A High-Birefringence Microfiber Sagnac-Interferometer Biosensor Based on the Vernier Effect
We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining f...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 18; no. 12; p. 4114 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI
23.11.2018
MDPI AG |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL−1). |
|---|---|
| AbstractList | We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL−1). We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL-1).We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL-1). We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL ). |
| Author | Wang, Qi Wang, Xue-Zhou |
| AuthorAffiliation | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; wangxuezhou@stumail.neu.edu.cn |
| AuthorAffiliation_xml | – name: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; wangxuezhou@stumail.neu.edu.cn |
| Author_xml | – sequence: 1 givenname: Xue-Zhou surname: Wang fullname: Wang, Xue-Zhou – sequence: 2 givenname: Qi orcidid: 0000-0002-1328-8571 surname: Wang fullname: Wang, Qi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30477179$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkctuFDEQRS2UiLxY8AOol7Bo4te47Q1SEgUyUiIWEDYsrGp3ucdRjx3sHiT-HocJowSx8pXr-JSle0T2YopIyGtG3wth6GlhmnHJmHxBDpnkstWc070n-YAclXJHKRdC6JfkQFDZdawzh-T7WXMVxlV7HjL6HOKI0WFzE1xOPvSYmy8wRnDtMs6YPea0xhqa85AKxpJqgoJDk2Izr7D5hjmGOr70Ht18QvY9TAVfPZ7H5Pbj5deLq_b686flxdl166Rkc4sdLKA3oD3z2iOjamB8GBw1HFAZprXujGKmKl3fL9CIhTbgKfhBoqJeHJPl1jskuLP3Oawh_7IJgv1zkfJoIc_BTWidRDEow43hQi48gjNagaFV1EmuXHV92LruN_0aB4dxzjA9kz6fxLCyY_pplaBaMl0Fbx8FOf3YYJntOhSH0wQR06ZYzoRWkndKVfTN0127JX_bqcC7LVDbKKUWtEMYtQ_N213zlT39h3Vhhjmkh2-G6T8vfgPF3rAP |
| CitedBy_id | crossref_primary_10_1038_s41598_021_97646_0 crossref_primary_10_3390_s24248132 crossref_primary_10_1016_j_ijleo_2025_172472 crossref_primary_10_1016_j_yofte_2022_103116 crossref_primary_10_1016_j_ijleo_2021_168488 crossref_primary_10_3390_bios13010064 crossref_primary_10_1016_j_optlastec_2024_110567 crossref_primary_10_1002_jbio_202100068 crossref_primary_10_1109_JLT_2022_3141450 crossref_primary_10_1016_j_yofte_2021_102625 crossref_primary_10_1002_lpor_202000588 crossref_primary_10_1007_s00340_021_07612_x crossref_primary_10_1016_j_sna_2021_113212 crossref_primary_10_1016_j_ijleo_2023_170860 crossref_primary_10_1016_j_optcom_2021_127543 crossref_primary_10_1002_jbio_202200294 crossref_primary_10_1016_j_measurement_2020_108451 crossref_primary_10_1016_j_yofte_2019_102112 crossref_primary_10_1016_j_measurement_2023_112538 crossref_primary_10_3390_app9122394 crossref_primary_10_1063_5_0105147 crossref_primary_10_3390_photonics9120987 crossref_primary_10_1063_1_5112090 crossref_primary_10_1109_JLT_2019_2947644 crossref_primary_10_1016_j_bios_2024_116088 crossref_primary_10_1109_TIM_2024_3372225 crossref_primary_10_1016_j_bios_2024_116265 crossref_primary_10_1109_JSEN_2023_3333550 |
| Cites_doi | 10.1016/j.snb.2016.03.102 10.1016/S1068-5200(02)00527-8 10.1364/OE.25.013305 10.3390/s150203565 10.1364/OE.18.022747 10.1364/OL.37.000323 10.1038/s41598-017-05199-y 10.3390/s18103295 10.1016/j.snb.2018.04.165 10.1016/j.snb.2018.08.065 10.1016/j.snb.2016.01.029 10.1364/OE.26.018920 10.1002/adma.201501754 10.1016/j.optlaseng.2018.09.013 10.1016/j.snb.2018.04.097 10.1109/LPT.2016.2529181 10.1364/OE.17.010573 10.1016/j.optcom.2014.09.075 10.1016/j.optlaseng.2017.07.009 |
| ContentType | Journal Article |
| Copyright | 2018 by the authors. 2018 |
| Copyright_xml | – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.3390/s18124114 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c4e3d692992345feac986a904e67426c PMC6308418 30477179 10_3390_s18124114 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c441t-e7a5ab9a8f1f8fe106d12ddc092ae69188879619feccbb5e93589af0afd4e60f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454817100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:22 EDT 2025 Tue Nov 04 01:52:11 EST 2025 Fri Sep 05 10:07:38 EDT 2025 Wed Feb 19 02:35:48 EST 2025 Sat Nov 29 07:14:57 EST 2025 Tue Nov 18 22:07:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Vernier effect microfiber biosensor Sagnac interferometer |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-e7a5ab9a8f1f8fe106d12ddc092ae69188879619feccbb5e93589af0afd4e60f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1328-8571 |
| OpenAccessLink | https://doaj.org/article/c4e3d692992345feac986a904e67426c |
| PMID | 30477179 |
| PQID | 2138642766 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c4e3d692992345feac986a904e67426c pubmedcentral_primary_oai_pubmedcentral_nih_gov_6308418 proquest_miscellaneous_2138642766 pubmed_primary_30477179 crossref_primary_10_3390_s18124114 crossref_citationtrail_10_3390_s18124114 |
| PublicationCentury | 2000 |
| PublicationDate | 20181123 |
| PublicationDateYYYYMMDD | 2018-11-23 |
| PublicationDate_xml | – month: 11 year: 2018 text: 20181123 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Ma (ref_5) 2012; 37 Yu (ref_6) 2016; 228 Lee (ref_1) 2003; 9 Gao (ref_15) 2017; 25 Sun (ref_8) 2016; 231 Claes (ref_14) 2010; 18 Wang (ref_17) 2009; 17 Jing (ref_4) 2019; 112 Hsieh (ref_7) 2015; 15 Wei (ref_9) 2017; 7 Pu (ref_12) 2016; 28 ref_19 Wang (ref_18) 2018; 275 Zeng (ref_20) 2015; 27 Shao (ref_11) 2015; 336 ref_16 Li (ref_13) 2018; 269 Wang (ref_3) 2018; 269 Wang (ref_2) 2018; 100 Lu (ref_10) 2018; 26 |
| References_xml | – volume: 231 start-page: 696 year: 2016 ident: ref_8 article-title: High-birefringence microfiber Sagnac interferometer based humidity sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.03.102 – volume: 9 start-page: 57 year: 2003 ident: ref_1 article-title: Review of the present status of optical fiber sensors publication-title: Opt. Fiber Technol. doi: 10.1016/S1068-5200(02)00527-8 – volume: 25 start-page: 13305 year: 2017 ident: ref_15 article-title: High-sensitivity DNA biosensor based on microfiber Sagnac interferometer publication-title: Opt. Express doi: 10.1364/OE.25.013305 – volume: 15 start-page: 3565 year: 2015 ident: ref_7 article-title: Amplification of the signal intensity of fluorescence-based fiber-optic biosensors using a Fabry-Perot resonator structure publication-title: Sensors doi: 10.3390/s150203565 – volume: 18 start-page: 22747 year: 2010 ident: ref_14 article-title: Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit publication-title: Opt. Express doi: 10.1364/OE.18.022747 – volume: 37 start-page: 323 year: 2012 ident: ref_5 article-title: Reflective fiber-optic refractometer based on a thin-core fiber tailored Bragg grating reflection publication-title: Opt. Lett. doi: 10.1364/OL.37.000323 – volume: 7 start-page: 4725 year: 2017 ident: ref_9 article-title: Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop publication-title: Sci. Rep. doi: 10.1038/s41598-017-05199-y – ident: ref_16 doi: 10.3390/s18103295 – volume: 269 start-page: 103 year: 2018 ident: ref_13 article-title: High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.04.165 – volume: 275 start-page: 332 year: 2018 ident: ref_18 article-title: Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.08.065 – volume: 228 start-page: 322 year: 2016 ident: ref_6 article-title: Label-free fiber optic biosensor based on thin-core modal interferometer publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.01.029 – volume: 26 start-page: 18920 year: 2018 ident: ref_10 article-title: Temperature and liquid refractive index sensor using P-D fiber structure-based Sagnac loop publication-title: Opt. Express doi: 10.1364/OE.26.018920 – ident: ref_19 – volume: 27 start-page: 6163 year: 2015 ident: ref_20 article-title: Graphene-Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing publication-title: Adv. Mater. doi: 10.1002/adma.201501754 – volume: 112 start-page: 103 year: 2019 ident: ref_4 article-title: Long-range surface plasmon resonance and its sensing applications: A review publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.09.013 – volume: 269 start-page: 238 year: 2018 ident: ref_3 article-title: Optical methods of antibiotic residues detections: A comprehensive review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.04.097 – volume: 28 start-page: 1073 year: 2016 ident: ref_12 article-title: Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2016.2529181 – volume: 17 start-page: 10573 year: 2009 ident: ref_17 article-title: Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser publication-title: Opt. Express doi: 10.1364/OE.17.010573 – volume: 336 start-page: 73 year: 2015 ident: ref_11 article-title: Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect publication-title: Opt. Commun. doi: 10.1016/j.optcom.2014.09.075 – volume: 100 start-page: 47 year: 2018 ident: ref_2 article-title: A comprehensive review of lossy mode resonance-based fiber optic sensors publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2017.07.009 |
| SSID | ssj0023338 |
| Score | 2.4107819 |
| Snippet | We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 4114 |
| SubjectTerms | Biosensing Techniques - methods biosensor Birefringence Graphite - chemistry Interferometry - methods microfiber Sagnac interferometer Vernier effect |
| Title | A High-Birefringence Microfiber Sagnac-Interferometer Biosensor Based on the Vernier Effect |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30477179 https://www.proquest.com/docview/2138642766 https://pubmed.ncbi.nlm.nih.gov/PMC6308418 https://doaj.org/article/c4e3d692992345feac986a904e67426c |
| Volume | 18 |
| WOSCitedRecordID | wos000454817100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDdZlsogDlysTWInto_bVVdwaFXxUhGHyLHHSyWUoLbLkd--4yStWrQSFy6W5TiJNeN45vNMPgO8LXQa0BnFA3nnXNaYcxuM59ZaiWSP8jrY7rAJNZvpxcLM9476ijlhPT1wL7hTJ1H4kow4eSKyCLROGF1ak0osCdWVLq6-qTJbMDVALUHIq-cREgTqT9edHcsyeWB9OpL-mzzLvxMk9yzOxUN4MLiK7Kwf4iO4hc1juL9HIPgEvp-xmKjBx7RwhW6HjnTIpjHJLsRUEPbJXjbW8W7fL2CkJqAKGy_bNcHXlmpkxDxrG0Z-IPuKq4asJOsZjZ_Cl4vJ5_P3fDgugTvyaTYclS1sbawOWdABCev5LPfepSa3WJqMsK4ypBF6hKvrAmME1NiQ2uBJmGkQz-CoaRt8Aaz2qcYcA8GbQmYo6TYZ4zW1F04USiXwbivGyg1c4vFIi58VYYoo8Won8QTe7Lr-6gk0buo0jrrYdYic110DzYRqmAnVv2ZCAq-3mqzoG4mBD9tge7Wu8kxowlmqLBN43mt296oYdiRIaxJQBzo_GMvhlWb5o-PhLkWqZaaP_8fgX8I9csV0_MsxFydwtFld4Su4635vluvVCG6rhepKPYI748ls_nHUTXgqp38m1Db_MJ1_uwYD7Ab7 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Birefringence+Microfiber+Sagnac-Interferometer+Biosensor+Based+on+the+Vernier+Effect&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Xue-Zhou&rft.au=Wang%2C+Qi&rft.date=2018-11-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=12&rft_id=info:doi/10.3390%2Fs18124114&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |