Robust outcome weighted learning for optimal individualized treatment rules

Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of biopharmaceutical statistics Ročník 29; číslo 4; s. 606 - 624
Hlavní autori: Fu, Sheng, He, Qinying, Zhang, Sanguo, Liu, Yufeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Taylor & Francis 04.07.2019
Taylor & Francis Ltd
Predmet:
ISSN:1054-3406, 1520-5711, 1520-5711
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop a proper decision rule using patient-specific characteristics to maximize the expected clinical outcome, i.e. the optimal ITR. Recently, outcome weighted learning (OWL) has been proposed to estimate optimal ITR under a weighted classification framework. Since most of commonly used loss functions are unbounded, the resulting ITR may suffer similar effects of outliers as the corresponding classifiers. In this paper, we propose robust OWL (ROWL) to build more stable ITRs using a new family of bounded and non-convex loss functions. Moreover, we extend the proposed ROWL method to the multiple treatment setting under the angle-based classification structure. Our theoretical results show that ROWL is Fisher consistent, and can provide the estimation of rewards' ratios for the resulting ITRs. We develop an efficient difference of convex functions algorithm (DCA) to solve the corresponding nonconvex optimization problem. Through analysis of simulated examples and a real medical dataset, we demonstrate that the proposed ROWL method yields more competitive performance in terms of the empirical value function and the misclassification error than several existing methods.
AbstractList Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop a proper decision rule using patient-specific characteristics to maximize the expected clinical outcome, i.e. the optimal ITR. Recently, outcome weighted learning (OWL) has been proposed to estimate optimal ITR under a weighted classification framework. Since most of commonly used loss functions are unbounded, the resulting ITR may suffer similar effects of outliers as the corresponding classifiers. In this paper, we propose robust OWL (ROWL) to build more stable ITRs using a new family of bounded and non-convex loss functions. Moreover, we extend the proposed ROWL method to the multiple treatment setting under the angle-based classification structure. Our theoretical results show that ROWL is Fisher consistent, and can provide the estimation of rewards' ratios for the resulting ITRs. We develop an efficient difference of convex functions algorithm (DCA) to solve the corresponding nonconvex optimization problem. Through analysis of simulated examples and a real medical dataset, we demonstrate that the proposed ROWL method yields more competitive performance in terms of the empirical value function and the misclassification error than several existing methods.
Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop a proper decision rule using patient-specific characteristics to maximize the expected clinical outcome, i.e. the optimal ITR. Recently, outcome weighted learning (OWL) has been proposed to estimate optimal ITR under a weighted classification framework. Since most of commonly used loss functions are unbounded, the resulting ITR may suffer similar effects of outliers as the corresponding classifiers. In this paper, we propose robust OWL (ROWL) to build more stable ITRs using a new family of bounded and non-convex loss functions. Moreover, we extend the proposed ROWL method to the multiple treatment setting under the angle-based classification structure. Our theoretical results show that ROWL is Fisher consistent, and can provide the estimation of rewards' ratios for the resulting ITRs. We develop an efficient difference of convex functions algorithm (DCA) to solve the corresponding nonconvex optimization problem. Through analysis of simulated examples and a real medical dataset, we demonstrate that the proposed ROWL method yields more competitive performance in terms of the empirical value function and the misclassification error than several existing methods.Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop a proper decision rule using patient-specific characteristics to maximize the expected clinical outcome, i.e. the optimal ITR. Recently, outcome weighted learning (OWL) has been proposed to estimate optimal ITR under a weighted classification framework. Since most of commonly used loss functions are unbounded, the resulting ITR may suffer similar effects of outliers as the corresponding classifiers. In this paper, we propose robust OWL (ROWL) to build more stable ITRs using a new family of bounded and non-convex loss functions. Moreover, we extend the proposed ROWL method to the multiple treatment setting under the angle-based classification structure. Our theoretical results show that ROWL is Fisher consistent, and can provide the estimation of rewards' ratios for the resulting ITRs. We develop an efficient difference of convex functions algorithm (DCA) to solve the corresponding nonconvex optimization problem. Through analysis of simulated examples and a real medical dataset, we demonstrate that the proposed ROWL method yields more competitive performance in terms of the empirical value function and the misclassification error than several existing methods.
Author Fu, Sheng
Zhang, Sanguo
Liu, Yufeng
He, Qinying
Author_xml – sequence: 1
  givenname: Sheng
  surname: Fu
  fullname: Fu, Sheng
  organization: Department of Industrial and Systems Engineering, National University of Singapore
– sequence: 2
  givenname: Qinying
  surname: He
  fullname: He, Qinying
  organization: College of Economics and Management, South China Agricultural University
– sequence: 3
  givenname: Sanguo
  surname: Zhang
  fullname: Zhang, Sanguo
  organization: Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences
– sequence: 4
  givenname: Yufeng
  orcidid: 0000-0002-1686-0545
  surname: Liu
  fullname: Liu, Yufeng
  email: yfliu@email.unc.edu
  organization: Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31309858$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URNuFnwCKxIVLFk9ix7a4gCq-RCUkBGfLcSbFlWMvtkNVfj1e7e6lBzh5Ds8745nnkpyFGJCQ50C3QCV9DZSzntFh21FQWxj6fuDiEbkA3tGWC4CzWlem3UPn5DLnW0qBC8mekPMeeqoklxfky7c4rrk0cS02Ltjcobv5WXBqPJoUXLhp5piauCtuMb5xYXK_3bQa7_5UpiQ0ZcFQmrR6zE_J49n4jM-O74b8-PD--9Wn9vrrx89X765byxiUFjmlapgtgBpQyVGgHQVTg8AJ7DhYoCioMXMP3CpmOZNKWWlh5pMCLkW_Ia8OfXcp_loxF724bNF7EzCuWXfdnuo6kBV9-QC9jWsK9Xe6p1Iw2Yt6xg15caTWccFJ71LdNt3r05kq8OYA2BRzTjhr64opLoaSjPMaqN5L0Scpei9FH6XUNH-QPg34X-7tIedClbCYu5j8pIu59zHNyQTr6hb_bvEXbi6h-A
CitedBy_id crossref_primary_10_1109_TIT_2022_3222266
crossref_primary_10_1080_01621459_2020_1862671
Cites_doi 10.1093/biomet/asm077
10.1002/sim.8102
10.1198/016214507000000617
10.1093/biomet/asu017
10.1198/016214505000000907
10.1016/j.jmva.2018.03.004
10.1111/j.1541-0420.2012.01763.x
10.1198/016214504000000098
10.1080/01621459.2012.695674
10.1016/0022-247X(71)90184-3
10.1093/biomet/asv028
10.1198/106186005X37238
10.1080/01621459.2014.951443
10.1198/jcgs.2010.09206
10.1208/ps020104
10.1214/10-AOS864
10.2174/138920210791110951
10.1111/biom.12865
10.1023/A:1008288411710
10.1080/01621459.2015.1093947
10.1073/pnas.97.1.262
10.1090/S0025-5718-1980-0572855-7
10.1023/A:1015469627679
10.1111/rssb.12216
10.1080/10618600.2012.680866
10.1007/s10107-017-1209-5
10.1137/1.9781611970128
10.1017/CBO9780511804441
10.1198/jasa.2011.tm10319
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
2019 Taylor & Francis Group, LLC
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
– notice: 2019 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/10543406.2019.1633657
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-5711
EndPage 624
ExternalDocumentID 31309858
10_1080_10543406_2019_1633657
1633657
Genre Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Division of Mathematical Sciences
  grantid: 1821231
  funderid: 10.13039/100000121
– fundername: National Institute of General Medical Sciences
  grantid: 126550
  funderid: 10.13039/100000057
– fundername: Division of Information and Intelligent Systems
  grantid: 1632951
  funderid: 10.13039/100000145
– fundername: National Cancer Institute
  grantid: 142538
  funderid: 10.13039/100000054
– fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NIGMS NIH HHS
  grantid: R01 GM126550
GroupedDBID ---
.7F
.QJ
0BK
0R~
29K
30N
36B
4.4
53G
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
D-I
DGEBU
DKSSO
DU5
EAP
EBC
EBD
EBR
EBS
EBU
EHE
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
MK0
ML~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
SV3
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
07G
1TA
AAIKQ
AAKBW
ACAGQ
ACGEE
ADYSH
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CAG
COF
CRFIH
DMQIW
DWIFK
IVXBP
NPM
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
7X8
ID FETCH-LOGICAL-c441t-e50096fc1196e98b7ecb74967ed1cb6c10e70aaf315c94c54899c8c1f5d915873
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477961800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1054-3406
1520-5711
IngestDate Fri Sep 05 06:06:19 EDT 2025
Sat Jul 26 02:06:30 EDT 2025
Mon Jul 21 06:03:08 EDT 2025
Sat Nov 29 02:13:01 EST 2025
Tue Nov 18 22:22:50 EST 2025
Mon Oct 20 23:48:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords robustness
non-convex optimization
precision medicine
multiple treatments
Angle-based classifiers
soft and hard classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-e50096fc1196e98b7ecb74967ed1cb6c10e70aaf315c94c54899c8c1f5d915873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1686-0545
OpenAccessLink https://figshare.com/articles/Robust_outcome_weighted_learning_for_optimal_individualized_treatment_rules/8904743
PMID 31309858
PQID 3087483754
PQPubID 196226
PageCount 19
ParticipantIDs crossref_citationtrail_10_1080_10543406_2019_1633657
proquest_miscellaneous_2258732218
informaworld_taylorfrancis_310_1080_10543406_2019_1633657
crossref_primary_10_1080_10543406_2019_1633657
proquest_journals_3087483754
pubmed_primary_31309858
PublicationCentury 2000
PublicationDate 2019-07-04
PublicationDateYYYYMMDD 2019-07-04
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Philadelphia
PublicationTitle Journal of biopharmaceutical statistics
PublicationTitleAlternate J Biopharm Stat
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Nocedal J. (CIT0020) 2006
CIT0021
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
Liu Y. (CIT0013) 2007
CIT0027
Zhang C. (CIT0030) 2013; 14
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0015
– ident: CIT0024
  doi: 10.1093/biomet/asm077
– ident: CIT0027
  doi: 10.1002/sim.8102
– volume-title: Sequential quadratic programming
  year: 2006
  ident: CIT0020
– ident: CIT0025
  doi: 10.1198/016214507000000617
– ident: CIT0031
  doi: 10.1093/biomet/asu017
– ident: CIT0002
  doi: 10.1198/016214505000000907
– ident: CIT0008
  doi: 10.1016/j.jmva.2018.03.004
– ident: CIT0028
  doi: 10.1111/j.1541-0420.2012.01763.x
– ident: CIT0029
– ident: CIT0011
  doi: 10.1198/016214504000000098
– start-page: 291
  volume-title: Artificial intelligence and statistics
  year: 2007
  ident: CIT0013
– ident: CIT0033
  doi: 10.1080/01621459.2012.695674
– ident: CIT0009
  doi: 10.1016/0022-247X(71)90184-3
– ident: CIT0010
  doi: 10.1093/biomet/asv028
– ident: CIT0014
  doi: 10.1198/106186005X37238
– ident: CIT0022
  doi: 10.1080/01621459.2014.951443
– ident: CIT0016
  doi: 10.1198/jcgs.2010.09206
– ident: CIT0018
  doi: 10.1208/ps020104
– ident: CIT0021
  doi: 10.1214/10-AOS864
– ident: CIT0006
  doi: 10.2174/138920210791110951
– ident: CIT0005
  doi: 10.1111/biom.12865
– ident: CIT0001
  doi: 10.1023/A:1008288411710
– ident: CIT0034
  doi: 10.1080/01621459.2015.1093947
– ident: CIT0004
  doi: 10.1073/pnas.97.1.262
– volume: 14
  start-page: 1349
  issue: 1
  year: 2013
  ident: CIT0030
  publication-title: Journal of Machine Learning Research
– ident: CIT0019
  doi: 10.1090/S0025-5718-1980-0572855-7
– ident: CIT0012
  doi: 10.1023/A:1015469627679
– ident: CIT0007
  doi: 10.1111/rssb.12216
– ident: CIT0026
  doi: 10.1080/10618600.2012.680866
– ident: CIT0032
  doi: 10.1007/s10107-017-1209-5
– ident: CIT0023
  doi: 10.1137/1.9781611970128
– ident: CIT0003
  doi: 10.1017/CBO9780511804441
– ident: CIT0017
  doi: 10.1198/jasa.2011.tm10319
SSID ssj0015784
Score 2.2014532
Snippet Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 606
SubjectTerms Angle-based classifiers
multiple treatments
non-convex optimization
Precision medicine
robustness
soft and hard classification
Title Robust outcome weighted learning for optimal individualized treatment rules
URI https://www.tandfonline.com/doi/abs/10.1080/10543406.2019.1633657
https://www.ncbi.nlm.nih.gov/pubmed/31309858
https://www.proquest.com/docview/3087483754
https://www.proquest.com/docview/2258732218
Volume 29
WOSCitedRecordID wos000477961800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1520-5711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015784
  issn: 1054-3406
  databaseCode: TFW
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB1RxIFLWyhtlwIyUsWJoHjtrO1jVXWFBEIrtBV7i5KJXSHRTbVJQPD1HSdOKAfEoZyiKJnEHo_tN_bMM8BXIRBx4p0cRE0OSqaizLg80g4TU1glxtiy65-riwu9WJhZiCasQlil96FdRxTRjtW-c2d51UfE0dXnQ8Y-wICbEwIUYpL4fHJC9j6obz69GvYRyB7bfWWSiLxIn8Pz3FeezE5PuEufR6DtTDR99wp1eA9vAwxl3zq72YI1u9yGo1nHY31_zOaPaVnVMTtis0eG6_tt2PQQtWN4_gBnl2XeVDUrm5qKYNldu9hqCxYOpPjFqHqspKHpN_3xekgAu36gd4Y4d7Zqbmy1Az-nP-bfT6NwREOEhKPqyCbeB3LIqSNbo3NlMVfSTJQtOOYT5LFVcZY5wRM0Esk9MgY1cpcUhidaiY-wviyX9jMwVEWciwIJsDmpYp4VSOhHSpR6LN1YjkD2TZNi4C_3x2jcpDzQnPY6Tb1O06DTEZwMYn86Ao-XBMy_7Z7W7cqJ6445ScULsnu9kaRhLCCRWCvP259QFQ6Hx9SL_dZMtrRlU6U0qpIyxoS3RvCpM66htIJghtGJ3v2Pgn2BTX_bxhnLPVivV43dhw28JWNZHcAbtdAHbc_5C7lOEeM
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RqFQu5dGWbgvUlSpOBMVrZ20fK9QViO0Koa3KzUomdoUEm2o3aUV_fcd5AQfEoT3l4Ezix9j-xp75BuCTEIg4CkYOoiYDJVVRanwWaY-JyZ0SQ6zZ9SdqOtWXl-Z-LExwqww2tG-IIuq1OkzucBjducTRMwRExsHDgJsjQhRilKhnsBay0wUDbDb-3t8kkEbWN8skEgWZLornsc882J8esJc-jkHrvWi88T9asQkvWyTKPjeqswUrbr4NB-cNlfXtIZvdRWYtD9kBO78jub7dhvWAUhuS51dwdlFk1bJkRVVSHRz7XZ-3upy1OSl-MGofK2h1uqE_XvUxYFd_6J3e1Z0tqmu3fA3fxl9mxydRm6UhQoJSZeSSYAZ55DSXndGZcpgpaUbK5RyzEfLYqThNveAJGolkIRmDGrlPcsMTrcQbWJ0Xc_cWGKo8zkSOhNm8VDFPcyQAJCVKPZR-KAcgu7Gx2FKYh0wa15a3TKddn9rQp7bt0wEc9WI_Gw6PpwTM_YG3ZX144ptMJ1Y8IbvbaYltlwMSibUK1P0JNeFjX0wTOdzOpHNXVEtLCyt1xpAg1wB2Gu3qaysIaRid6Hf_ULEP8OJk9nViJ6fTs_ewHopqt2O5C6vlonJ78Bx_keIs9usJ9BeDbhUe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagXHuW1UMBIqKemijf22j4iYAVqtVqhRfRmJRO7qlQ21SYBlV_POHFSeqh6gFMOziR-zNjf2ONvAN5lGSLOgpODqMlByVWSG18k2qM0pVPZFDt2_SO1WOjjY7OM0YR1DKsMPrTviSK6uToY93nph4g4eob7kGkIMODmgABFNpPqNtwh6CyDYq_m38eDBFLI7mCZRJIgM1ziue4zV5anK-Sl10PQbimaP_gPjXgI9yMOZe97xXkEt9x6B_aWPZH1xT5bXd7LqvfZHlteUlxf7MB2wKg9xfNjOPxaFW3dsKptqAqO_ep2W13JYkaKE0bNYxXNTT_oj6fjDbDT3_TOGOjONu2Zq5_At_mn1YfPSczRkCABqSZxMjhBHjlZsjO6UA4LJcxMuZJjMUOeOpXmuc-4RCOQ_CNjUCP3sjRcapU9ha11tXbPgaEq0yIrkRCbFyrleYkEf4RAoafCT8UExDA0FiOBecijcWZ55Dkd-tSGPrWxTydwMIqd9wweNwmYv8fdNt3Wie_znNjsBtndQUlsnAxIJNUqEPdLasLbsZjMOJzN5GtXtbWlaZU6Y0qAawLPeuUaa5sRzjBa6hf_ULE3cG_5cW6PviwOX8J2KOlijsUubDWb1r2Cu_iT9GbzujOfPyVVE9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+outcome+weighted+learning+for+optimal+individualized+treatment+rules&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Fu%2C+Sheng&rft.au=He%2C+Qinying&rft.au=Zhang%2C+Sanguo&rft.au=Liu%2C+Yufeng&rft.date=2019-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1054-3406&rft.eissn=1520-5711&rft.volume=29&rft.issue=4&rft.spage=606&rft.epage=624&rft_id=info:doi/10.1080%2F10543406.2019.1633657&rft.externalDocID=1633657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon