Entropy‐guided contrastive learning for semi‐supervised medical image segmentation
Accurately segmenting medical images is a critical step in clinical diagnosis and developing patient‐specific treatment plans. While supervised learning algorithms have achieved excellent performance in this area, they require a large amount of annotated data, which is often time‐consuming and diffi...
Uloženo v:
| Vydáno v: | IET image processing Ročník 18; číslo 2; s. 312 - 326 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Wiley
01.02.2024
|
| Témata: | |
| ISSN: | 1751-9659, 1751-9667 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!