Robust outcome weighted learning for optimal individualized treatment rules
Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop...
Uložené v:
| Vydané v: | Journal of biopharmaceutical statistics Ročník 29; číslo 4; s. 606 - 624 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Taylor & Francis
04.07.2019
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1054-3406, 1520-5711, 1520-5711 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop a proper decision rule using patient-specific characteristics to maximize the expected clinical outcome, i.e. the optimal ITR. Recently, outcome weighted learning (OWL) has been proposed to estimate optimal ITR under a weighted classification framework. Since most of commonly used loss functions are unbounded, the resulting ITR may suffer similar effects of outliers as the corresponding classifiers. In this paper, we propose robust OWL (ROWL) to build more stable ITRs using a new family of bounded and non-convex loss functions. Moreover, we extend the proposed ROWL method to the multiple treatment setting under the angle-based classification structure. Our theoretical results show that ROWL is Fisher consistent, and can provide the estimation of rewards' ratios for the resulting ITRs. We develop an efficient difference of convex functions algorithm (DCA) to solve the corresponding nonconvex optimization problem. Through analysis of simulated examples and a real medical dataset, we demonstrate that the proposed ROWL method yields more competitive performance in terms of the empirical value function and the misclassification error than several existing methods. |
|---|---|
| AbstractList | Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop a proper decision rule using patient-specific characteristics to maximize the expected clinical outcome, i.e. the optimal ITR. Recently, outcome weighted learning (OWL) has been proposed to estimate optimal ITR under a weighted classification framework. Since most of commonly used loss functions are unbounded, the resulting ITR may suffer similar effects of outliers as the corresponding classifiers. In this paper, we propose robust OWL (ROWL) to build more stable ITRs using a new family of bounded and non-convex loss functions. Moreover, we extend the proposed ROWL method to the multiple treatment setting under the angle-based classification structure. Our theoretical results show that ROWL is Fisher consistent, and can provide the estimation of rewards' ratios for the resulting ITRs. We develop an efficient difference of convex functions algorithm (DCA) to solve the corresponding nonconvex optimization problem. Through analysis of simulated examples and a real medical dataset, we demonstrate that the proposed ROWL method yields more competitive performance in terms of the empirical value function and the misclassification error than several existing methods. Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop a proper decision rule using patient-specific characteristics to maximize the expected clinical outcome, i.e. the optimal ITR. Recently, outcome weighted learning (OWL) has been proposed to estimate optimal ITR under a weighted classification framework. Since most of commonly used loss functions are unbounded, the resulting ITR may suffer similar effects of outliers as the corresponding classifiers. In this paper, we propose robust OWL (ROWL) to build more stable ITRs using a new family of bounded and non-convex loss functions. Moreover, we extend the proposed ROWL method to the multiple treatment setting under the angle-based classification structure. Our theoretical results show that ROWL is Fisher consistent, and can provide the estimation of rewards' ratios for the resulting ITRs. We develop an efficient difference of convex functions algorithm (DCA) to solve the corresponding nonconvex optimization problem. Through analysis of simulated examples and a real medical dataset, we demonstrate that the proposed ROWL method yields more competitive performance in terms of the empirical value function and the misclassification error than several existing methods.Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to treatments, discovering individualized treatment rules (ITR) is an important component of precision medicine. To that end, one needs to develop a proper decision rule using patient-specific characteristics to maximize the expected clinical outcome, i.e. the optimal ITR. Recently, outcome weighted learning (OWL) has been proposed to estimate optimal ITR under a weighted classification framework. Since most of commonly used loss functions are unbounded, the resulting ITR may suffer similar effects of outliers as the corresponding classifiers. In this paper, we propose robust OWL (ROWL) to build more stable ITRs using a new family of bounded and non-convex loss functions. Moreover, we extend the proposed ROWL method to the multiple treatment setting under the angle-based classification structure. Our theoretical results show that ROWL is Fisher consistent, and can provide the estimation of rewards' ratios for the resulting ITRs. We develop an efficient difference of convex functions algorithm (DCA) to solve the corresponding nonconvex optimization problem. Through analysis of simulated examples and a real medical dataset, we demonstrate that the proposed ROWL method yields more competitive performance in terms of the empirical value function and the misclassification error than several existing methods. |
| Author | Fu, Sheng Zhang, Sanguo Liu, Yufeng He, Qinying |
| Author_xml | – sequence: 1 givenname: Sheng surname: Fu fullname: Fu, Sheng organization: Department of Industrial and Systems Engineering, National University of Singapore – sequence: 2 givenname: Qinying surname: He fullname: He, Qinying organization: College of Economics and Management, South China Agricultural University – sequence: 3 givenname: Sanguo surname: Zhang fullname: Zhang, Sanguo organization: Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences – sequence: 4 givenname: Yufeng orcidid: 0000-0002-1686-0545 surname: Liu fullname: Liu, Yufeng email: yfliu@email.unc.edu organization: Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31309858$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1URNuFnwCKxIVLFk9ix7a4gCq-RCUkBGfLcSbFlWMvtkNVfj1e7e6lBzh5Ds8745nnkpyFGJCQ50C3QCV9DZSzntFh21FQWxj6fuDiEbkA3tGWC4CzWlem3UPn5DLnW0qBC8mekPMeeqoklxfky7c4rrk0cS02Ltjcobv5WXBqPJoUXLhp5piauCtuMb5xYXK_3bQa7_5UpiQ0ZcFQmrR6zE_J49n4jM-O74b8-PD--9Wn9vrrx89X765byxiUFjmlapgtgBpQyVGgHQVTg8AJ7DhYoCioMXMP3CpmOZNKWWlh5pMCLkW_Ia8OfXcp_loxF724bNF7EzCuWXfdnuo6kBV9-QC9jWsK9Xe6p1Iw2Yt6xg15caTWccFJ71LdNt3r05kq8OYA2BRzTjhr64opLoaSjPMaqN5L0Scpei9FH6XUNH-QPg34X-7tIedClbCYu5j8pIu59zHNyQTr6hb_bvEXbi6h-A |
| CitedBy_id | crossref_primary_10_1109_TIT_2022_3222266 crossref_primary_10_1080_01621459_2020_1862671 |
| Cites_doi | 10.1093/biomet/asm077 10.1002/sim.8102 10.1198/016214507000000617 10.1093/biomet/asu017 10.1198/016214505000000907 10.1016/j.jmva.2018.03.004 10.1111/j.1541-0420.2012.01763.x 10.1198/016214504000000098 10.1080/01621459.2012.695674 10.1016/0022-247X(71)90184-3 10.1093/biomet/asv028 10.1198/106186005X37238 10.1080/01621459.2014.951443 10.1198/jcgs.2010.09206 10.1208/ps020104 10.1214/10-AOS864 10.2174/138920210791110951 10.1111/biom.12865 10.1023/A:1008288411710 10.1080/01621459.2015.1093947 10.1073/pnas.97.1.262 10.1090/S0025-5718-1980-0572855-7 10.1023/A:1015469627679 10.1111/rssb.12216 10.1080/10618600.2012.680866 10.1007/s10107-017-1209-5 10.1137/1.9781611970128 10.1017/CBO9780511804441 10.1198/jasa.2011.tm10319 |
| ContentType | Journal Article |
| Copyright | 2019 Taylor & Francis Group, LLC 2019 2019 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2019 Taylor & Francis Group, LLC 2019 – notice: 2019 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1080/10543406.2019.1633657 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1520-5711 |
| EndPage | 624 |
| ExternalDocumentID | 31309858 10_1080_10543406_2019_1633657 1633657 |
| Genre | Article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Division of Mathematical Sciences grantid: 1821231 funderid: 10.13039/100000121 – fundername: National Institute of General Medical Sciences grantid: 126550 funderid: 10.13039/100000057 – fundername: Division of Information and Intelligent Systems grantid: 1632951 funderid: 10.13039/100000145 – fundername: National Cancer Institute grantid: 142538 funderid: 10.13039/100000054 – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NIGMS NIH HHS grantid: R01 GM126550 |
| GroupedDBID | --- .7F .QJ 0BK 0R~ 29K 30N 36B 4.4 53G 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 D-I DGEBU DKSSO DU5 EAP EBC EBD EBR EBS EBU EHE EJD EMB EMK EMOBN EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z MK0 ML~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF SV3 TASJS TBQAZ TDBHL TEJ TFL TFT TFW TH9 TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 07G 1TA AAIKQ AAKBW ACAGQ ACGEE ADYSH AEUMN AGCQS AGLEN AGROQ AHMOU ALCKM AMEWO AMXXU BCCOT BPLKW C06 CAG COF CRFIH DMQIW DWIFK IVXBP NPM NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q 7X8 |
| ID | FETCH-LOGICAL-c441t-e50096fc1196e98b7ecb74967ed1cb6c10e70aaf315c94c54899c8c1f5d915873 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477961800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1054-3406 1520-5711 |
| IngestDate | Fri Sep 05 06:06:19 EDT 2025 Sat Jul 26 02:06:30 EDT 2025 Mon Jul 21 06:03:08 EDT 2025 Sat Nov 29 02:13:01 EST 2025 Tue Nov 18 22:22:50 EST 2025 Mon Oct 20 23:48:56 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | robustness non-convex optimization precision medicine multiple treatments Angle-based classifiers soft and hard classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-e50096fc1196e98b7ecb74967ed1cb6c10e70aaf315c94c54899c8c1f5d915873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1686-0545 |
| OpenAccessLink | https://figshare.com/articles/Robust_outcome_weighted_learning_for_optimal_individualized_treatment_rules/8904743 |
| PMID | 31309858 |
| PQID | 3087483754 |
| PQPubID | 196226 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1080_10543406_2019_1633657 proquest_miscellaneous_2258732218 informaworld_taylorfrancis_310_1080_10543406_2019_1633657 crossref_primary_10_1080_10543406_2019_1633657 proquest_journals_3087483754 pubmed_primary_31309858 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-04 |
| PublicationDateYYYYMMDD | 2019-07-04 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Philadelphia |
| PublicationTitle | Journal of biopharmaceutical statistics |
| PublicationTitleAlternate | J Biopharm Stat |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 Nocedal J. (CIT0020) 2006 CIT0021 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 Liu Y. (CIT0013) 2007 CIT0027 Zhang C. (CIT0030) 2013; 14 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0015 – ident: CIT0024 doi: 10.1093/biomet/asm077 – ident: CIT0027 doi: 10.1002/sim.8102 – volume-title: Sequential quadratic programming year: 2006 ident: CIT0020 – ident: CIT0025 doi: 10.1198/016214507000000617 – ident: CIT0031 doi: 10.1093/biomet/asu017 – ident: CIT0002 doi: 10.1198/016214505000000907 – ident: CIT0008 doi: 10.1016/j.jmva.2018.03.004 – ident: CIT0028 doi: 10.1111/j.1541-0420.2012.01763.x – ident: CIT0029 – ident: CIT0011 doi: 10.1198/016214504000000098 – start-page: 291 volume-title: Artificial intelligence and statistics year: 2007 ident: CIT0013 – ident: CIT0033 doi: 10.1080/01621459.2012.695674 – ident: CIT0009 doi: 10.1016/0022-247X(71)90184-3 – ident: CIT0010 doi: 10.1093/biomet/asv028 – ident: CIT0014 doi: 10.1198/106186005X37238 – ident: CIT0022 doi: 10.1080/01621459.2014.951443 – ident: CIT0016 doi: 10.1198/jcgs.2010.09206 – ident: CIT0018 doi: 10.1208/ps020104 – ident: CIT0021 doi: 10.1214/10-AOS864 – ident: CIT0006 doi: 10.2174/138920210791110951 – ident: CIT0005 doi: 10.1111/biom.12865 – ident: CIT0001 doi: 10.1023/A:1008288411710 – ident: CIT0034 doi: 10.1080/01621459.2015.1093947 – ident: CIT0004 doi: 10.1073/pnas.97.1.262 – volume: 14 start-page: 1349 issue: 1 year: 2013 ident: CIT0030 publication-title: Journal of Machine Learning Research – ident: CIT0019 doi: 10.1090/S0025-5718-1980-0572855-7 – ident: CIT0012 doi: 10.1023/A:1015469627679 – ident: CIT0007 doi: 10.1111/rssb.12216 – ident: CIT0026 doi: 10.1080/10618600.2012.680866 – ident: CIT0032 doi: 10.1007/s10107-017-1209-5 – ident: CIT0023 doi: 10.1137/1.9781611970128 – ident: CIT0003 doi: 10.1017/CBO9780511804441 – ident: CIT0017 doi: 10.1198/jasa.2011.tm10319 |
| SSID | ssj0015784 |
| Score | 2.2014532 |
| Snippet | Personalized medicine has received increasing attentions among scientific communities in recent years. Because patients often have heterogenous responses to... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 606 |
| SubjectTerms | Angle-based classifiers multiple treatments non-convex optimization Precision medicine robustness soft and hard classification |
| Title | Robust outcome weighted learning for optimal individualized treatment rules |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10543406.2019.1633657 https://www.ncbi.nlm.nih.gov/pubmed/31309858 https://www.proquest.com/docview/3087483754 https://www.proquest.com/docview/2258732218 |
| Volume | 29 |
| WOSCitedRecordID | wos000477961800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 1520-5711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015784 issn: 1054-3406 databaseCode: TFW dateStart: 19910101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB1RxIFLWyhtlwIyUsWJoHjtrO1jVXWFBEIrtBV7i5KJXSHRTbVJQPD1HSdOKAfEoZyiKJnEHo_tN_bMM8BXIRBx4p0cRE0OSqaizLg80g4TU1glxtiy65-riwu9WJhZiCasQlil96FdRxTRjtW-c2d51UfE0dXnQ8Y-wICbEwIUYpL4fHJC9j6obz69GvYRyB7bfWWSiLxIn8Pz3FeezE5PuEufR6DtTDR99wp1eA9vAwxl3zq72YI1u9yGo1nHY31_zOaPaVnVMTtis0eG6_tt2PQQtWN4_gBnl2XeVDUrm5qKYNldu9hqCxYOpPjFqHqspKHpN_3xekgAu36gd4Y4d7Zqbmy1Az-nP-bfT6NwREOEhKPqyCbeB3LIqSNbo3NlMVfSTJQtOOYT5LFVcZY5wRM0Esk9MgY1cpcUhidaiY-wviyX9jMwVEWciwIJsDmpYp4VSOhHSpR6LN1YjkD2TZNi4C_3x2jcpDzQnPY6Tb1O06DTEZwMYn86Ao-XBMy_7Z7W7cqJ6445ScULsnu9kaRhLCCRWCvP259QFQ6Hx9SL_dZMtrRlU6U0qpIyxoS3RvCpM66htIJghtGJ3v2Pgn2BTX_bxhnLPVivV43dhw28JWNZHcAbtdAHbc_5C7lOEeM |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RqFQu5dGWbgvUlSpOBMVrZ20fK9QViO0Koa3KzUomdoUEm2o3aUV_fcd5AQfEoT3l4Ezix9j-xp75BuCTEIg4CkYOoiYDJVVRanwWaY-JyZ0SQ6zZ9SdqOtWXl-Z-LExwqww2tG-IIuq1OkzucBjducTRMwRExsHDgJsjQhRilKhnsBay0wUDbDb-3t8kkEbWN8skEgWZLornsc882J8esJc-jkHrvWi88T9asQkvWyTKPjeqswUrbr4NB-cNlfXtIZvdRWYtD9kBO78jub7dhvWAUhuS51dwdlFk1bJkRVVSHRz7XZ-3upy1OSl-MGofK2h1uqE_XvUxYFd_6J3e1Z0tqmu3fA3fxl9mxydRm6UhQoJSZeSSYAZ55DSXndGZcpgpaUbK5RyzEfLYqThNveAJGolkIRmDGrlPcsMTrcQbWJ0Xc_cWGKo8zkSOhNm8VDFPcyQAJCVKPZR-KAcgu7Gx2FKYh0wa15a3TKddn9rQp7bt0wEc9WI_Gw6PpwTM_YG3ZX144ptMJ1Y8IbvbaYltlwMSibUK1P0JNeFjX0wTOdzOpHNXVEtLCyt1xpAg1wB2Gu3qaysIaRid6Hf_ULEP8OJk9nViJ6fTs_ewHopqt2O5C6vlonJ78Bx_keIs9usJ9BeDbhUe |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagXHuW1UMBIqKemijf22j4iYAVqtVqhRfRmJRO7qlQ21SYBlV_POHFSeqh6gFMOziR-zNjf2ONvAN5lGSLOgpODqMlByVWSG18k2qM0pVPZFDt2_SO1WOjjY7OM0YR1DKsMPrTviSK6uToY93nph4g4eob7kGkIMODmgABFNpPqNtwh6CyDYq_m38eDBFLI7mCZRJIgM1ziue4zV5anK-Sl10PQbimaP_gPjXgI9yMOZe97xXkEt9x6B_aWPZH1xT5bXd7LqvfZHlteUlxf7MB2wKg9xfNjOPxaFW3dsKptqAqO_ep2W13JYkaKE0bNYxXNTT_oj6fjDbDT3_TOGOjONu2Zq5_At_mn1YfPSczRkCABqSZxMjhBHjlZsjO6UA4LJcxMuZJjMUOeOpXmuc-4RCOQ_CNjUCP3sjRcapU9ha11tXbPgaEq0yIrkRCbFyrleYkEf4RAoafCT8UExDA0FiOBecijcWZ55Dkd-tSGPrWxTydwMIqd9wweNwmYv8fdNt3Wie_znNjsBtndQUlsnAxIJNUqEPdLasLbsZjMOJzN5GtXtbWlaZU6Y0qAawLPeuUaa5sRzjBa6hf_ULE3cG_5cW6PviwOX8J2KOlijsUubDWb1r2Cu_iT9GbzujOfPyVVE9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+outcome+weighted+learning+for+optimal+individualized+treatment+rules&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Fu%2C+Sheng&rft.au=He%2C+Qinying&rft.au=Zhang%2C+Sanguo&rft.au=Liu%2C+Yufeng&rft.date=2019-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1054-3406&rft.eissn=1520-5711&rft.volume=29&rft.issue=4&rft.spage=606&rft.epage=624&rft_id=info:doi/10.1080%2F10543406.2019.1633657&rft.externalDocID=1633657 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon |