SAM‐Y: Attention‐enhanced hazardous vehicle object detection algorithm

Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection...

Full description

Saved in:
Bibliographic Details
Published in:IET computer vision Vol. 18; no. 8; pp. 1149 - 1161
Main Authors: Wang, Shanshan, Liu, Bushi, Zhu, Pengcheng, Meng, Xianchun, Chen, Bolun, Shao, Wei, Chen, Liqing
Format: Journal Article
Language:English
Published: Stevenage John Wiley & Sons, Inc 01.12.2024
Wiley
Subjects:
ISSN:1751-9632, 1751-9640
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability. The proposed algorithm addresses challenges such as complex environments, low resolution, and small‐sized targets, making significant contributions to the detection of hazardous chemical vehicles. This is achieved through the introduction of the receptive field expansion block (RFEB) and the separable attention mechanism, enhancing the model's ability to capture detailed information and improve feature representation. Experimental results demonstrate that the improved model surpasses the baseline in terms of accuracy, achieving more precise object detection.
AbstractList Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability.
Abstract Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability.
Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability. The proposed algorithm addresses challenges such as complex environments, low resolution, and small‐sized targets, making significant contributions to the detection of hazardous chemical vehicles. This is achieved through the introduction of the receptive field expansion block (RFEB) and the separable attention mechanism, enhancing the model's ability to capture detailed information and improve feature representation. Experimental results demonstrate that the improved model surpasses the baseline in terms of accuracy, achieving more precise object detection.
Author Chen, Liqing
Chen, Bolun
Meng, Xianchun
Wang, Shanshan
Shao, Wei
Liu, Bushi
Zhu, Pengcheng
Author_xml – sequence: 1
  givenname: Shanshan
  orcidid: 0009-0001-6149-7503
  surname: Wang
  fullname: Wang, Shanshan
  organization: Huaiyin Institute of Technology
– sequence: 2
  givenname: Bushi
  surname: Liu
  fullname: Liu, Bushi
  email: bsliu@hyit.edu.cn
  organization: Huaiyin Institute of Technology
– sequence: 3
  givenname: Pengcheng
  surname: Zhu
  fullname: Zhu, Pengcheng
  organization: Huaiyin Institute of Technology
– sequence: 4
  givenname: Xianchun
  surname: Meng
  fullname: Meng, Xianchun
  organization: Huaiyin Institute of Technology
– sequence: 5
  givenname: Bolun
  surname: Chen
  fullname: Chen, Bolun
  organization: University of Fribourg
– sequence: 6
  givenname: Wei
  surname: Shao
  fullname: Shao, Wei
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 7
  givenname: Liqing
  surname: Chen
  fullname: Chen, Liqing
  organization: Huaiyin Institute of Technology
BookMark eNp9kM1O3DAUha0KpDLApk8QqbtKA_a1x0nYjUalHQRiwY_EyvIv8SjEU8czFV31EfqMPAkOKV2gitX1tb5zdO6ZoJ0udBahTwQfEczqY731cEQAavoB7ZFyRqY1Z3jn35vCRzTp-xXGM17XbA-dXc0vnn7_uTsp5inZLvnQ5dV2jey0NUUjf8lowqYvtrbxurVFUCurU2FsyiPThWzvQ_SpeThAu062vT38O_fRzenX68X36fnlt-Vifj7VjAGdluAkw4pXmCnnqCRlJXmpKHOaa6bzUoMBrUqKDTDNOFSWWqOJoxqAO7qPlqOvCXIl1tE_yPgogvTi5SPEeyFjGsIKjrMQZ42iJTOMKe0UKMKZdTOjYPD6PHqtY_ixsX0Sq7CJXY4vKBDgFWG8yhQeKR1D30frhPZJDtenKH0rCBZD-2JoX7y0nyVf3kheg_4XJiP807f28R1SLG6XMGqeAWEimOY
CitedBy_id crossref_primary_10_1371_journal_pone_0326376
Cites_doi 10.1155/2014/647380
10.1016/j.engappai.2022.104914
10.1007/978-3-319-46448-0_2
10.1016/j.jhazmat.2013.10.051
10.1109/IEMECON.2017.8079571
10.1109/ICEIEC.2018.8473575
10.1016/j.measurement.2010.09.044
10.1049/iet‐its.2015.0157
10.1109/tvt.2010.2058134
10.1007/s00500‐020‐05042‐z
10.1049/ipr2.12799
10.1016/j.ijleo.2020.165818
10.1016/j.matcom.2017.12.011
10.1016/j.image.2021.116402
10.1016/j.eswa.2022.119108
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOA
DOI 10.1049/cvi2.12293
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Download PDF from ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9640
EndPage 1161
ExternalDocumentID oai_doaj_org_article_60edc06f3b374d44bcfb2b164ef5db2f
10_1049_cvi2_12293
CVI212293
Genre article
GrantInformation_xml – fundername: Humanities and Social Sciences Project of the Ministry of Education of China under grant
  funderid: 22YJCZH014
– fundername: Shenzhen Science and Technology Program under Grant
  funderid: JCYJ20220530172403008
– fundername: Natural Science Research Project of Jiangsu Provincial Universities
  funderid: 22KJB520013
– fundername: National Natural Science Foundation of China under grant
  funderid: 61602202
– fundername: Future Network Scientific Research Fund Project
  funderid: FNSRFP‐2021‐YB‐44
– fundername: The Six talent peaks project in Jiangsu Province
  funderid: XYDXX‐034
– fundername: National Statistical Science Research General Project
  funderid: 2021LY005
– fundername: Opening Foundation of the Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund, Fujian Normal University
  funderid: NSCL‐KF2021‐08
– fundername: Natural Science Foundation of Education Department of Jiangsu Province under contract
  funderid: 20KJA520008
– fundername: Natural Science Foundation of Jiangsu Province under contract
  funderid: BK20160428
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
3V.
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ABUWG
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
J9A
JAVBF
K1G
K6V
K7-
L6V
LAI
LXU
M0N
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PQQKQ
PROAC
PTHSS
QWB
RIE
RNS
RUI
S0W
UNMZH
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c4423-72fa40b6804bff3a178a67b34fc6c4c8a692d2cb730d24c4628e3edc1f3c226f3
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001248464000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9632
IngestDate Fri Oct 03 12:45:46 EDT 2025
Sun Jul 27 14:38:37 EDT 2025
Wed Oct 29 21:12:02 EDT 2025
Tue Nov 18 20:57:25 EST 2025
Wed Jan 22 17:13:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4423-72fa40b6804bff3a178a67b34fc6c4c8a692d2cb730d24c4628e3edc1f3c226f3
Notes Bolun Chen and Wei Shao authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-6149-7503
OpenAccessLink https://doaj.org/article/60edc06f3b374d44bcfb2b164ef5db2f
PQID 3212681468
PQPubID 1936354
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_60edc06f3b374d44bcfb2b164ef5db2f
proquest_journals_3212681468
crossref_citationtrail_10_1049_cvi2_12293
crossref_primary_10_1049_cvi2_12293
wiley_primary_10_1049_cvi2_12293_CVI212293
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
20241201
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET computer vision
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2010; 59
2023; 17
2010
2021; 225
2016; 10
2014; 25
2005
2014; 2014
2002
2022; 113
2015; 28
2021; 98
2023
2022
2021
2020
2019
2011; 44
2018
2017
2023; 213
2020; 24
2016
2015
2014
2014; 264
2019; 155
e_1_2_10_23_1
Reis D. (e_1_2_10_20_1) 2023
e_1_2_10_24_1
Dai X. (e_1_2_10_33_1) 2021
e_1_2_10_22_1
Li C. (e_1_2_10_34_1) 2022
Bochkovskiy A. (e_1_2_10_17_1) 2020
Simonyan K. (e_1_2_10_25_1) 2014
Ge Z. (e_1_2_10_18_1) 2021
e_1_2_10_2_1
e_1_2_10_3_1
e_1_2_10_6_1
Wen X. (e_1_2_10_10_1) 2014; 25
e_1_2_10_7_1
Redmon J. (e_1_2_10_16_1) 2018
e_1_2_10_9_1
Sun Z. (e_1_2_10_5_1) 2002
Redmon J. (e_1_2_10_15_1) 2017
e_1_2_10_11_1
e_1_2_10_32_1
Wang C.‐Y. (e_1_2_10_19_1) 2023
e_1_2_10_31_1
Wang W. (e_1_2_10_28_1) 2023
Ren S. (e_1_2_10_14_1) 2015; 28
Dai J. (e_1_2_10_26_1) 2017
Choudhury S. (e_1_2_10_21_1) 2017
Khammari A. (e_1_2_10_8_1) 2005
e_1_2_10_29_1
Kanathantip P. (e_1_2_10_4_1) 2010
Zhu X. (e_1_2_10_27_1) 2019
Girshick R. (e_1_2_10_13_1) 2015
Yawen Tu (e_1_2_10_30_1) 2018
Liu W. (e_1_2_10_12_1) 2016
References_xml – volume: 44
  start-page: 174
  issue: 1
  year: 2011
  end-page: 180
  article-title: Vehicle detection and classification by measuring and processing magnetic signal
  publication-title: Measurement
– volume: 113
  year: 2022
  article-title: A lightweight vehicles detection network model based on yolov5
  publication-title: Eng. Appl. Artif. Intell.
– volume: 155
  start-page: 130
  year: 2019
  end-page: 145
  article-title: Multi‐vehicle detection algorithm through combining harr and hog features
  publication-title: Math. Comput. Simulat.
– start-page: 274
  year: 2018
  end-page: 278
– start-page: 21
  year: 2016
  end-page: 37
– volume: 59
  start-page: 3694
  issue: 8
  year: 2010
  end-page: 3709
  article-title: An enhanced background estimation algorithm for vehicle detection in urban traffic scenes
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 106
  year: 2017
  end-page: 109
– volume: 264
  start-page: 560
  year: 2014
  end-page: 569
  article-title: Environmental risk analysis of hazardous material rail transportation
  publication-title: J. Hazard Mater.
– year: 2014
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– volume: 25
  start-page: 508
  issue: 3
  year: 2014
  end-page: 517
  article-title: Efficient feature selection and classification for vehicle detection
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 10
  start-page: 406
  issue: 6
  year: 2016
  end-page: 413
  article-title: Vehicle detection, counting and classification in various conditions
  publication-title: IET Intell. Transp. Syst.
– start-page: 9308
  year: 2019
  end-page: 9316
– year: 2021
  article-title: Yolox: exceeding yolo series in 2021
  publication-title: arXiv preprint arXiv:2107.08430
– year: 2022
  article-title: Yolov6: a single‐stage object detection framework for industrial applications
  publication-title: arXiv preprint arXiv:2209.02976
– year: 2020
  article-title: Yolov4: optimal speed and accuracy of object detection
  publication-title: arXiv preprint arXiv:2004.10934
– start-page: 764
  year: 2017
  end-page: 773
– start-page: 7263
  year: 2017
  end-page: 7271
– start-page: 14408
  year: 2023
  end-page: 14419
– volume: 24
  start-page: 17417
  issue: 22
  year: 2020
  end-page: 17429
  article-title: An intelligent multiple vehicle detection and tracking using modified vibe algorithm and deep learning algorithm
  publication-title: Soft Comput.
– volume: 2014
  start-page: 2014
  year: 2014
  end-page: 2017
  article-title: A vehicle detection algorithm based on deep belief network
  publication-title: Sci. World J.
– volume: 98
  year: 2021
  article-title: Fd‐ssd: an improved ssd object detection algorithm based on feature fusion and dilated convolution
  publication-title: Signal Process. Image Commun.
– start-page: 1440
  year: 2015
  end-page: 1448
– volume: 17
  start-page: 2385
  issue: 8
  year: 2023
  end-page: 2398
  article-title: Multilevel receptive field expansion network for small object detection
  publication-title: IET Image Process.
– start-page: 171
  year: 2002
  end-page: 176
– start-page: 66
  year: 2005
  end-page: 71
– volume: 213
  year: 2023
  article-title: Real‐time vehicle detection algorithm based on a lightweight you‐only‐look‐once (yolov5n‐l) approach
  publication-title: Expert Syst. Appl.
– start-page: 7373
  year: 2021
  end-page: 7382
– year: 2018
  article-title: Yolov3: an incremental improvement
  publication-title: arXiv preprint arXiv:1804.02767
– volume: 28
  year: 2015
  article-title: Faster r‐cnn: towards real‐time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 7464
  year: 2023
  end-page: 7475
– volume: 225
  year: 2021
  article-title: Littleyolo‐spp: a delicate real‐time vehicle detection algorithm
  publication-title: Optik
– start-page: 1060
  year: 2010
  end-page: 1064
– year: 2023
  article-title: Real‐time flying object detection with yolov8
  publication-title: arXiv preprint arXiv:2305.09972
– ident: e_1_2_10_23_1
  doi: 10.1155/2014/647380
– ident: e_1_2_10_31_1
  doi: 10.1016/j.engappai.2022.104914
– start-page: 1440
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2015
  ident: e_1_2_10_13_1
– year: 2023
  ident: e_1_2_10_20_1
  article-title: Real‐time flying object detection with yolov8
  publication-title: arXiv preprint arXiv:2305.09972
– start-page: 21
  volume-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14
  year: 2016
  ident: e_1_2_10_12_1
  doi: 10.1007/978-3-319-46448-0_2
– year: 2014
  ident: e_1_2_10_25_1
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– start-page: 7263
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: e_1_2_10_15_1
– volume: 25
  start-page: 508
  issue: 3
  year: 2014
  ident: e_1_2_10_10_1
  article-title: Efficient feature selection and classification for vehicle detection
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– year: 2022
  ident: e_1_2_10_34_1
  article-title: Yolov6: a single‐stage object detection framework for industrial applications
  publication-title: arXiv preprint arXiv:2209.02976
– ident: e_1_2_10_2_1
  doi: 10.1016/j.jhazmat.2013.10.051
– year: 2021
  ident: e_1_2_10_18_1
  article-title: Yolox: exceeding yolo series in 2021
  publication-title: arXiv preprint arXiv:2107.08430
– start-page: 106
  volume-title: 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON)
  year: 2017
  ident: e_1_2_10_21_1
  doi: 10.1109/IEMECON.2017.8079571
– volume: 28
  year: 2015
  ident: e_1_2_10_14_1
  article-title: Faster r‐cnn: towards real‐time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 274
  volume-title: 2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC)
  year: 2018
  ident: e_1_2_10_30_1
  doi: 10.1109/ICEIEC.2018.8473575
– ident: e_1_2_10_3_1
  doi: 10.1016/j.measurement.2010.09.044
– ident: e_1_2_10_7_1
  doi: 10.1049/iet‐its.2015.0157
– ident: e_1_2_10_11_1
  doi: 10.1109/tvt.2010.2058134
– year: 2018
  ident: e_1_2_10_16_1
  article-title: Yolov3: an incremental improvement
  publication-title: arXiv preprint arXiv:1804.02767
– ident: e_1_2_10_6_1
  doi: 10.1007/s00500‐020‐05042‐z
– start-page: 7464
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_10_19_1
– ident: e_1_2_10_32_1
  doi: 10.1049/ipr2.12799
– year: 2020
  ident: e_1_2_10_17_1
  article-title: Yolov4: optimal speed and accuracy of object detection
  publication-title: arXiv preprint arXiv:2004.10934
– ident: e_1_2_10_24_1
  doi: 10.1016/j.ijleo.2020.165818
– start-page: 764
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: e_1_2_10_26_1
– start-page: 171
  volume-title: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision, 2002 (WACV 2002)
  year: 2002
  ident: e_1_2_10_5_1
– start-page: 66
  volume-title: Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005
  year: 2005
  ident: e_1_2_10_8_1
– ident: e_1_2_10_9_1
  doi: 10.1016/j.matcom.2017.12.011
– ident: e_1_2_10_29_1
  doi: 10.1016/j.image.2021.116402
– start-page: 7373
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2021
  ident: e_1_2_10_33_1
– start-page: 9308
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: e_1_2_10_27_1
– ident: e_1_2_10_22_1
  doi: 10.1016/j.eswa.2022.119108
– start-page: 14408
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_10_28_1
– start-page: 1060
  volume-title: ECTI‐CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
  year: 2010
  ident: e_1_2_10_4_1
SSID ssj0056994
Score 2.3407063
Snippet Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to...
Abstract Vehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1149
SubjectTerms Accuracy
Algorithms
Chemicals
Classification
Complexity
Computer vision
Deep learning
Efficiency
Feature selection
Hazardous materials
Hypotheses
Inference
Logistics
Methods
object detection
Perception
Public safety
road vehicles
Sensors
Support vector machines
Target detection
Transportation
Vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKEXHi2IpVBZai8gBRK_knBbUFdt1a6QeAhOlp_sStss2g174MRP4DfySzp2sggkBBdudmRFo5mx57M9_gah76XR3HrLktwpnzBR8HDQBC0nRMqyAkB05Jn9k_f7xcVFefyk1FfICWvogRvF7YvUWZMKTzXNmWVMG6-JBpDvPLea-LD6pnk530w1azAXZSyBCLExS8DFyJyYlJX7ZjYkexkhJX0WiiJj_zOY-RSsxmjTW0FLLUzE3Ua8VfTBVZ_QcgsZcTshp5_R75Pu34e7-8sD3K3rJnMRuq4axIt9PFC34AGwucczNwh_wmMdDl6wdXXMwaqwGl2NJ8N68G8NnfV-nB79TNryCIlhAIKSnHjFUi2KlGnvqcryQolcU-aNMMxApySWGA1z2BJmwiNUR0GZmacGQJen62ihGlduA2HBPXeOB85ix4gi2gptCFeK5wCRLO-gnbmmpGm5w0MJi5GMd9islEGrMmq1g749jr1uGDNeHHUYFP44IrBcxw9ge9naXr5l-w7amptLtlNvKikEYxEONosO2o0mfEUMeXT-i8TW5nsI9AV9JAB6mnSXLbRQT27cNlo0s3o4nXyNLvofLVPr-Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VwoELLY-qS0tlCS4ghSaO7SSIy7ZqBQiqSjxUTpaf3ZVKgnbTPfTUn8Bv5JcwdpItlapKiFscTSLLM-P5Mhl_A_CiMppbb1lSOOUTJkoeEk145YRIWVYiiI48sx-Lo6Py5KQ6XoG3w1mYjh9imXALnhH36-DgSnddSBDUohLNYkpfZxTD1R24m2V5EWyasuNhH-aiim0QMT5mCZoZHchJWbV79ey1cBRZ-69Bzb8Ba4w4h2v_N9d1eNAjTTLuTOMhrLj6Eaz1qJP0Pj1_DB8-jz_9vvz1_Q0Zt21X_IhDV09ibQCZqAs0ouZ8ThZuEt5EGh1yN8S6NpZx1USdnTazaTv58QS-Hh582X-X9B0WEsMQRyUF9YqlWpQp097nKitKJQqdM2-EYQYHFbXUaNwGLGUmnGN1ubMm87lB3ObzDVitm9ptAhHcc-d4oD12jCqqrdCGcqV4gSjL8hG8HBZamp5-PHTBOJPxNzirZFgkGRdpBM-Xsj870o0bpfaCvpYSgSg73mhmp7L3OylSnG6KM9V5wSxj2nhNNX4jOs-tpn4E24O2Ze-9c5ljPBchN1qO4FXU6y3TkPvf3tN49fRfhLfgPkV81FXGbMNqOzt3z-CeWbTT-WwnWvIfmE_2pw
  priority: 102
  providerName: Wiley-Blackwell
Title SAM‐Y: Attention‐enhanced hazardous vehicle object detection algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcvi2.12293
https://www.proquest.com/docview/3212681468
https://doaj.org/article/60edc06f3b374d44bcfb2b164ef5db2f
Volume 18
WOSCitedRecordID wos001248464000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: K7-
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Journals (OA)
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXylMslFUkuIAUmji2k3BB26oV5bFaUR6lF8vPLlJJyibtgRM_gd_IL2HsdQqVUC9cLCeynFFmPP4ynnwD8LjWihlnaFpa6VLKK-YDTdiznGc0rxBEB57ZN-V0Wh0c1LMYcOtiWuXgE4OjNq32MfLNAn0s9_Gq6sXJt9RXjfKnq7GExgqseZaEPKTu7Q-emPE6FELEHTJP0dDIQE9K602clDzLCamLCxtS4O2_ADb_hqxhz9ld_19pb8D1iDaTydI8bsIV29yC9Yg8k7iuu9vwan_y9tePn5-fJ5O-XyZA4qVt5iE_IJnL72hI7WmXnNm5nylplY_fJMb2IZWrSeTxET6_n3-9Ax92d95vv0xjlYVUU8RSaUmcpJniVUaVc4XMy0ryUhXUaa6pxouaGKIVugJDqPb_strCGp27QiN2c8VdWG3axt6DhDPHrGWe-thSIokyXGnCpGQlIi3DRvBkeNVCRwpyXwnjWISjcFoLrxYR1DKCR-djT5bEG_8cteU1dj7Ck2WHG-3iSMS1J3iG4mYoqSpKaihV2imi8DvROmYUcSPYGJQo4gruxB8NjuBpsIFLxBDbH_dI6N2_fK4HcI0gKlrmw2zAar84tQ_hqj7rv3SLMawQOhvD2tbOdPZuHMID2L4u03Gwa2xn7BDbT3vT3zJl_s4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQXyq9YKGAJOIAUmji2kyAhtBSqLrtdIVFQOZn4r4tUkrJJi-DEI_AkPBRPwtibFCqh3nrgZkcjy44_jz-PxzMA9wutuHGGRZktXcREzr2hCUtWiJglOZLoEGd2kk2n-c5O8XoJfvZvYbxbZa8Tg6I2tfY28rUUdazw9qr82f7nyGeN8rerfQqNBSzG9usXPLI1T0cvcH4fULrxcnt9M-qyCkSaIXeIMupKFiuRx0w5l5ZJlpciUylzWmimsVJQQ7VC6BvKtH-7aVNrdOJSjVzFpdjuGTjL0jzz62qcRb3m56IIiRdxR04iBDbtw6GyYg0HQR8nlBbpsQ0w5Ak4Rm7_pshhj9tY-d_-ziW42LFpMlzA_zIs2eoKrHTMmnR6q7kKr94Mt359__H-CRm27cLBE6u2mgX_BzIrv-FCqQ8acmhnviVSK2-fIsa2wVWtIuXeLo63nX26Bm9PZUTXYbmqK3sDiOCOW8t9aGfLaEmVEUpTXpY8QyZp-AAe9lMrdRdi3Wf62JPhqp8V0sNABhgM4N6R7P4isMg_pZ57hBxJ-GDg4UM935WdbpEixu7G2FOVZswwprRTVOE52DpuFHUDWO1BIzsN1cg_iBnAo4C5E7oh19-NaCjdPLmtu3B-c3trIiej6fgWXKDIABe-P6uw3M4P7G04pw_bj838Tlg5BD6cNhh_A7wJVSk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VglAvlF91oUAk4ABS2MSxnQQJoaVlxdKyWokfFS4m_usilaRs0iI48Qg8D4_DkzB2kkIl1FsP3OLIsuz4m5nPk_EMwN1cSaatpmFqChtSnjHnaMInw3lE4wxJtM8zu51Op9nOTj5bgp_9XRgXVtnrRK-odaWcj3yYoI7lzl-VDW0XFjHbHD_Z_xy6ClLuT2tfTqOFyJb5-gWPb_XjySbu9T1Cxs9ebzwPuwoDoaLII8KU2IJGkmcRldYmRZxmBU9lQq3iiips5EQTJVEMNKHK3eM0idEqtolC3mITHPcMnE3xjOnCCWfsfW8FGM99EUa0znGIICd9alSaD3FB5GFMSJ4cM4a-ZsAxovs3Xfb2brz6P3-pi3ChY9nBqBWLS7Bkysuw2jHuoNNn9RV48Wr08tf3H-8eBaOmaQM_sWnKuY-LCObFNxSg6qAODs3cjRRU0vmtAm0aH8JWBsXeLq63mX-6Cm9OZUXXYLmsSrMGAWeWGcNcymdDSUGk5lIRVhQsRYap2QDu99ssVJd63VUA2RM-BIDmwkFCeEgM4M5R3_024cg_ez11aDnq4ZKE-xfVYld0OkfwCKcb4UxlklJNqVRWEonnY2OZlsQOYL0HkOg0Vy3-oGcADzz-TpiG2Hg7If7p-slj3YbziEGxPZlu3YAVgsSwDQlah-VmcWBuwjl12HysF7e8EAXw4bSx-BvJYF5N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAM%E2%80%90Y%3A+Attention%E2%80%90enhanced+hazardous+vehicle+object+detection+algorithm&rft.jtitle=IET+computer+vision&rft.au=Wang%2C+Shanshan&rft.au=Liu%2C+Bushi&rft.au=Zhu%2C+Pengcheng&rft.au=Meng%2C+Xianchun&rft.date=2024-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1751-9632&rft.eissn=1751-9640&rft.volume=18&rft.issue=8&rft.spage=1149&rft.epage=1161&rft_id=info:doi/10.1049%2Fcvi2.12293&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon