicationPlace_xml | – name: Stevenage |
| PublicationTitle | IET computer vision |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2010; 59 2023; 17 2010 2021; 225 2016; 10 2014; 25 2005 2014; 2014 2002 2022; 113 2015; 28 2021; 98 2023 2022 2021 2020 2019 2011; 44 2018 2017 2023; 213 2020; 24 2016 2015 2014 2014; 264 2019; 155 e_1_2_10_23_1 Reis D. (e_1_2_10_20_1) 2023 e_1_2_10_24_1 Dai X. (e_1_2_10_33_1) 2021 e_1_2_10_22_1 Li C. (e_1_2_10_34_1) 2022 Bochkovskiy A. (e_1_2_10_17_1) 2020 Simonyan K. (e_1_2_10_25_1) 2014 Ge Z. (e_1_2_10_18_1) 2021 e_1_2_10_2_1 e_1_2_10_3_1 e_1_2_10_6_1 Wen X. (e_1_2_10_10_1) 2014; 25 e_1_2_10_7_1 Redmon J. (e_1_2_10_16_1) 2018 e_1_2_10_9_1 Sun Z. (e_1_2_10_5_1) 2002 Redmon J. (e_1_2_10_15_1) 2017 e_1_2_10_11_1 e_1_2_10_32_1 Wang C.‐Y. (e_1_2_10_19_1) 2023 e_1_2_10_31_1 Wang W. (e_1_2_10_28_1) 2023 Ren S. (e_1_2_10_14_1) 2015; 28 Dai J. (e_1_2_10_26_1) 2017 Choudhury S. (e_1_2_10_21_1) 2017 Khammari A. (e_1_2_10_8_1) 2005 e_1_2_10_29_1 Kanathantip P. (e_1_2_10_4_1) 2010 Zhu X. (e_1_2_10_27_1) 2019 Girshick R. (e_1_2_10_13_1) 2015 Yawen Tu (e_1_2_10_30_1) 2018 Liu W. (e_1_2_10_12_1) 2016 |
| References_xml | – volume: 44 start-page: 174 issue: 1 year: 2011 end-page: 180 article-title: Vehicle detection and classification by measuring and processing magnetic signal publication-title: Measurement – volume: 113 year: 2022 article-title: A lightweight vehicles detection network model based on yolov5 publication-title: Eng. Appl. Artif. Intell. – volume: 155 start-page: 130 year: 2019 end-page: 145 article-title: Multi‐vehicle detection algorithm through combining harr and hog features publication-title: Math. Comput. Simulat. – start-page: 274 year: 2018 end-page: 278 – start-page: 21 year: 2016 end-page: 37 – volume: 59 start-page: 3694 issue: 8 year: 2010 end-page: 3709 article-title: An enhanced background estimation algorithm for vehicle detection in urban traffic scenes publication-title: IEEE Trans. Veh. Technol. – start-page: 106 year: 2017 end-page: 109 – volume: 264 start-page: 560 year: 2014 end-page: 569 article-title: Environmental risk analysis of hazardous material rail transportation publication-title: J. Hazard Mater. – year: 2014 article-title: Very deep convolutional networks for large‐scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – volume: 25 start-page: 508 issue: 3 year: 2014 end-page: 517 article-title: Efficient feature selection and classification for vehicle detection publication-title: IEEE Trans. Circ. Syst. Video Technol. – volume: 10 start-page: 406 issue: 6 year: 2016 end-page: 413 article-title: Vehicle detection, counting and classification in various conditions publication-title: IET Intell. Transp. Syst. – start-page: 9308 year: 2019 end-page: 9316 – year: 2021 article-title: Yolox: exceeding yolo series in 2021 publication-title: arXiv preprint arXiv:2107.08430 – year: 2022 article-title: Yolov6: a single‐stage object detection framework for industrial applications publication-title: arXiv preprint arXiv:2209.02976 – year: 2020 article-title: Yolov4: optimal speed and accuracy of object detection publication-title: arXiv preprint arXiv:2004.10934 – start-page: 764 year: 2017 end-page: 773 – start-page: 7263 year: 2017 end-page: 7271 – start-page: 14408 year: 2023 end-page: 14419 – volume: 24 start-page: 17417 issue: 22 year: 2020 end-page: 17429 article-title: An intelligent multiple vehicle detection and tracking using modified vibe algorithm and deep learning algorithm publication-title: Soft Comput. – volume: 2014 start-page: 2014 year: 2014 end-page: 2017 article-title: A vehicle detection algorithm based on deep belief network publication-title: Sci. World J. – volume: 98 year: 2021 article-title: Fd‐ssd: an improved ssd object detection algorithm based on feature fusion and dilated convolution publication-title: Signal Process. Image Commun. – start-page: 1440 year: 2015 end-page: 1448 – volume: 17 start-page: 2385 issue: 8 year: 2023 end-page: 2398 article-title: Multilevel receptive field expansion network for small object detection publication-title: IET Image Process. – start-page: 171 year: 2002 end-page: 176 – start-page: 66 year: 2005 end-page: 71 – volume: 213 year: 2023 article-title: Real‐time vehicle detection algorithm based on a lightweight you‐only‐look‐once (yolov5n‐l) approach publication-title: Expert Syst. Appl. – start-page: 7373 year: 2021 end-page: 7382 – year: 2018 article-title: Yolov3: an incremental improvement publication-title: arXiv preprint arXiv:1804.02767 – volume: 28 year: 2015 article-title: Faster r‐cnn: towards real‐time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 7464 year: 2023 end-page: 7475 – volume: 225 year: 2021 article-title: Littleyolo‐spp: a delicate real‐time vehicle detection algorithm publication-title: Optik – start-page: 1060 year: 2010 end-page: 1064 – year: 2023 article-title: Real‐time flying object detection with yolov8 publication-title: arXiv preprint arXiv:2305.09972 – ident: e_1_2_10_23_1 doi: 10.1155/2014/647380 – ident: e_1_2_10_31_1 doi: 10.1016/j.engappai.2022.104914 – start-page: 1440 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2015 ident: e_1_2_10_13_1 – year: 2023 ident: e_1_2_10_20_1 article-title: Real‐time flying object detection with yolov8 publication-title: arXiv preprint arXiv:2305.09972 – start-page: 21 volume-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 year: 2016 ident: e_1_2_10_12_1 doi: 10.1007/978-3-319-46448-0_2 – year: 2014 ident: e_1_2_10_25_1 article-title: Very deep convolutional networks for large‐scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – start-page: 7263 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2017 ident: e_1_2_10_15_1 – volume: 25 start-page: 508 issue: 3 year: 2014 ident: e_1_2_10_10_1 article-title: Efficient feature selection and classification for vehicle detection publication-title: IEEE Trans. Circ. Syst. Video Technol. – year: 2022 ident: e_1_2_10_34_1 article-title: Yolov6: a single‐stage object detection framework for industrial applications publication-title: arXiv preprint arXiv:2209.02976 – ident: e_1_2_10_2_1 doi: 10.1016/j.jhazmat.2013.10.051 – year: 2021 ident: e_1_2_10_18_1 article-title: Yolox: exceeding yolo series in 2021 publication-title: arXiv preprint arXiv:2107.08430 – start-page: 106 volume-title: 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON) year: 2017 ident: e_1_2_10_21_1 doi: 10.1109/IEMECON.2017.8079571 – volume: 28 year: 2015 ident: e_1_2_10_14_1 article-title: Faster r‐cnn: towards real‐time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 274 volume-title: 2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC) year: 2018 ident: e_1_2_10_30_1 doi: 10.1109/ICEIEC.2018.8473575 – ident: e_1_2_10_3_1 doi: 10.1016/j.measurement.2010.09.044 – ident: e_1_2_10_7_1 doi: 10.1049/iet‐its.2015.0157 – ident: e_1_2_10_11_1 doi: 10.1109/tvt.2010.2058134 – year: 2018 ident: e_1_2_10_16_1 article-title: Yolov3: an incremental improvement publication-title: arXiv preprint arXiv:1804.02767 – ident: e_1_2_10_6_1 doi: 10.1007/s00500‐020‐05042‐z – start-page: 7464 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_10_19_1 – ident: e_1_2_10_32_1 doi: 10.1049/ipr2.12799 – year: 2020 ident: e_1_2_10_17_1 article-title: Yolov4: optimal speed and accuracy of object detection publication-title: arXiv preprint arXiv:2004.10934 – ident: e_1_2_10_24_1 doi: 10.1016/j.ijleo.2020.165818 – start-page: 764 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2017 ident: e_1_2_10_26_1 – start-page: 171 volume-title: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision, 2002 (WACV 2002) year: 2002 ident: e_1_2_10_5_1 – start-page: 66 volume-title: Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005 year: 2005 ident: e_1_2_10_8_1 – ident: e_1_2_10_9_1 doi: 10.1016/j.matcom.2017.12.011 – ident: e_1_2_10_29_1 doi: 10.1016/j.image.2021.116402 – start-page: 7373 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2021 ident: e_1_2_10_33_1 – start-page: 9308 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2019 ident: e_1_2_10_27_1 – ident: e_1_2_10_22_1 doi: 10.1016/j.eswa.2022.119108 – start-page: 14408 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_10_28_1 – start-page: 1060 volume-title: ECTI‐CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology year: 2010 ident: e_1_2_10_4_1 |
| SSID | ssj0056994 |
| Score | 2.3407063 |
| Snippet | Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to... Abstract Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1149 |
| SubjectTerms | Accuracy Algorithms Chemicals Classification Complexity Computer vision Deep learning Efficiency Feature selection Hazardous materials Hypotheses Inference Logistics Methods object detection Perception Public safety road vehicles Sensors Support vector machines Target detection Transportation Vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKEXHi2IpVBZai8gBRK_knBbUFdt1a6QeAhOlp_sStss2g174MRP4DfySzp2sggkBBdudmRFo5mx57M9_gah76XR3HrLktwpnzBR8HDQBC0nRMqyAkB05Jn9k_f7xcVFefyk1FfICWvogRvF7YvUWZMKTzXNmWVMG6-JBpDvPLea-LD6pnk530w1azAXZSyBCLExS8DFyJyYlJX7ZjYkexkhJX0WiiJj_zOY-RSsxmjTW0FLLUzE3Ua8VfTBVZ_QcgsZcTshp5_R75Pu34e7-8sD3K3rJnMRuq4axIt9PFC34AGwucczNwh_wmMdDl6wdXXMwaqwGl2NJ8N68G8NnfV-nB79TNryCIlhAIKSnHjFUi2KlGnvqcryQolcU-aNMMxApySWGA1z2BJmwiNUR0GZmacGQJen62ihGlduA2HBPXeOB85ix4gi2gptCFeK5wCRLO-gnbmmpGm5w0MJi5GMd9islEGrMmq1g749jr1uGDNeHHUYFP44IrBcxw9ge9naXr5l-w7amptLtlNvKikEYxEONosO2o0mfEUMeXT-i8TW5nsI9AV9JAB6mnSXLbRQT27cNlo0s3o4nXyNLvofLVPr-Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VwoELLY-qS0tlCS4ghSaO7SSIy7ZqBQiqSjxUTpaf3ZVKgnbTPfTUn8Bv5JcwdpItlapKiFscTSLLM-P5Mhl_A_CiMppbb1lSOOUTJkoeEk145YRIWVYiiI48sx-Lo6Py5KQ6XoG3w1mYjh9imXALnhH36-DgSnddSBDUohLNYkpfZxTD1R24m2V5EWyasuNhH-aiim0QMT5mCZoZHchJWbV79ey1cBRZ-69Bzb8Ba4w4h2v_N9d1eNAjTTLuTOMhrLj6Eaz1qJP0Pj1_DB8-jz_9vvz1_Q0Zt21X_IhDV09ibQCZqAs0ouZ8ThZuEt5EGh1yN8S6NpZx1USdnTazaTv58QS-Hh582X-X9B0WEsMQRyUF9YqlWpQp097nKitKJQqdM2-EYQYHFbXUaNwGLGUmnGN1ubMm87lB3ObzDVitm9ptAhHcc-d4oD12jCqqrdCGcqV4gSjL8hG8HBZamp5-PHTBOJPxNzirZFgkGRdpBM-Xsj870o0bpfaCvpYSgSg73mhmp7L3OylSnG6KM9V5wSxj2nhNNX4jOs-tpn4E24O2Ze-9c5ljPBchN1qO4FXU6y3TkPvf3tN49fRfhLfgPkV81FXGbMNqOzt3z-CeWbTT-WwnWvIfmE_2pw priority: 102 providerName: Wiley-Blackwell |
| Title | SAM‐Y: Attention‐enhanced hazardous vehicle object detection algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcvi2.12293 https://www.proquest.com/docview/3212681468 https://doaj.org/article/60edc06f3b374d44bcfb2b164ef5db2f |
| Volume | 18 |
| WOSCitedRecordID | wos001248464000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9640 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: K7- dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Journals (OA) customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXylMslFUkuIAUmji2k3BB26oV5bFaUR6lF8vPLlJJyibtgRM_gd_IL2HsdQqVUC9cLCeynFFmPP4ynnwD8LjWihlnaFpa6VLKK-YDTdiznGc0rxBEB57ZN-V0Wh0c1LMYcOtiWuXgE4OjNq32MfLNAn0s9_Gq6sXJt9RXjfKnq7GExgqseZaEPKTu7Q-emPE6FELEHTJP0dDIQE9K602clDzLCamLCxtS4O2_ADb_hqxhz9ld_19pb8D1iDaTydI8bsIV29yC9Yg8k7iuu9vwan_y9tePn5-fJ5O-XyZA4qVt5iE_IJnL72hI7WmXnNm5nylplY_fJMb2IZWrSeTxET6_n3-9Ax92d95vv0xjlYVUU8RSaUmcpJniVUaVc4XMy0ryUhXUaa6pxouaGKIVugJDqPb_strCGp27QiN2c8VdWG3axt6DhDPHrGWe-thSIokyXGnCpGQlIi3DRvBkeNVCRwpyXwnjWISjcFoLrxYR1DKCR-djT5bEG_8cteU1dj7Ck2WHG-3iSMS1J3iG4mYoqSpKaihV2imi8DvROmYUcSPYGJQo4gruxB8NjuBpsIFLxBDbH_dI6N2_fK4HcI0gKlrmw2zAar84tQ_hqj7rv3SLMawQOhvD2tbOdPZuHMID2L4u03Gwa2xn7BDbT3vT3zJl_s4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQXyq9YKGAJOIAUmji2kyAhtBSqLrtdIVFQOZn4r4tUkrJJi-DEI_AkPBRPwtibFCqh3nrgZkcjy44_jz-PxzMA9wutuHGGRZktXcREzr2hCUtWiJglOZLoEGd2kk2n-c5O8XoJfvZvYbxbZa8Tg6I2tfY28rUUdazw9qr82f7nyGeN8rerfQqNBSzG9usXPLI1T0cvcH4fULrxcnt9M-qyCkSaIXeIMupKFiuRx0w5l5ZJlpciUylzWmimsVJQQ7VC6BvKtH-7aVNrdOJSjVzFpdjuGTjL0jzz62qcRb3m56IIiRdxR04iBDbtw6GyYg0HQR8nlBbpsQ0w5Ak4Rm7_pshhj9tY-d_-ziW42LFpMlzA_zIs2eoKrHTMmnR6q7kKr94Mt359__H-CRm27cLBE6u2mgX_BzIrv-FCqQ8acmhnviVSK2-fIsa2wVWtIuXeLo63nX26Bm9PZUTXYbmqK3sDiOCOW8t9aGfLaEmVEUpTXpY8QyZp-AAe9lMrdRdi3Wf62JPhqp8V0sNABhgM4N6R7P4isMg_pZ57hBxJ-GDg4UM935WdbpEixu7G2FOVZswwprRTVOE52DpuFHUDWO1BIzsN1cg_iBnAo4C5E7oh19-NaCjdPLmtu3B-c3trIiej6fgWXKDIABe-P6uw3M4P7G04pw_bj838Tlg5BD6cNhh_A7wJVSk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VglAvlF91oUAk4ABS2MSxnQQJoaVlxdKyWokfFS4m_usilaRs0iI48Qg8D4_DkzB2kkIl1FsP3OLIsuz4m5nPk_EMwN1cSaatpmFqChtSnjHnaMInw3lE4wxJtM8zu51Op9nOTj5bgp_9XRgXVtnrRK-odaWcj3yYoI7lzl-VDW0XFjHbHD_Z_xy6ClLuT2tfTqOFyJb5-gWPb_XjySbu9T1Cxs9ebzwPuwoDoaLII8KU2IJGkmcRldYmRZxmBU9lQq3iiips5EQTJVEMNKHK3eM0idEqtolC3mITHPcMnE3xjOnCCWfsfW8FGM99EUa0znGIICd9alSaD3FB5GFMSJ4cM4a-ZsAxovs3Xfb2brz6P3-pi3ChY9nBqBWLS7Bkysuw2jHuoNNn9RV48Wr08tf3H-8eBaOmaQM_sWnKuY-LCObFNxSg6qAODs3cjRRU0vmtAm0aH8JWBsXeLq63mX-6Cm9OZUXXYLmsSrMGAWeWGcNcymdDSUGk5lIRVhQsRYap2QDu99ssVJd63VUA2RM-BIDmwkFCeEgM4M5R3_024cg_ez11aDnq4ZKE-xfVYld0OkfwCKcb4UxlklJNqVRWEonnY2OZlsQOYL0HkOg0Vy3-oGcADzz-TpiG2Hg7If7p-slj3YbziEGxPZlu3YAVgsSwDQlah-VmcWBuwjl12HysF7e8EAXw4bSx-BvJYF5N |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAM%E2%80%90Y%3A+Attention%E2%80%90enhanced+hazardous+vehicle+object+detection+algorithm&rft.jtitle=IET+computer+vision&rft.au=Wang%2C+Shanshan&rft.au=Liu%2C+Bushi&rft.au=Zhu%2C+Pengcheng&rft.au=Meng%2C+Xianchun&rft.date=2024-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1751-9632&rft.eissn=1751-9640&rft.volume=18&rft.issue=8&rft.spage=1149&rft.epage=1161&rft_id=info:doi/10.1049%2Fcvi2.12293&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon |