CSIS: Compressed sensing‐based enhanced‐embedding capacity image steganography scheme

Image steganography plays a vital role in securing secret data by embedding it in the cover images. Usually, these images are communicated in a compressed format. Existing techniques achieve this but have low embedding capacity. Hence, the goal here is to enhance the embedding capacity while preserv...

Full description

Saved in:
Bibliographic Details
Published in:IET image processing Vol. 15; no. 9; pp. 1909 - 1925
Main Authors: Agrawal, Rohit, Ahuja, Kapil
Format: Journal Article
Language:English
Published: Wiley 01.07.2021
Subjects:
ISSN:1751-9659, 1751-9667
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image steganography plays a vital role in securing secret data by embedding it in the cover images. Usually, these images are communicated in a compressed format. Existing techniques achieve this but have low embedding capacity. Hence, the goal here is to enhance the embedding capacity while preserving the visual quality of the stego‐image. It is also intended to ensure that the scheme is resistant to steganalysis attacks. This paper proposes a compressed sensing image steganography (CSIS) scheme to achieve these goals. In CSIS, the cover image is sparsified block‐wise, linear measurements are obtained, and then permissible measurements are selected. Next, the secret data is encrypted, and 2 bits of this encrypted data are embedded into each permissible measurement. For the reconstruction of the stego‐image, ADMM and LASSO are used for the resultant optimization problem. Experiments are performed on several standard greyscale images and a colour image. Higher embedding capacity, 1.53 times more compared to the most recent scheme, is achieved. An average of 37.92 dB PSNR value, and average values close to 1 for both the mean SSIM index and the NCC coefficients are obtained, which is considered good. These metrics show that CSIS substantially outperforms existing similar steganography schemes.
AbstractList Image steganography plays a vital role in securing secret data by embedding it in the cover images. Usually, these images are communicated in a compressed format. Existing techniques achieve this but have low embedding capacity. Hence, the goal here is to enhance the embedding capacity while preserving the visual quality of the stego‐image. It is also intended to ensure that the scheme is resistant to steganalysis attacks. This paper proposes a compressed sensing image steganography (CSIS) scheme to achieve these goals. In CSIS, the cover image is sparsified block‐wise, linear measurements are obtained, and then permissible measurements are selected. Next, the secret data is encrypted, and 2 bits of this encrypted data are embedded into each permissible measurement. For the reconstruction of the stego‐image, ADMM and LASSO are used for the resultant optimization problem. Experiments are performed on several standard greyscale images and a colour image. Higher embedding capacity, 1.53 times more compared to the most recent scheme, is achieved. An average of 37.92 dB PSNR value, and average values close to 1 for both the mean SSIM index and the NCC coefficients are obtained, which is considered good. These metrics show that CSIS substantially outperforms existing similar steganography schemes.
Abstract Image steganography plays a vital role in securing secret data by embedding it in the cover images. Usually, these images are communicated in a compressed format. Existing techniques achieve this but have low embedding capacity. Hence, the goal here is to enhance the embedding capacity while preserving the visual quality of the stego‐image. It is also intended to ensure that the scheme is resistant to steganalysis attacks. This paper proposes a compressed sensing image steganography (CSIS) scheme to achieve these goals. In CSIS, the cover image is sparsified block‐wise, linear measurements are obtained, and then permissible measurements are selected. Next, the secret data is encrypted, and 2 bits of this encrypted data are embedded into each permissible measurement. For the reconstruction of the stego‐image, ADMM and LASSO are used for the resultant optimization problem. Experiments are performed on several standard greyscale images and a colour image. Higher embedding capacity, 1.53 times more compared to the most recent scheme, is achieved. An average of 37.92 dB PSNR value, and average values close to 1 for both the mean SSIM index and the NCC coefficients are obtained, which is considered good. These metrics show that CSIS substantially outperforms existing similar steganography schemes.
Author Ahuja, Kapil
Agrawal, Rohit
Author_xml – sequence: 1
  givenname: Rohit
  surname: Agrawal
  fullname: Agrawal, Rohit
  organization: Indian Institute of Technology Indore
– sequence: 2
  givenname: Kapil
  surname: Ahuja
  fullname: Ahuja, Kapil
  email: kahuja@iiti.ac.in
  organization: Indian Institute of Technology Indore
BookMark eNp9UMtOwzAQtFCRKIULX5AzUovXcV7cUMWjEhKIwoGTtbHXqas2iexIqDc-gW_kS0gpcECI075mZnfnkA3qpibGToBPgMvizLVeTEBACntsCFkC4yJNs8FPnhQH7DCEJedJwfNkyJ6n89n8PJo269ZTCGSiQHVwdfX--lbitqZ6gbUm0zdoXZIx_TDS2KJ23SZya6woCh1VWDeVx3axiYJe0JqO2L7FVaDjrzhiT1eXj9Ob8e3d9Wx6cTvWUgoYW45YCFlgQUDCAnKknGcoQXPAzFiR8tgWqcjzMpMSEyqxxExmiUktxCIesdlO1zS4VK3vL_Ib1aBTn43GVwp95_SKVIxcJsg5oQVJic5j6rfG0hqA0si81-I7Le2bEDxZ1T-JnWvqzqNbKeBqa7Pa2qw-be4pp78o3yf8CYYd-MWtaPMPUs3uH8SO8wHafZIt
CitedBy_id crossref_primary_10_7717_peerj_cs_1080
crossref_primary_10_1016_j_dsp_2024_104419
crossref_primary_10_1049_ipr2_12329
crossref_primary_10_1016_j_measen_2022_100452
crossref_primary_10_1109_TCE_2024_3423435
crossref_primary_10_1109_ACCESS_2023_3328769
crossref_primary_10_1049_ipr2_13127
crossref_primary_10_1016_j_eswa_2024_125829
crossref_primary_10_1007_s11042_024_20474_7
crossref_primary_10_32604_cmc_2024_053706
crossref_primary_10_1049_cit2_70038
Cites_doi 10.1109/INTECH.2016.7845020
10.1016/j.future.2019.01.047
10.1080/13682199.2017.1367129
10.3390/electronics8121439
10.1088/0266-5611/23/3/008
10.1109/INTECH.2016.7845022
10.1007/978-3-642-22158-3_22
10.1016/S0020-0255(01)00194-3
10.1016/j.acha.2008.07.002
10.33633/jais.v2i1.1330
10.1109/MSP.2007.914729
10.1109/RADAR.2007.374203
10.1049/iet-ipr.2013.0109
10.1109/IIHMSP.2011.102
10.1561/2200000016
10.1007/10719724_5
10.1049/iet-ipr.2015.0117
10.1186/s13640-016-0144-3
10.1016/j.measurement.2019.02.069
10.3390/math8091558
10.1016/j.sigpro.2018.01.011
10.9756/BIJAIP.10137
10.1109/TIT.2005.862083
10.1177/0165551518816303
10.1016/j.crma.2008.03.014
10.1109/TCSVT.2016.2587388
10.1007/s00500-008-0327-7
10.1007/s11042-014-2076-1
10.1109/JSTSP.2009.2039174
10.1109/TSP.2016.2605067
10.1016/j.dsp.2016.02.005
10.1109/TCSVT.2018.2881118
10.1007/s11042-018-6065-7
10.1016/j.patcog.2008.03.005
10.1007/3-540-36415-3_20
10.1109/TIT.2006.871582
10.1016/j.eswa.2015.10.024
10.1109/TSP.2009.2016892
10.1007/3-540-45496-9_21
10.1007/s11042-020-09667-y
10.1049/iet-ipr.2011.0059
10.1007/s13369-018-3354-4
10.1049/iet-ipr.2016.0160
10.1109/iMac4s.2013.6526420
10.1109/TIT.2011.2146090
10.4236/ijis.2013.32009
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12161
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1925
ExternalDocumentID oai_doaj_org_article_3a045a00eaf14e5c83e9e134fd11bd48
10_1049_ipr2_12161
IPR212161
Genre article
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P2P
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4421-f0aa9249a9e1e2f1a0ae807a41c01a7df2603f96288b744a5ebaba7475d6f1323
IEDL.DBID 24P
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626520500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Fri Oct 03 12:39:41 EDT 2025
Tue Nov 18 22:11:36 EST 2025
Wed Oct 29 21:16:35 EDT 2025
Wed Jan 22 16:30:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4421-f0aa9249a9e1e2f1a0ae807a41c01a7df2603f96288b744a5ebaba7475d6f1323
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12161
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_3a045a00eaf14e5c83e9e134fd11bd48
crossref_citationtrail_10_1049_ipr2_12161
crossref_primary_10_1049_ipr2_12161
wiley_primary_10_1049_ipr2_12161_IPR212161
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2013; 3
2017; 2
2019; 99
2015; 74
2019; 16
2011; 11
2011; 57
2016; 2016
2008; 346
2018; 45
2013; 8
2018; 43
2020; 8
2009; 57
2009; 13
2001
2018; 1
2002; 141
2008; 25
2019; 29
2012; 29
2014; 9
2010; 4
2007; 23
2016; 46
2021; 80
2019; 8
2006; 52
2011
2010
2017; 27
2018; 146
2017; 65
2019; 78
2016; 53
2007
2001; 2137
2015; 9
2011; 3
2009; 26
2016; 11
2003; 2578
2020
2019
2016; 64
2017
2000; 1768
2016
2008; 41
2019; 139
2013
2012; 6
e_1_2_6_51_1
Ye J.C. (e_1_2_6_37_1) 2018; 1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Ji‐xin L. (e_1_2_6_39_1) 2014; 9
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
Stallings W. (e_1_2_6_2_1) 2017
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Xu X. (e_1_2_6_50_1) 2012; 29
Gonzalez R.C. (e_1_2_6_58_1) 2010
Pal A.K. (e_1_2_6_20_1) 2019; 16
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2011
  article-title: A DCT steganographic classifier based on compressive sensing
– volume: 65
  start-page: 457
  issue: 8
  year: 2017
  end-page: 467
  article-title: A steganographic approach for secure communication of medical images based on the DCT‐SVD and the compressed sensing (CS) theory
  publication-title: Imaging Sci. J
– volume: 146
  start-page: 99
  year: 2018
  end-page: 111
  article-title: On the fault‐tolerant performance for a class of robust image steganography
  publication-title: Signal Proc.
– volume: 29
  start-page: 594
  issue: 2
  year: 2019
  end-page: 600
  article-title: Towards robust image steganography
  publication-title: IEEE Trans. Circuits Syst. Video Technol
– volume: 4
  start-page: 421
  issue: 2
  year: 2010
  end-page: 434
  article-title: Dynamic updating for minimization
  publication-title: IEEE J. Sel. Top. Signal Process.
– year: 2013
  article-title: Comparative analysis of sensing matrices for compressed sensed thermal images
– volume: 11
  start-page: 219
  year: 2011
  end-page: 225
– year: 2016
  article-title: An improved image steganography technique based on MSB using bit differencing
– volume: 8
  start-page: 1558
  issue: 9
  year: 2020
  article-title: Novel linguistic steganography based on character‐level text generation
  publication-title: Mathematics
– volume: 2
  start-page: 1
  issue: 1
  year: 2017
  end-page: 11
  article-title: Secure image steganography algorithm based on DCT with OTP encryption
  publication-title: J. Appl. Intelli. Syst.
– volume: 25
  start-page: 14
  issue: 2
  year: 2008
  end-page: 20
  article-title: Imaging via compressive sampling
  publication-title: IEEE Signal Process Mag.
– volume: 29
  start-page: 585
  issue: 6
  year: 2012
  end-page: 592
  article-title: An adaptive measurement scheme based on compressed sensing for wideband spectrum detection in cognitive WSN
  publication-title: J. Electron
– volume: 53
  start-page: 11
  year: 2016
  end-page: 24
  article-title: Robust and blind watermarking technique in DCT domain using inter‐block coefficient differencing
  publication-title: Digital Signal Process.
– year: 2016
  article-title: Analysis of data hiding in R, G and B channels of color image using various number of LSBs
– year: 2001
  article-title: Defending against statistical steganalysis
– volume: 78
  start-page: 29381
  year: 2019
  end-page: 29394
  article-title: Compressive sensing based secret signals recovery for effective image steganalysis in secure communications
  publication-title: Multimedia Tools Appl.
– volume: 74
  start-page: 9191
  issue: 21
  year: 2015
  end-page: 9205
  article-title: Image steganography based on subsampling and compressive sensing
  publication-title: Multimedia Tools Appl
– volume: 11
  start-page: 64
  issue: 1
  year: 2016
  end-page: 79
  article-title: Wavelet denoising of multiframe optical coherence tomography data using similarity measures
  publication-title: IET Image Proc
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
– volume: 23
  start-page: 969
  issue: 3
  year: 2007
  end-page: 985
  article-title: Sparsity and incoherence in compressive sampling
  publication-title: Inverse Prob.
– volume: 27
  start-page: 2274
  issue: 10
  year: 2017
  end-page: 2280
  article-title: Decomposing joint distortion for adaptive steganography
  publication-title: IEEE Trans. Circuits Syst. Video Technol
– volume: 2578
  start-page: 310
  year: 2003
  end-page: 323
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  end-page: 2493
  article-title: Sparse reconstruction by separable approximation
  publication-title: IEEE Trans. Signal Process.
– year: 2019
– volume: 1
  start-page: 1
  issue: 8
  year: 2018
  end-page: 17
  article-title: Compressed sensing MRI: a review from signal processing perspective
  publication-title: BMC Biomedical Engineering
– volume: 3
  start-page: 77
  issue: 02
  year: 2013
  end-page: 85
  article-title: Research on embedding capacity and efficiency of information hiding based on digital images
  publication-title: International Journal of Intelligence Science
– volume: 6
  start-page: 677
  issue: 6
  year: 2012
  end-page: 686
  article-title: New adaptive steganographic method using least‐significant‐bit substitution and pixel‐value differencing
  publication-title: IET Image Proc.
– volume: 46
  start-page: 293
  year: 2016
  end-page: 306
  article-title: A steganography embedding method based on edge identification and XOR coding
  publication-title: Expert Syst. Appl.
– volume: 2137
  start-page: 289
  year: 2001
  end-page: 302
– volume: 346
  start-page: 589
  issue: 9
  year: 2008
  end-page: 592
  article-title: The restricted isometry property and its implications for compressed sensing
  publication-title: C. R. Math.
– volume: 8
  start-page: 78
  issue: 2
  year: 2013
  end-page: 89
  article-title: One‐third probability embedding: a new 1 histogram compensating image least significant bit steganography scheme
  publication-title: IET Image Proc.
– volume: 99
  start-page: 235
  year: 2019
  end-page: 246
  article-title: Hiding medical information in brain MR images without affecting accuracy of classifying pathological brain
  publication-title: Future Gener. Comput. Syst.
– volume: 139
  start-page: 426
  year: 2019
  end-page: 437
  article-title: SVD‐based robust image steganographic scheme using RIWT and DCT for secure transmission of medical images
  publication-title: Measurement
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 9
  start-page: 993
  issue: 11
  year: 2015
  end-page: 1001
  article-title: Compressive sensing measurement matrix construction based on improved size compatible array LDPC code
  publication-title: IET Image Proc
– volume: 16
  start-page: 116
  issue: 1
  year: 2019
  end-page: 124
  article-title: A steganography scheme on JPEG compressed cover image with high embedding capacity
  publication-title: Int. Arab J. Inf. Technol.
– volume: 1768
  start-page: 61
  year: 2000
  end-page: 76
– year: 2010
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Transactions on Information Theory
– volume: 9
  start-page: 369
  issue: 5
  year: 2014
  end-page: 380
  article-title: Colour compressed sensing imaging via sparse difference and fractal minimisation recovery
  publication-title: IET Image Proc
– volume: 45
  start-page: 767
  issue: 6
  year: 2018
  end-page: 778
  article-title: Data hiding technique in steganography for information security using number theory
  publication-title: J. Inf. Sci
– volume: 3
  start-page: 01
  issue: 1
  year: 2013
  end-page: 07
  article-title: Ensuring security to the compressed sensing data using a steganographic approach
  publication-title: Bonfring Int. J. Adv. Image Process.
– volume: 2016
  start-page: 42
  issue: 1
  year: 2016
  article-title: Reversible data hiding using least square predictor via the LASSO
  publication-title: EURASIP Journal on Image and Video Processing
– volume: 26
  start-page: 301
  issue: 3
  year: 2009
  end-page: 321
  article-title: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 57
  start-page: 4680
  issue: 7
  year: 2011
  end-page: 4688
  article-title: Orthogonal matching pursuit for sparse signal recovery with noise
  publication-title: IEEE Trans. Inf. Theory
– volume: 8
  start-page: 1439
  issue: 12
  year: 2019
  article-title: ParaLarPD: Parallel FPGA router using primal‐dual sub‐gradient method
  publication-title: Electronics
– volume: 80
  start-page: 1403
  year: 2021
  end-page: 1431
  article-title: Efficient security and capacity techniques for arabic text steganography via engaging unicode standard encoding
  publication-title: Multimedia Tools Appl.
– year: 2007
  article-title: Compressive radar imaging
– year: 2020
– volume: 43
  start-page: 8145
  year: 2018
  end-page: 8157
  article-title: Homomorphic encryption‐based reversible data hiding for 3D mesh models
  publication-title: Arabian J. Sci. Eng.
– volume: 41
  start-page: 2945
  issue: 9
  year: 2008
  end-page: 2955
  article-title: High‐performance JPEG steganography using complementary embedding strategy
  publication-title: Pattern Recognit.
– volume: 141
  start-page: 123
  issue: 1
  year: 2002
  end-page: 138
  article-title: A steganographic method based upon JPEG and quantization table modification
  publication-title: Inf. Sci.
– volume: 13
  start-page: 393
  issue: 4
  year: 2009
  end-page: 400
  article-title: PM1 steganography in JPEG images using genetic algorithm
  publication-title: Soft Computing
– year: 2017
– volume: 64
  start-page: 6145
  issue: 23
  year: 2016
  end-page: 6159
  article-title: Simultaneous Bayesian sparse approximation with structured sparse models
  publication-title: IEEE Trans. Signal Process
– ident: e_1_2_6_9_1
  doi: 10.1109/INTECH.2016.7845020
– ident: e_1_2_6_53_1
– ident: e_1_2_6_7_1
  doi: 10.1016/j.future.2019.01.047
– ident: e_1_2_6_30_1
  doi: 10.1080/13682199.2017.1367129
– ident: e_1_2_6_47_1
  doi: 10.3390/electronics8121439
– ident: e_1_2_6_49_1
  doi: 10.1088/0266-5611/23/3/008
– ident: e_1_2_6_8_1
  doi: 10.1109/INTECH.2016.7845022
– ident: e_1_2_6_27_1
  doi: 10.1007/978-3-642-22158-3_22
– ident: e_1_2_6_16_1
  doi: 10.1016/S0020-0255(01)00194-3
– ident: e_1_2_6_42_1
  doi: 10.1016/j.acha.2008.07.002
– ident: e_1_2_6_21_1
  doi: 10.33633/jais.v2i1.1330
– ident: e_1_2_6_35_1
  doi: 10.1109/MSP.2007.914729
– ident: e_1_2_6_36_1
  doi: 10.1109/RADAR.2007.374203
– ident: e_1_2_6_6_1
  doi: 10.1049/iet-ipr.2013.0109
– ident: e_1_2_6_31_1
  doi: 10.1109/IIHMSP.2011.102
– ident: e_1_2_6_45_1
  doi: 10.1561/2200000016
– ident: e_1_2_6_25_1
  doi: 10.1007/10719724_5
– ident: e_1_2_6_40_1
  doi: 10.1049/iet-ipr.2015.0117
– ident: e_1_2_6_46_1
  doi: 10.1186/s13640-016-0144-3
– ident: e_1_2_6_28_1
  doi: 10.1016/j.measurement.2019.02.069
– volume: 29
  start-page: 585
  issue: 6
  year: 2012
  ident: e_1_2_6_50_1
  article-title: An adaptive measurement scheme based on compressed sensing for wideband spectrum detection in cognitive WSN
  publication-title: J. Electron
– ident: e_1_2_6_5_1
  doi: 10.3390/math8091558
– ident: e_1_2_6_15_1
– ident: e_1_2_6_22_1
  doi: 10.1016/j.sigpro.2018.01.011
– ident: e_1_2_6_29_1
  doi: 10.9756/BIJAIP.10137
– ident: e_1_2_6_33_1
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_6_11_1
  doi: 10.1177/0165551518816303
– ident: e_1_2_6_38_1
  doi: 10.1016/j.crma.2008.03.014
– ident: e_1_2_6_10_1
  doi: 10.1109/TCSVT.2016.2587388
– ident: e_1_2_6_59_1
  doi: 10.1007/s00500-008-0327-7
– ident: e_1_2_6_18_1
  doi: 10.1007/s11042-014-2076-1
– ident: e_1_2_6_48_1
  doi: 10.1109/JSTSP.2009.2039174
– ident: e_1_2_6_44_1
  doi: 10.1109/TSP.2016.2605067
– ident: e_1_2_6_55_1
  doi: 10.1016/j.dsp.2016.02.005
– ident: e_1_2_6_23_1
  doi: 10.1109/TCSVT.2018.2881118
– ident: e_1_2_6_32_1
  doi: 10.1007/s11042-018-6065-7
– ident: e_1_2_6_52_1
– ident: e_1_2_6_17_1
  doi: 10.1016/j.patcog.2008.03.005
– ident: e_1_2_6_26_1
  doi: 10.1007/3-540-36415-3_20
– ident: e_1_2_6_34_1
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_6_19_1
  doi: 10.1016/j.eswa.2015.10.024
– volume: 16
  start-page: 116
  issue: 1
  year: 2019
  ident: e_1_2_6_20_1
  article-title: A steganography scheme on JPEG compressed cover image with high embedding capacity
  publication-title: Int. Arab J. Inf. Technol.
– ident: e_1_2_6_43_1
  doi: 10.1109/TSP.2009.2016892
– volume-title: Cryptography and Network Security: Principles and Practice
  year: 2017
  ident: e_1_2_6_2_1
– ident: e_1_2_6_14_1
  doi: 10.1007/3-540-45496-9_21
– ident: e_1_2_6_24_1
– ident: e_1_2_6_13_1
– ident: e_1_2_6_4_1
  doi: 10.1007/s11042-020-09667-y
– volume: 1
  start-page: 1
  issue: 8
  year: 2018
  ident: e_1_2_6_37_1
  article-title: Compressed sensing MRI: a review from signal processing perspective
  publication-title: BMC Biomedical Engineering
– ident: e_1_2_6_3_1
  doi: 10.1049/iet-ipr.2011.0059
– ident: e_1_2_6_12_1
  doi: 10.1007/s13369-018-3354-4
– ident: e_1_2_6_57_1
  doi: 10.1049/iet-ipr.2016.0160
– volume-title: Digital Image Processing Using MATLAB
  year: 2010
  ident: e_1_2_6_58_1
– volume: 9
  start-page: 369
  issue: 5
  year: 2014
  ident: e_1_2_6_39_1
  article-title: Colour compressed sensing imaging via sparse difference and fractal minimisation recovery
  publication-title: IET Image Proc
– ident: e_1_2_6_51_1
  doi: 10.1109/iMac4s.2013.6526420
– ident: e_1_2_6_54_1
– ident: e_1_2_6_41_1
  doi: 10.1109/TIT.2011.2146090
– ident: e_1_2_6_56_1
  doi: 10.4236/ijis.2013.32009
SSID ssj0059085
Score 2.3158004
Snippet Image steganography plays a vital role in securing secret data by embedding it in the cover images. Usually, these images are communicated in a compressed...
Abstract Image steganography plays a vital role in securing secret data by embedding it in the cover images. Usually, these images are communicated in a...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1909
SubjectTerms Computer vision and image processing techniques
Cryptography
Data security
Image and video coding
Optimisation techniques
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPHjxW6xfBPSisDTZzXY33rRYFETEquhpmU0mtWDX0lbP_gR_o7_EJLstFkQv3pYwkOVNkpkhk_cIOfCXNTqFQCdcBCJPTAAKILDBy0gJTHHfVXl_mVxdpQ8P8vqb1JfrCSvpgUvgGhHYpAMYQzBcYKzSCCXySBjNea6Ff-bLEjkppsoz2Al5x_4ppBORb8ZyQkwqZKM3GIaOU6HJZ0KRZ-yfzVB9iGkvk8UqN6Qn5T-tkDksVslSlSfSaheO1shjq3PROaZuK3vqb01Hrg296H6-f7iopCkWT_5m3w5gP0ftAhRVNi4qm3TTXt8eItS6twtFxVhNbZGLfVwnd-2z29Z5UEkkBEqIkAeGAbgKCiwmGBoODDBlCQiuGIdEG1uuREY6TeE8EQJizCEHW0LEumlsIRptkFrxUuAmoRpZaFAwFTVtTqLjPMo1B9ACUmateZ0cTtDKVMUf7mQsnjN_jy1k5pDNPLJ1sj-1HZSsGT9anTrQpxaO6doPWP9nlf-zv_xfJ0feZb_Mk11c34T-a-s_ZtwmC6FrbPE9uzukNh6-4i6ZV2_j3mi459fhF44d4so
  priority: 102
  providerName: Directory of Open Access Journals
Title CSIS: Compressed sensing‐based enhanced‐embedding capacity image steganography scheme
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12161
https://doaj.org/article/3a045a00eaf14e5c83e9e134fd11bd48
Volume 15
WOSCitedRecordID wos000626520500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (WRLC)
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYh6aGXJumDbl4I2ksDppItr-3QSxISslCWpXk0PZmRNNoudJ2wm-Tcn5DfmF-SGa13Q6AUSi_GiDG2R_OURt8I8TFu1vgSEl9okxhbhAQcQELOK1QVKKdjVeXF16LfLy8vq8GS-DI_CzPDh1gsuLFmRHvNCg521oWEglqaxNH1JGVsBM59VrTOCpbp1AzmdpibeefxOCQ3ku_m1Ryc1FSfn5595o4iav_zKDW6mePV__vANfGqDS_l_kwe1sUSNq_FahtqylaRp2_Ej8PT3umeZGsQ0cO9nHIlezN8-H3Pjs1LbH7G4gAawLFFzz5OOnKtjuJ2ORqTHZIkIUNoWtBrSXkyjvGtOD8-Ojs8SdouC4kzJtVJUACchEGFGtOgQQGWqgCjndJQ-EAZTxYqbktsC2MgRwsWKAvJfTdQLpu9E8vNVYPvhfSo0oBGuaxLYY3PbWa9BvAGSkXUuiM-zZlduxaCnDth_KrjVripauZZHXnWER8WtNcz4I0_Uh3wnC0oGCw7DlxNhnWre3UGFLeCUghBG8xdmSH9a2aC19p6U3bEbpzHv7yn7g2-pfFu41-IN8XLlGtgYnnvlli-mdzitnjh7m5G08lOFNeduApA1--9_iOAF_C2
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEA-igr5UrYrX-ifQvlhYmuzO3u72TaXi4fU41BZ9WmaTyfWgt8qd9bkfwc_YT2Imt3dFKIXi2xIm7G6S-fNLJr8R4n04rLE5RjbTEEGVuQgNYuSdlysKVEaHrMpv3azXy6-vi36Tm8N3Yab8EPMNN9aMYK9ZwXlDego4gUkyh3fjmMkRGPwsgXczXMAghv7MEHM17zTch-RK8u20mLGTQvHxT99n_ijQ9j8PU4OfOV174Reui1dNgCmPpitiQyxQ_VqsNcGmbFR5siluTi47l58k24PAH27lhHPZ68HvX4_s2qyk-ntID_ANNKrIspeTxjtX4yN3ORx5SyT9Ghlg3dBeS4-UaURb4uvp56uTs6ipsxAZgFhHTiEyDMOCNMVOo0LKVYagjdKYWecxT-IKLkxcZQCYUoUVehyS2rbzaDbZFov1bU07QlpSsSNQJmn7wMamVVJZjWgBc-WldUsczka7NA0JOdfC-FGGw3AoSh6zMoxZS7yby95NqTf-KnXMkzaXYLrs0HA7HpSN9pUJ-sgVlSJ0Gig1eUL-XxNwVuvKQt4SH8JE_uM9Zad_EYenN_8jfCBWzq6-dMtup3f-VqzGnBETkn13xeL9-CftiWXzcD-cjPfD2n0CaarylA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEF9EpfSlWtvitWoX6ouF0N1kckl8a9XDo3Ic2hb7FCa7s-eBF48767Mfwc_oJ3FnL3dFKELxLSwTkszu_PllZ38jxG7YrLE5RjbTEEGVuQgNYuSDlysKVEaHqspfJ1mvl5-fF_2mNofPwsz4IRY_3Ngygr9mA6exdTPACUySORxPYiZHYPCzAql3skzsDP25I-Zu3mk4D8md5NtpMWcnheLL33sfxaNA2_84TQ1xprP2zDdcF6-aBFN-na2I12KJ6g2x1iSbsjHl6Rvx--Cse7Yv2R8E_nArp1zLXg_ub-84tFlJ9UUoD_ADNKrIcpSTxgdX4zN3ORx5TyT9Ghlg3dBeS4-UaURvxc_O0Y-D46jpsxAZgFhHTiEyDMOCNMVOo0LKVYagjdKYWecxT-IKbkxcZQCYUoUVehyS2rbzaDZ5J5brq5o2hbSkYkegTNL2iY1Nq6SyGtEC5spL65bYm2u7NA0JOffCuCzDZjgUJeusDDpriU8L2fGMeuOfUt940hYSTJcdBq4mg7KxvjJBn7miUoROA6UmT8h_awLOal1ZyFvic5jIJ55Tdvuncbh6_z_CH8WL_mGnPOn2vn8QL2MuiAm1vlti-Xryh7bFqrm5Hk4nO2HpPgAhXvIY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSIS%3A+Compressed+sensing%E2%80%90based+enhanced%E2%80%90embedding+capacity+image+steganography+scheme&rft.jtitle=IET+image+processing&rft.au=Agrawal%2C+Rohit&rft.au=Ahuja%2C+Kapil&rft.date=2021-07-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=15&rft.issue=9&rft.spage=1909&rft.epage=1925&rft_id=info:doi/10.1049%2Fipr2.12161&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_12161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon