Modified GUIDE (LM) algorithm for mining maximal high utility patterns from data streams

High utility pattern mining is an emerging research topic in the data mining field. Unlike frequent pattern mining, high utility pattern mining deals with non-binary databases, in which the information about purchased quantities of items is maintained. Due to the non-existence of anti-monotone prope...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computational intelligence systems Ročník 8; číslo 3; s. 517 - 529
Hlavní autori: Manike, Chiranjeevi, Om, Hari
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.06.2015
Springer Nature B.V
Springer
Predmet:
ISSN:1875-6891, 1875-6883, 1875-6883
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract High utility pattern mining is an emerging research topic in the data mining field. Unlike frequent pattern mining, high utility pattern mining deals with non-binary databases, in which the information about purchased quantities of items is maintained. Due to the non-existence of anti-monotone property among the utilities of itemsets, utility mining becomes a big challenge. Moreover, discovering useful patterns from the huge number of potential patterns is a mining bottleneck. However, the compact (Closed and Maximal) high utility pattern mining moderately lessens the number of patterns, but it does not solve it. Recently, an efficient framework called GUIDE, was proposed in the literature to address this issue. Though, GUIDE effectively reduced the number of high utility patterns, yet the quality of few mined patterns and their utilities are not exact. In view of this, we propose a modified MGUIDE LM algorithm to improve the quality and determine exact utilities of maximal patterns.
AbstractList High utility pattern mining is an emerging research topic in the data mining field. Unlike frequent pattern mining, high utility pattern mining deals with non-binary databases, in which the information about purchased quantities of items is maintained. Due to the non-existence of anti-monotone property among the utilities of itemsets, utility mining becomes a big challenge. Moreover, discovering useful patterns from the huge number of potential patterns is a mining bottleneck. However, the compact (Closed and Maximal) high utility pattern mining moderately lessens the number of patterns, but it does not solve it. Recently, an efficient framework called GUIDE, was proposed in the literature to address this issue. Though, GUIDE effectively reduced the number of high utility patterns, yet the quality of few mined patterns and their utilities are not exact. In view of this, we propose a modified MGUIDE algorithm to improve the quality and determine exact utilities of maximal patterns.
High utility pattern mining is an emerging research topic in the data mining field. Unlike frequent pattern mining, high utility pattern mining deals with non-binary databases, in which the information about purchased quantities of items is maintained. Due to the non-existence of anti-monotone property among the utilities of itemsets, utility mining becomes a big challenge. Moreover, discovering useful patterns from the huge number of potential patterns is a mining bottleneck. However, the compact (Closed and Maximal) high utility pattern mining moderately lessens the number of patterns, but it does not solve it. Recently, an efficient framework called GUIDE, was proposed in the literature to address this issue. Though, GUIDE effectively reduced the number of high utility patterns, yet the quality of few mined patterns and their utilities are not exact. In view of this, we propose a modified MGUIDE LM algorithm to improve the quality and determine exact utilities of maximal patterns.
Author Om, Hari
Manike, Chiranjeevi
Author_xml – sequence: 1
  givenname: Chiranjeevi
  surname: Manike
  fullname: Manike, Chiranjeevi
  email: chiru.research@gmail.com
  organization: Department of Computer Science and Engineering, Indian School of Mines
– sequence: 2
  givenname: Hari
  surname: Om
  fullname: Om, Hari
  organization: Department of Computer Science and Engineering, Indian School of Mines
BookMark eNqFkU9rGzEUxEVJoUmaj1AQ9NIcnDxptVotPYU0fwwOvTTQm3heSWuZ3ZUjyZB8-8px0kAP6UlimBl-vDkiB1OYLCFfGJwxUHDOVFNL1bIzDqwuEq9q1X4ghzt9JpWqDv7-W_aJnKS0BgDOBIAQh-T3XTDeeWvozf38xxX9trg7pTj0Ifq8GqkLkY5-8lNPR3z0Iw505fsV3WY_-PxEN5izjVOiLoaRGsxIU44Wx_SZfHQ4JHvy8h6T--urX5e3s8XPm_nlxWLWCcHyzJilbYxFJTlHBQYKmGKiyLJFsZRN2yCrwGG9rCrWKuOM5Kw2rpE1MCmqYzLf95qAa72JhTE-6YBePwsh9hpj9t1gtVOlzCgrOwMCwSrOO2gAW7HkDrgpXV_3XZsYHrY2Zb0O2zgVfM2FbGS5W8uL6_ve1cWQUrROdz5j9mHKEf2gGejdMvp1Gb1bRr8sU9L1P-lX5v_l5D6Xin_qbXxjez_4ByGAoSQ
CitedBy_id crossref_primary_10_1016_j_engappai_2018_03_020
crossref_primary_10_1109_ACCESS_2021_3065393
crossref_primary_10_1155_2021_7310137
crossref_primary_10_3233_JIFS_221672
crossref_primary_10_1016_j_eswa_2016_01_049
crossref_primary_10_3233_IDA_150488
Cites_doi 10.1016/j.eswa.2012.01.072
10.1145/1835804.1835839
10.1016/j.datak.2005.10.004
10.1016/j.datak.2007.06.009
10.1145/2396761.2396773
10.1145/1774088.1774436
10.1016/j.ins.2012.05.015
10.1016/j.eswa.2012.05.035
10.1007/978-3-540-68125-0_50
10.1007/11540007_67
10.1007/978-3-642-01307-2_76
10.1016/j.eswa.2010.12.082
10.1007/11430919_79
ContentType Journal Article
Copyright the authors 2017
2015. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: the authors 2017
– notice: 2015. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1080/18756891.2015.1023589
DatabaseName Springer Nature Link
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-6883
EndPage 529
ExternalDocumentID oai_doaj_org_article_f897ad8e6cd04a0e822c070a94b2f02d
10_1080_18756891_2015_1023589
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
ADMSI
AENEX
AFGXO
AFKRA
AFPKN
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
H13
HCIFZ
HZ~
IL9
IPNFZ
J~4
K7-
M4Z
O9-
OK1
PIMPY
RIG
RSV
SOJ
TDBHL
TFL
TFW
TR2
AASML
AAYXX
AFFHD
AQTUD
CCPQU
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c441t-ddbe7dea8622a80d0140814ddb69a4b6797a130fa5b33198dfd6215df76501643
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350031300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-6891
1875-6883
IngestDate Fri Oct 03 12:53:04 EDT 2025
Tue Oct 21 12:46:27 EDT 2025
Sat Nov 29 02:36:48 EST 2025
Tue Nov 18 22:41:36 EST 2025
Fri Feb 21 02:40:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Transaction projection
Maximal Patterns
High utility patterns
Anti-monotone property
Data mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-ddbe7dea8622a80d0140814ddb69a4b6797a130fa5b33198dfd6215df76501643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/f897ad8e6cd04a0e822c070a94b2f02d
PQID 2467600292
PQPubID 4869256
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_f897ad8e6cd04a0e822c070a94b2f02d
proquest_journals_2467600292
crossref_citationtrail_10_1080_18756891_2015_1023589
crossref_primary_10_1080_18756891_2015_1023589
springer_journals_10_1080_18756891_2015_1023589
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References https://doi.org/http://fimi.ua.ac.be/data/.
LinM-YTuT-FHsuehS-CHigh utility pattern mining using the maximal itemset property and lexicographic tree structuresInformation Sciences2012215114
H. Yao, H. J. Hamilton and C. J. Butz, “A foundational approach to mining itemset utilities from databases,” SIAM Int. conf. on data mining, 482–486 (2004).
YaoHHamiltonHJMining itemset utilities from transaction databasesData and Knowledge Engineering2006593603626
C.-W. Lin, T.-P. Hong and W.-H. Lu, “An effective tree structure for mining high utility itemsets,” Expert Systems with Applications, 38(6), 7419–7424 (2011).
Y. C. Li, J. S. Yeh and C. C. Chang, “A fast algorithm for mining share-frequent itemsets,” In Web Technologies Research and Development-APWeb, 417–428 (2005).
AgrawalRSrikantRSrikant,”Fast algorithms for mining association rules,”In Proc. Int. Conf. Very Large Data Bases, VLDB19941215487499
A. Erwin, R. P. Gopalan and N. Achuthan, “Efficient mining of high utility itemsets from large datasets,” Advances in Knowledge Discovery and Data Mining, 554–561 (2008).
https://doi.org/http://www.almaden.ibm.com/software/projects/hdb/resources.shtml.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets for association rules,” In Database TheoryICDT99, 398–416 (1999).
C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K. Lee, “An efficient candidate pruning technique for high utility pattern mining,” Advances in Knowledge Discovery and Data Mining, 749–756 (2009).
LiY-CYehJ-SChangC-CIsolated items discarding strategy for discovering high utility itemsetsData and Knowledge Engineering2008641198217
B.-E. Shie, V. S. Tseng and P. S. Yu, “Online mining of temporal maximal utility itemsets from data streams,” In Proc. of the 2010 ACM Symposium on Applied Computing, 1622–1626 (2010).
V. S. Tseng, C.-W. Wu, B.-E. Shie and P. S. Yu, “UP-Growth: an efficient algorithm for high utility item-set mining,” Proc. of 16th ACM SIGKDD Int. Conf. on Knowledge discovery and data mining, 253–262 (2010).
ErwinAGopalanRPAchuthanNRA bottom-up projection based algorithm for mining high utility itemsetsIn Proc. of the 2nd Int. workshop on Integrating artificial intelligence and data mining200784311
Y. C. Yeh, L. J. S., and C. C. Chang, “Efficient algorithm for mining share-frequent itmesets,” In Proc.of the 11th Int. Fuzzy Systems Association World Congress, 1,(2005).
Y. -C. Li, J. S. Yeh and C. C. Chang, “Direct candidates generation: a novel algorithm for discovering complete share-frequent itemsets,” Fuzzy Systems and Knowledge Discovery, 551–560, (2005).
V. S. Tseng, C.-J. Chu and T. Liang, “Efficient mining of temporal high utility itemsets from data streams,” Second Int. Workshop on Utility-Based Data Mining, 18, (2006).
C. F. Ahmed, S. K. Tanbeer and B.-S. Jeong, “Efficient mining of high utility patterns over data streams with a sliding window method,” In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 99–113 (2010).
H.-F. Li, H.-Y. Huang, Y.-C. Chen, Y.-J. Liu and S.-Y. Lee, “Fast and memory efficient mining of high utility itemsets in data streams,” In Proc. of IEEE Int. Con. on Data Mining, 881–886. (2008).
ShieB-EYuPSTsengVSEfficient algorithms for mining maximal high utility itemsets from data streams with different modelsExpert Systems with Applications201239171294712960
Y. Liu, W.-k. Liao and A. Choudhary,”A two-phase algorithm for fast discovery of high utility itemsets,” In Advances in Knowledge Discovery and Data Mining, 689–695 (2005).
M. Liu, J. Qu, “Mining high utility itemsets without candidate generation,” Proc. of ACM Int. Conf. on Information and knowledge management, 55–64 (2012).
A. Erwin, R. P. Gopalan and N. Achuthan, “CTU-Mine: An efficient high utility itemset mining algorithm using the pattern growth approach,” In Proc. of IEEE Int. Conf. on Computer and Information Technology, 71–76 (2007).
C.-W. Lin, G.-C. Lan and T.-P. Hong, “An incremental mining algorithm for high utility itemsets,” Expert Systems with Applications, 39(8), 7173–7180 (2012).
cit0011
cit0012
Pasquier N. (cit0019) 1999
cit0023
Li Y. C. (cit0020) 2005
cit0010
Li Y. C. (cit0021) 2005; 1
Ahmed C. F. (cit0017) 2010
Liu M. (cit0013) 2012
Erwin A. (cit0006) 2008
Yao H. (cit0001) 2004
Ahmed C. F. (cit0008) 2009
Tseng V. S. (cit0014) 2006; 18
Erwin A. (cit0005) 2007
Agrawal R. (cit0002) 1994; 1215
Li H.-F. (cit0015) 2008
cit0009
cit0007
cit0018
cit0004
cit0016
Erwin A. (cit0022) 2007; 84
cit0003
References_xml – reference: Y. C. Yeh, L. J. S., and C. C. Chang, “Efficient algorithm for mining share-frequent itmesets,” In Proc.of the 11th Int. Fuzzy Systems Association World Congress, 1,(2005).
– reference: https://doi.org/http://fimi.ua.ac.be/data/.
– reference: C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K. Lee, “An efficient candidate pruning technique for high utility pattern mining,” Advances in Knowledge Discovery and Data Mining, 749–756 (2009).
– reference: H. Yao, H. J. Hamilton and C. J. Butz, “A foundational approach to mining itemset utilities from databases,” SIAM Int. conf. on data mining, 482–486 (2004).
– reference: V. S. Tseng, C.-W. Wu, B.-E. Shie and P. S. Yu, “UP-Growth: an efficient algorithm for high utility item-set mining,” Proc. of 16th ACM SIGKDD Int. Conf. on Knowledge discovery and data mining, 253–262 (2010).
– reference: Y. C. Li, J. S. Yeh and C. C. Chang, “A fast algorithm for mining share-frequent itemsets,” In Web Technologies Research and Development-APWeb, 417–428 (2005).
– reference: B.-E. Shie, V. S. Tseng and P. S. Yu, “Online mining of temporal maximal utility itemsets from data streams,” In Proc. of the 2010 ACM Symposium on Applied Computing, 1622–1626 (2010).
– reference: H.-F. Li, H.-Y. Huang, Y.-C. Chen, Y.-J. Liu and S.-Y. Lee, “Fast and memory efficient mining of high utility itemsets in data streams,” In Proc. of IEEE Int. Con. on Data Mining, 881–886. (2008).
– reference: LinM-YTuT-FHsuehS-CHigh utility pattern mining using the maximal itemset property and lexicographic tree structuresInformation Sciences2012215114
– reference: https://doi.org/http://www.almaden.ibm.com/software/projects/hdb/resources.shtml.
– reference: A. Erwin, R. P. Gopalan and N. Achuthan, “Efficient mining of high utility itemsets from large datasets,” Advances in Knowledge Discovery and Data Mining, 554–561 (2008).
– reference: C. F. Ahmed, S. K. Tanbeer and B.-S. Jeong, “Efficient mining of high utility patterns over data streams with a sliding window method,” In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 99–113 (2010).
– reference: A. Erwin, R. P. Gopalan and N. Achuthan, “CTU-Mine: An efficient high utility itemset mining algorithm using the pattern growth approach,” In Proc. of IEEE Int. Conf. on Computer and Information Technology, 71–76 (2007).
– reference: V. S. Tseng, C.-J. Chu and T. Liang, “Efficient mining of temporal high utility itemsets from data streams,” Second Int. Workshop on Utility-Based Data Mining, 18, (2006).
– reference: AgrawalRSrikantRSrikant,”Fast algorithms for mining association rules,”In Proc. Int. Conf. Very Large Data Bases, VLDB19941215487499
– reference: LiY-CYehJ-SChangC-CIsolated items discarding strategy for discovering high utility itemsetsData and Knowledge Engineering2008641198217
– reference: C.-W. Lin, T.-P. Hong and W.-H. Lu, “An effective tree structure for mining high utility itemsets,” Expert Systems with Applications, 38(6), 7419–7424 (2011).
– reference: Y. Liu, W.-k. Liao and A. Choudhary,”A two-phase algorithm for fast discovery of high utility itemsets,” In Advances in Knowledge Discovery and Data Mining, 689–695 (2005).
– reference: ShieB-EYuPSTsengVSEfficient algorithms for mining maximal high utility itemsets from data streams with different modelsExpert Systems with Applications201239171294712960
– reference: N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets for association rules,” In Database TheoryICDT99, 398–416 (1999).
– reference: YaoHHamiltonHJMining itemset utilities from transaction databasesData and Knowledge Engineering2006593603626
– reference: C.-W. Lin, G.-C. Lan and T.-P. Hong, “An incremental mining algorithm for high utility itemsets,” Expert Systems with Applications, 39(8), 7173–7180 (2012).
– reference: ErwinAGopalanRPAchuthanNRA bottom-up projection based algorithm for mining high utility itemsetsIn Proc. of the 2nd Int. workshop on Integrating artificial intelligence and data mining200784311
– reference: Y. -C. Li, J. S. Yeh and C. C. Chang, “Direct candidates generation: a novel algorithm for discovering complete share-frequent itemsets,” Fuzzy Systems and Knowledge Discovery, 551–560, (2005).
– reference: M. Liu, J. Qu, “Mining high utility itemsets without candidate generation,” Proc. of ACM Int. Conf. on Information and knowledge management, 55–64 (2012).
– ident: cit0011
  doi: 10.1016/j.eswa.2012.01.072
– start-page: 482
  year: 2004
  ident: cit0001
  publication-title: SIAM Int. conf. on data mining
– ident: cit0009
  doi: 10.1145/1835804.1835839
– ident: cit0004
  doi: 10.1016/j.datak.2005.10.004
– ident: cit0007
  doi: 10.1016/j.datak.2007.06.009
– volume: 84
  start-page: 3
  year: 2007
  ident: cit0022
  publication-title: In Proc. of the 2nd Int. workshop on Integrating artificial intelligence and data mining
– volume: 1215
  start-page: 487
  year: 1994
  ident: cit0002
  publication-title: In Proc. Int. Conf. Very Large Data Bases, VLDB
– start-page: 398
  year: 1999
  ident: cit0019
  publication-title: In Database TheoryICDT99
– start-page: 71
  year: 2007
  ident: cit0005
  publication-title: In Proc. of IEEE Int. Conf. on Computer and Information Technology
– start-page: 55
  year: 2012
  ident: cit0013
  publication-title: Proc. of ACM Int. Conf. on Information and knowledge management
  doi: 10.1145/2396761.2396773
– volume: 18
  year: 2006
  ident: cit0014
  publication-title: Second Int. Workshop on Utility-Based Data Mining
– start-page: 881
  year: 2008
  ident: cit0015
  publication-title: In Proc. of IEEE Int. Con. on Data Mining
– ident: cit0016
  doi: 10.1145/1774088.1774436
– start-page: 99
  year: 2010
  ident: cit0017
  publication-title: In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
– volume: 1
  year: 2005
  ident: cit0021
  publication-title: In Proc.of the 11th Int. Fuzzy Systems Association World Congress
– ident: cit0012
  doi: 10.1016/j.ins.2012.05.015
– ident: cit0018
  doi: 10.1016/j.eswa.2012.05.035
– start-page: 554
  year: 2008
  ident: cit0006
  publication-title: Advances in Knowledge Discovery and Data Mining
  doi: 10.1007/978-3-540-68125-0_50
– start-page: 417
  year: 2005
  ident: cit0020
  publication-title: In Web Technologies Research and Development-APWeb
– ident: cit0023
  doi: 10.1007/11540007_67
– start-page: 749
  year: 2009
  ident: cit0008
  publication-title: Advances in Knowledge Discovery and Data Mining
  doi: 10.1007/978-3-642-01307-2_76
– ident: cit0010
  doi: 10.1016/j.eswa.2010.12.082
– ident: cit0003
  doi: 10.1007/11430919_79
SSID ssj0002140044
ssib050732782
Score 2.0240386
Snippet High utility pattern mining is an emerging research topic in the data mining field. Unlike frequent pattern mining, high utility pattern mining deals with...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 517
SubjectTerms Algorithms
Anti-monotone property
Data mining
Data transmission
High utility patterns
Maximal Patterns
Pattern analysis
Research Article
Transaction projection
Utilities
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cClhQLqQql84AAHs4nzck6IR1uQaNUDlfYWORm7XanZXTbbip_PjNduoYdy6CUHJ7HizOuzx_4G4K0tHflAU8oalZMU8bU0li4WKfyUxiks1sUmquNjPZnUJ2HBbQjbKqNP9I4a5x2vkY8VWbTPIamPi1-Sq0ZxdjWU0HgIj1JFTpiTspWM-kRQJ1ORrZ09s0pZY32imWC6LHWdxkM9OhlzGzfxfq_CUxoUXPz9r3DlWf3_gaK3sqc-KB1s3Xc4T2EzwFHxaa0_z-CBnW3DViz1IILlP4fJ0RynjuCqODz9_nVfvPtx9F6YizPqcnXeC0K-ovelJkRvfk976pJ5kAVpNcN8sfAsnrNB8GkWwbtSBR9SMf3wAk4P9n9--SZDUQbZEXJaScTWVmgNzYSU0QnyDE2nOTWXtcnbsqorQ3HRmaLNyLw1OiwJVqCrCAvS3Cx7CRuz-czugMgQTZ23eaY6lxd1anSLNL1SVYJZlSTdCPL475suMJZz4YyLJg3EplFkDYusCSIbwYfr1xZryo7_vfCZBXv9MDNu-4b58qwJBtw4TQNDbcsOk9wkloBVR-6SB6BconAEu1HQTXADQ3Mj5RGMo6rc3L7zq17d3eFreMJPr3et7cLGanlp38Dj7mo1HZZ73g7-ALYMBYc
  priority: 102
  providerName: ProQuest
Title Modified GUIDE (LM) algorithm for mining maximal high utility patterns from data streams
URI https://link.springer.com/article/10.1080/18756891.2015.1023589
https://www.proquest.com/docview/2467600292
https://doaj.org/article/f897ad8e6cd04a0e822c070a94b2f02d
Volume 8
WOSCitedRecordID wos000350031300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6891
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050732782
  issn: 1875-6891
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6891
  databaseCode: K7-
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6891
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 20161130
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6891
  databaseCode: TFW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4h6KGXAqVVtzzkQw_lENZxHnaOPBaoKCuEQNpb5GRsuhLZReyC-PnM5AFLD-XSiw9ObFnjsb9vZPsbgB8u9bQH2jTIUPmAEN8E1lHhkOAntV5h0iSb0MOhGY2yi4VUX3wnrJEHbgzX9ybTFo1LS5SxlY4ArSQ3tVlcKC8V8u4rdbYQTPEerEL2zbh7smNkPyRinpqMQ8IwqQULEk7tvgBGtWb_G6L519loDTnHa_Cp5YpivxnjOiy5yWdY7fIwiHZZbsDofIpjT1xSnFz_OhqIn7_Pd4W9vZlS4P-nEkRLRVXngRCVfRpX1CWLFAtyOebg4q6W2JzMBD81EXxlVPALElvNvsD18eDq8DRoMyYEJdGaeYBYOI3OUpiirJHI4ZMJY6pOMxsXqSZbEmh5mxQRrT2DHlPCfPSaiBoFTtFXWJ5MJ-4biAiRbRxHqvRxkoXWFEixj9ISIy1l2YO4M11etnLinNXiNg9b1dHO4jlbPG8t3oO9l2Z3jZ7Gew0OeF5efmY57LqCnCRvnSR_z0l6sNXNat6u0VmuCCPqU0nVg34306-f_zmq7_9jVJvwkftsLp5twfL8_sFtw4fycT6e3e_AysFgeHG5Uzs2lWc6eAY6RPUX
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkulKcIFNgDSHAwsdev9QEhSlMaNYkq1Eq5uWvPbolUJyEJrz_Fb2TG9rbAoZx64OLD2rvyeL95eXfnA3huEks2UCdehtJ65PGVpw1dDJL7SbSVGDdkE-l4rCaT7HADfrqzMLyt0tnE2lDjvOR_5D1JGl2vIcm3i88es0bx6qqj0GhgcWB-fKOUbfVmsEvz-0LKvf7R-32vZRXwSnL9aw-xMCkaTaG81MpHTjFUEFFzkumoSNIs1WTYrY6LkPCp0GJCfhFtSsEMJRchjXsNNqMwSuIObO70x4cfHYIpuAqlqw_PvkAGrCP10jYlBl6issAdI1J-j9u4iXeYxXURhZjp5n9zkDWPwB_B71_rtbUb3Nv63z7gbbjVBtziXaMhd2DDzO7CliOzEK1tuweT0RynlgJy8eF4sNsXL4ejV0KfnZII60-VoNheVDWZhqj092lFQ3KlZ0F6y4mMWNR1Smcrwed1BO-7FXwMR1er-3B8JfI9gM5sPjMPQYSIOouKKJSljeIs0KpASiBl6mOY-n7ZhcjNdV62NdmZGuQsD9rSrQ4iOUMkbyHShdfn3RZNUZJ_ddhhIJ0_zDXF64b58jRvTVRuFQmGyiQl-pH2DYWOJTkEFkBaX2IXth2w8tbQrfILVHWh56B5cfvSt3p0-YDP4Mb-0WiYDwfjg8dwk3s2e_S2obNefjFP4Hr5dT1dLZ-2Wijg5Kpx-ws-PGMO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+GUIDE+%28LM%29+algorithm+for+mining+maximal+high+utility+patterns+from+data+streams&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Manike%2C+Chiranjeevi&rft.au=Om%2C+Hari&rft.date=2015-06-01&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=8&rft.issue=3&rft.spage=517&rft_id=info:doi/10.1080%2F18756891.2015.1023589&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_18756891_2015_1023589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon