A High-Birefringence Microfiber Sagnac-Interferometer Biosensor Based on the Vernier Effect

We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining f...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 18; no. 12; p. 4114
Main Authors: Wang, Xue-Zhou, Wang, Qi
Format: Journal Article
Language:English
Published: Switzerland MDPI 23.11.2018
MDPI AG
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL−1).
AbstractList We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL−1).
We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL-1).We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL-1).
We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL ).
Author Wang, Qi
Wang, Xue-Zhou
AuthorAffiliation College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; wangxuezhou@stumail.neu.edu.cn
AuthorAffiliation_xml – name: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; wangxuezhou@stumail.neu.edu.cn
Author_xml – sequence: 1
  givenname: Xue-Zhou
  surname: Wang
  fullname: Wang, Xue-Zhou
– sequence: 2
  givenname: Qi
  orcidid: 0000-0002-1328-8571
  surname: Wang
  fullname: Wang, Qi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30477179$$D View this record in MEDLINE/PubMed
BookMark eNptkctuFDEQRS2UiLxY8AOol7Bo4te47Q1SEgUyUiIWEDYsrGp3ucdRjx3sHiT-HocJowSx8pXr-JSle0T2YopIyGtG3wth6GlhmnHJmHxBDpnkstWc070n-YAclXJHKRdC6JfkQFDZdawzh-T7WXMVxlV7HjL6HOKI0WFzE1xOPvSYmy8wRnDtMs6YPea0xhqa85AKxpJqgoJDk2Izr7D5hjmGOr70Ht18QvY9TAVfPZ7H5Pbj5deLq_b686flxdl166Rkc4sdLKA3oD3z2iOjamB8GBw1HFAZprXujGKmKl3fL9CIhTbgKfhBoqJeHJPl1jskuLP3Oawh_7IJgv1zkfJoIc_BTWidRDEow43hQi48gjNagaFV1EmuXHV92LruN_0aB4dxzjA9kz6fxLCyY_pplaBaMl0Fbx8FOf3YYJntOhSH0wQR06ZYzoRWkndKVfTN0127JX_bqcC7LVDbKKUWtEMYtQ_N213zlT39h3Vhhjmkh2-G6T8vfgPF3rAP
CitedBy_id crossref_primary_10_1038_s41598_021_97646_0
crossref_primary_10_3390_s24248132
crossref_primary_10_1016_j_ijleo_2025_172472
crossref_primary_10_1016_j_yofte_2022_103116
crossref_primary_10_1016_j_ijleo_2021_168488
crossref_primary_10_3390_bios13010064
crossref_primary_10_1016_j_optlastec_2024_110567
crossref_primary_10_1002_jbio_202100068
crossref_primary_10_1109_JLT_2022_3141450
crossref_primary_10_1016_j_yofte_2021_102625
crossref_primary_10_1002_lpor_202000588
crossref_primary_10_1007_s00340_021_07612_x
crossref_primary_10_1016_j_sna_2021_113212
crossref_primary_10_1016_j_ijleo_2023_170860
crossref_primary_10_1016_j_optcom_2021_127543
crossref_primary_10_1002_jbio_202200294
crossref_primary_10_1016_j_measurement_2020_108451
crossref_primary_10_1016_j_yofte_2019_102112
crossref_primary_10_1016_j_measurement_2023_112538
crossref_primary_10_3390_app9122394
crossref_primary_10_1063_5_0105147
crossref_primary_10_3390_photonics9120987
crossref_primary_10_1063_1_5112090
crossref_primary_10_1109_JLT_2019_2947644
crossref_primary_10_1016_j_bios_2024_116088
crossref_primary_10_1109_TIM_2024_3372225
crossref_primary_10_1016_j_bios_2024_116265
crossref_primary_10_1109_JSEN_2023_3333550
Cites_doi 10.1016/j.snb.2016.03.102
10.1016/S1068-5200(02)00527-8
10.1364/OE.25.013305
10.3390/s150203565
10.1364/OE.18.022747
10.1364/OL.37.000323
10.1038/s41598-017-05199-y
10.3390/s18103295
10.1016/j.snb.2018.04.165
10.1016/j.snb.2018.08.065
10.1016/j.snb.2016.01.029
10.1364/OE.26.018920
10.1002/adma.201501754
10.1016/j.optlaseng.2018.09.013
10.1016/j.snb.2018.04.097
10.1109/LPT.2016.2529181
10.1364/OE.17.010573
10.1016/j.optcom.2014.09.075
10.1016/j.optlaseng.2017.07.009
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s18124114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c4e3d692992345feac986a904e67426c
PMC6308418
30477179
10_3390_s18124114
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c441t-e7a5ab9a8f1f8fe106d12ddc092ae69188879619feccbb5e93589af0afd4e60f3
IEDL.DBID DOA
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454817100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:22 EDT 2025
Tue Nov 04 01:52:11 EST 2025
Fri Sep 05 10:07:38 EDT 2025
Wed Feb 19 02:35:48 EST 2025
Sat Nov 29 07:14:57 EST 2025
Tue Nov 18 22:07:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Vernier effect
microfiber
biosensor
Sagnac interferometer
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-e7a5ab9a8f1f8fe106d12ddc092ae69188879619feccbb5e93589af0afd4e60f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1328-8571
OpenAccessLink https://doaj.org/article/c4e3d692992345feac986a904e67426c
PMID 30477179
PQID 2138642766
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c4e3d692992345feac986a904e67426c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6308418
proquest_miscellaneous_2138642766
pubmed_primary_30477179
crossref_primary_10_3390_s18124114
crossref_citationtrail_10_3390_s18124114
PublicationCentury 2000
PublicationDate 20181123
PublicationDateYYYYMMDD 2018-11-23
PublicationDate_xml – month: 11
  year: 2018
  text: 20181123
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Ma (ref_5) 2012; 37
Yu (ref_6) 2016; 228
Lee (ref_1) 2003; 9
Gao (ref_15) 2017; 25
Sun (ref_8) 2016; 231
Claes (ref_14) 2010; 18
Wang (ref_17) 2009; 17
Jing (ref_4) 2019; 112
Hsieh (ref_7) 2015; 15
Wei (ref_9) 2017; 7
Pu (ref_12) 2016; 28
ref_19
Wang (ref_18) 2018; 275
Zeng (ref_20) 2015; 27
Shao (ref_11) 2015; 336
ref_16
Li (ref_13) 2018; 269
Wang (ref_3) 2018; 269
Wang (ref_2) 2018; 100
Lu (ref_10) 2018; 26
References_xml – volume: 231
  start-page: 696
  year: 2016
  ident: ref_8
  article-title: High-birefringence microfiber Sagnac interferometer based humidity sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.03.102
– volume: 9
  start-page: 57
  year: 2003
  ident: ref_1
  article-title: Review of the present status of optical fiber sensors
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/S1068-5200(02)00527-8
– volume: 25
  start-page: 13305
  year: 2017
  ident: ref_15
  article-title: High-sensitivity DNA biosensor based on microfiber Sagnac interferometer
  publication-title: Opt. Express
  doi: 10.1364/OE.25.013305
– volume: 15
  start-page: 3565
  year: 2015
  ident: ref_7
  article-title: Amplification of the signal intensity of fluorescence-based fiber-optic biosensors using a Fabry-Perot resonator structure
  publication-title: Sensors
  doi: 10.3390/s150203565
– volume: 18
  start-page: 22747
  year: 2010
  ident: ref_14
  article-title: Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit
  publication-title: Opt. Express
  doi: 10.1364/OE.18.022747
– volume: 37
  start-page: 323
  year: 2012
  ident: ref_5
  article-title: Reflective fiber-optic refractometer based on a thin-core fiber tailored Bragg grating reflection
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.000323
– volume: 7
  start-page: 4725
  year: 2017
  ident: ref_9
  article-title: Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05199-y
– ident: ref_16
  doi: 10.3390/s18103295
– volume: 269
  start-page: 103
  year: 2018
  ident: ref_13
  article-title: High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.04.165
– volume: 275
  start-page: 332
  year: 2018
  ident: ref_18
  article-title: Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.08.065
– volume: 228
  start-page: 322
  year: 2016
  ident: ref_6
  article-title: Label-free fiber optic biosensor based on thin-core modal interferometer
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.01.029
– volume: 26
  start-page: 18920
  year: 2018
  ident: ref_10
  article-title: Temperature and liquid refractive index sensor using P-D fiber structure-based Sagnac loop
  publication-title: Opt. Express
  doi: 10.1364/OE.26.018920
– ident: ref_19
– volume: 27
  start-page: 6163
  year: 2015
  ident: ref_20
  article-title: Graphene-Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501754
– volume: 112
  start-page: 103
  year: 2019
  ident: ref_4
  article-title: Long-range surface plasmon resonance and its sensing applications: A review
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.09.013
– volume: 269
  start-page: 238
  year: 2018
  ident: ref_3
  article-title: Optical methods of antibiotic residues detections: A comprehensive review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.04.097
– volume: 28
  start-page: 1073
  year: 2016
  ident: ref_12
  article-title: Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2016.2529181
– volume: 17
  start-page: 10573
  year: 2009
  ident: ref_17
  article-title: Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser
  publication-title: Opt. Express
  doi: 10.1364/OE.17.010573
– volume: 336
  start-page: 73
  year: 2015
  ident: ref_11
  article-title: Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.09.075
– volume: 100
  start-page: 47
  year: 2018
  ident: ref_2
  article-title: A comprehensive review of lossy mode resonance-based fiber optic sensors
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2017.07.009
SSID ssj0023338
Score 2.4107819
Snippet We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4114
SubjectTerms Biosensing Techniques - methods
biosensor
Birefringence
Graphite - chemistry
Interferometry - methods
microfiber
Sagnac interferometer
Vernier effect
Title A High-Birefringence Microfiber Sagnac-Interferometer Biosensor Based on the Vernier Effect
URI https://www.ncbi.nlm.nih.gov/pubmed/30477179
https://www.proquest.com/docview/2138642766
https://pubmed.ncbi.nlm.nih.gov/PMC6308418
https://doaj.org/article/c4e3d692992345feac986a904e67426c
Volume 18
WOSCitedRecordID wos000454817100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDdZlsogDlysTWInto_bVVdwaFXxUhGHyLHHSyWUoLbLkd--4yStWrQSFy6W5TiJNeN45vNMPgO8LXQa0BnFA3nnXNaYcxuM59ZaiWSP8jrY7rAJNZvpxcLM9476ijlhPT1wL7hTJ1H4kow4eSKyCLROGF1ak0osCdWVLq6-qTJbMDVALUHIq-cREgTqT9edHcsyeWB9OpL-mzzLvxMk9yzOxUN4MLiK7Kwf4iO4hc1juL9HIPgEvp-xmKjBx7RwhW6HjnTIpjHJLsRUEPbJXjbW8W7fL2CkJqAKGy_bNcHXlmpkxDxrG0Z-IPuKq4asJOsZjZ_Cl4vJ5_P3fDgugTvyaTYclS1sbawOWdABCev5LPfepSa3WJqMsK4ypBF6hKvrAmME1NiQ2uBJmGkQz-CoaRt8Aaz2qcYcA8GbQmYo6TYZ4zW1F04USiXwbivGyg1c4vFIi58VYYoo8Won8QTe7Lr-6gk0buo0jrrYdYic110DzYRqmAnVv2ZCAq-3mqzoG4mBD9tge7Wu8kxowlmqLBN43mt296oYdiRIaxJQBzo_GMvhlWb5o-PhLkWqZaaP_8fgX8I9csV0_MsxFydwtFld4Su4635vluvVCG6rhepKPYI748ls_nHUTXgqp38m1Db_MJ1_uwYD7Ab7
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Birefringence+Microfiber+Sagnac-Interferometer+Biosensor+Based+on+the+Vernier+Effect&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Xue-Zhou&rft.au=Wang%2C+Qi&rft.date=2018-11-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=12&rft_id=info:doi/10.3390%2Fs18124114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon